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Abstract
Delineation of epileptogenic cortex in focal epilepsy patients may profit from single‐
pulse electrical stimulation during intracranial EEG recordings. Single‐pulse electrical 
stimulation evokes early and delayed responses. Early responses represent connectiv-
ity. Delayed responses are a biomarker for epileptogenic cortex, but up till now, the 
precise mechanism generating delayed responses remains elusive. We used a data‐
driven modelling approach to study early and delayed responses. We hypothesized that 
delayed responses represent indirect responses triggered by early response activity and 
investigated this for 11 patients. Using two coupled neural masses, we modelled early 
and delayed responses by combining simulations and bifurcation analysis. An impor-
tant feature of the model is the inclusion of feedforward inhibitory connections. The 
waveform of early responses can be explained by feedforward inhibition. Delayed re-
sponses can be viewed as second‐order responses in the early response network which 
appear when input to a neural mass falls below a threshold forcing it temporarily to a 
spiking state. The combination of the threshold with noisy background input explains 
the typical stochastic appearance of delayed responses. The intrinsic excitability of a 
neural mass and the strength of its input influence the probability at which delayed 
responses to occur. Our work gives a theoretical basis for the use of delayed responses 
as a biomarker for the epileptogenic zone, confirming earlier clinical observations. The 
combination of early responses revealing effective connectivity, and delayed responses 
showing intrinsic excitability, makes single‐pulse electrical stimulation an interesting 
tool to obtain data for computational models of epilepsy surgery.
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1  |   INTRODUCTION

Epilepsy surgery may provide a cure for patients with focal 
epilepsy, especially if treatment with anti‐epileptic drugs 
fails (Jobst & Cascino, 2015; Noachtar & Borggraefe, 2009). 
Epilepsy surgery aims at removing the epileptogenic zone 
(EZ), that is the smallest area of cortex, the removal of which 
yields seizure freedom (Lüders, Najm, Nair, Widdess‐Walsh, 
& Bingman, 2006; Rosenow & Lüders, 2001). Although sev-
eral non‐invasive methods exist to approximate the EZ, the 
current gold standard remains the seizure onset zone (SOZ) 
determined via seizures captured during intracranial EEG re-
cordings. The dependence on the occurrence of spontaneous 
events has the disadvantage that long recording time is there-
fore needed, typically ranging from a few days up to weeks, 
which increases the burden of the patient, the risk of compli-
cations and costs.

To probe epileptogenicity during electrocorticography 
(ECoG) registration, single‐pulse electrical stimulation 
(SPES) is an alternative for observing spontaneous interic-
tal or ictal changes, with the advantage that it is controlled 
(Valentín et  al., 2002; van 't Klooster et  al., 2011). During 
SPES, brief electric pulses are applied directly to the cortex 
using the electrode grids implanted for clinical ECoG record-
ings. SPES typically evokes two types of responses: early re-
sponses (ERs) and delayed responses (DRs).

ERs appear directly and consistently after the stimulation, 
with a similar timing and shape across stimulation trials. 
They are well‐understood as they represent brain connectivity 
(Keller et al., 2014; Lacruz, García Seoane, Valentín, Selway, 
& Alarcón, 2007; Matsumoto, Kunieda, & Nair, 2017). ERs 
have, therefore, been used to investigate connectivity in sev-
eral functional regions such as the language area and motor 
cortex (see Matsumoto et al. (2017) for an overview). From 
ERs, directional networks can be constructed (Hebbink et al., 
2019). These networks (partly) explain ipsilateral seizure 
propagation (Enatsu et al., 2012; Mouthaan et al., 2016) in 
contrast to contralateral seizure spread (Jiménez‐Jiménez 
et  al., 2015). Moreover, network measures calculated from 
these ER networks exhibit differences between nodes in and 
outside the resected area and SOZ (Boido et al., 2014; van 
Blooijs, Leijten, van Rijen, Meijer, & Huiskamp, 2018).

Delayed responses appear later than ERs, between 100 ms 
and 1 s after stimulation (Valentín et al., 2002), have a sto-
chastic occurrence, that is they only appear on a subset of 
the stimulation trials at the same electrode pair, and come 
with variable timing and shape. Where ERs are physiologi-
cal responses, linked to the EZ only through network struc-
ture, DRs are a direct biomarker for epileptogenic cortex 
(Valentín, Alarcón, Honavar et  al., 2005; van 't Klooster 
et  al., 2011). So far, research on DRs predominantly as-
sessed their clinical value. DRs were observed in different 
brain regions (Valentín, Alarcón, García‐Seoane et al., 2005; 

Valentín et al., 2002) in both adults and children (Flanagan, 
Valentín, García Seoane, Alarcón, & Boyd, 2009). Further, 
investigation of the frequency content of DRs revealed that 
especially high‐frequency activity (HFA) in the fast‐ripple 
band (250–500 Hz) is specific for epileptogenic cortex (van 
't Klooster et al., 2011). Although useful for clinical practice, 
these results do not give a mechanistic explanation for DRs. 
Such understanding would provide a better basis for the clin-
ical use of DRs.

Computational models offer a tool to investigate the 
responses observed during SPES. Neural mass models 
(NMMs) can simulate EEG‐like activity of a small patch 
of neural tissue ranging from a few millimetres to a couple 
of centimetres. The development of NMMs dates back to 
the early seventies to explain generation of the α‐rhythm in 
the thalamus (Lopes da Silva, Hoeks, Smits, & Zetterberg, 
1974). Later, NMMs were extended to models for cortical 
activity (Jansen & Rit, 1995; Ursino, Cona, & Zavaglia, 
2010; Wang & Knösche, 2013; Wendling, Bartolomei, 
Bellanger, & Chauvel, 2002). NMMs are able to generate a 
variety of both healthy and epileptic EEG rhythms (Sotero, 
Trujillo‐Barreto, Iturria‐Medina, Carbonell, & Jimenez, 
2007; Wendling, Bellanger, Bartolomei, & Chauvel, 2000) 
and also to describe event‐related responses (Cona, Zavaglia, 
Massimini, Rosanova, & Ursino, 2011; David, Harrison, & 
Friston, 2005; Jansen & Rit, 1995; Jansen, Zouridakis, & 
Brandt, 1993; Wang & Knösche, 2013). Multiple neural 
masses can be coupled to create an interacting network, al-
lowing the study of network mechanisms. Usually, neural 
masses have been coupled only through purely excitatory 
connections, although it is known that multiple connection 
types exist (Felleman & van Essen, 1991). Especially, feed-
forward inhibition plays an important role in seizure prop-
agation (Eissa et  al., 2017) and responses to transcranial 
magnetic stimulation (Cona et al., 2011).

In this work, we try to explain the two most characteris-
tic properties of DRs, namely their relatively late appearance 
compared to ERs and their stochastic nature. The first prop-
erty suggests that DRs might represent indirect, rather than 
direct, responses to stimulation. These responses may be trig-
gered by ERs, mediated through the ER network. The latter 
property might be a consequence of noise, which pushes the 
system only occasionally beyond a threshold for generating 
DRs. We investigate these hypotheses using both analysis of 
SPES data and by modelling DRs using a NMM equipped 
with feedforward connections to inhibitory cells.

First, we will summarize properties regarding appear-
ance, timing and amplitude of ERs and DRs. Next, we will 
investigate if DRs can be seen as indirect responses within 
the ER network by performing data analysis on SPES data re-
corded in epilepsy patients. We then present a computational 
model of DRs which we calibrate by using properties of ERs. 
Finally, we use bifurcation analysis to reveal a mechanism 
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that explains DRs as second‐order responses in the ER net-
work including the up‐to‐now elusive stochastic appearance 
of DRs.

2  |   MATERIALS AND METHODS

2.1  |  SPES acquisition
At the UMC Utrecht, SPES is performed as part of clini-
cal routine in the pre‐surgical evaluation of epilepsy patients 
during long‐term ECoG monitoring. For the ECoG moni-
toring, intracranial electrode grids, usually consisting of 
2–8 × 8 electrodes and strips (1 × 8 electrodes), are placed 
directly on the cortex. Electrodes have a circular shape with 
a contact area of 4.2 mm2 and an inter‐electrode distance of 
1 cm.

The SPES protocol has been described in detail (van 
Blooijs et al., 2018; van 't Klooster et al., 2011). In short, pairs 
of adjacent electrodes along the length of the grid receive 
ten monophasic electrical pulses with a duration of 1 ms, at 
an interval of 5  s and a typical intensity of 8  mA. During 
SPES, ECoG data are recorded with respect to an extracranial 
reference located on the contralateral mastoid at a sampling 
rate of 2048 Hz using a SD LTM EXPRESS (Micromed). 

Stimulations are applied via the LTM stimulator and cause 
a 9 ms lasting artefact in all signals. Further, the stimulated 
channels become saturated for about 5 s upon stimulation, so 
responses can only be observed in the remaining electrodes.

2.2  |  ERs
Single‐pulse electrical stimulation ERs are defined as re-
sponses starting within 100 ms after stimulation. ERs are 
normal physiological brain responses describing connec-
tivity (Keller et al., 2014; Lacruz et al., 2007; Matsumoto 
et al., 2017; Valentín et al., 2002). The most common type 
of ER (Figure  1a) consists of three peaks, which are in 
order of appearance: N1, P1 and N2 (Alarcón, Jiménez‐
Jiménez, Valentín, & Martín‐López, 2018), while in other 
ERs (Figure 1d), the last component is absent. The N1 is 
a sharp negative peak, occurring roughly between 10 and 
50  ms after stimulation (Entz et  al., 2014), with the ma-
jority around 15 ms, see Figure 1b,e. The P1 is the posi-
tive deflection following the N1. Its maximum lies around 
baseline level and typically occurs ∼35  ms after the N1. 
The timing of both the N1 and P1 is similar for ERs with 
and without N2 component. The broad negative slow wave 
following the P1 is the N2. Its waveform is more variable 

F I G U R E  1   Shape and properties of early responses (ERs) in vivo. (a,d) Examples of an ER with and without N2, respectively. Thin coloured 
lines are multiple trials for the same stimulation. The thick black line indicates the average response. The inset in (a) shows a magnification of the 
first part of the response; here, the P0 peak is visible. (b,e) Distribution of the N1, P1 and N2 times for ERs with and without N2, respectively. 
Time of N1 peaks is the time after stimulation; P1 and N2 times are relative to N1. (c,f) Size of the amplitude A of the P1 and N2 peaks relative 
to that of the N1. Amplitudes are taken as the deviation from the mean activity 50 ms before stimulation; hence, N1 and N2 peaks usually have a 
negative value. [Colour figure can be viewed at wileyonlinelibrary.com]
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compared to N1 and P1 peaks as it is shaped by spontane-
ous activity too. The biggest amplitude is attained some 
80–160 ms after the N1 with the median around 110 ms, 
see Figure 1b. The ratio between N1 and N2 amplitude var-
ies (Figure  1c). For some stimulation pairs and response 
electrodes, the N2 is smaller than the N1, while for others, 
it is much larger.

In some cases, we observed an additional positive peak 
preceding the N1 peak, see the inset of Figure  1a for an 
example, which we call P0. Such a peak has also been re-
ported in Matsumoto et al. (2017); Boyer et al. (2018). In 
this example, the P0 peak is found 11.2  ms after stimu-
lation with an amplitude of 0.4 times that of N1. The P0 
peak is difficult to find in the data, due to its relatively 
low amplitude and because it mixes with the stimulation 
artefact (up to 9 ms) in most cases. So, only if the N1 peak 
is relatively late, there is a time window in which such a P0 
may be noticed.

To systematically detect ERs in our SPES data, we use an 
automatic detector. This detector is described in detail in the 
Appendix S1 of Hebbink et al. (2019) and has been validated 
using visually annotated ERs. In short, the responses of an 
electrode over all ten trials of a stimulation pair are averaged. 
If the extremum of this signal between 9 and 100 ms after 
stimulation sufficiently exceeds the standard deviation of the 
baseline, that is the 2 s prior to stimulation, the response is 
classified as ER.

2.3  |  DRs
Delayed responses are responses to SPES appearing at least 
100 ms after stimulation (see Figure 2). DRs occur only in a 
subset of the trials, for example in Figure 2a, DRs occur in 
trials 1, 2, 5, 6 and 9, around 200–400 ms after stimulation. 
The exact timing of DRs differs per trial and is even more 
variable across stimulation pairs and electrodes. For exam-
ple, DRs in Figure 2b start around 400 ms after stimulation, 
while the others in Figure 2 start around 200 ms.

The waveform of DRs varies substantially across elec-
trodes. The DRs shown in Figure 2a–c have been recorded 
from the same electrode. These DRs start with rapid oscilla-
tions and are, except for some trials in Figure 2c, followed by 
a slow wave. DRs recorded from other electrodes look more 
like spike‐wave discharges as those in trials 1, 3, 5 and 6 of 
Figure 2d. Interestingly, trials 8, 9 and 10 of this stimulation 
exhibit DRs similar to those in Figure 2a, so DR waveforms 
may vary even within the same stimulation for the same elec-
trode. Note also that an electrode may show both an ER and 
DR simultaneously as can be seen in Figure 2e.

Both the variable timing and varying waveform render av-
eraging responses in the time domain problematic. Typical 
analysis of DRs employs time–frequency analysis using a 
Morlet wavelet transformation and averages the resulting 
time–frequency plots (van 't Klooster et al., 2011). Time–fre-
quency plots allow classification of DRs with components 

F I G U R E  2   Examples of delayed responses (DRs) in vivo. (a–e) Response of a single electrode to ten subsequent trials of the same 
stimulation pair. Red‐coloured trial numbers indicate DRs. Responses at (a–c) were recorded at the same electrode; the same hold for the responses 
in (d,e). (f) Averaged time–frequency response of the trials in (c). [Colour figure can be viewed at wileyonlinelibrary.com]
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in the spike (10–80  Hz), ripple (80–250  Hz) and fast‐rip-
ple (250–500 Hz) bands (see Figure 2f). We determine the 
presence of DRs per frequency band by visual analysis of 
the time–frequency plots; see van 't Klooster et al. (2011) for 
details. In short, for each channel a time–frequency image 
is produced per stimulation pair which is independently 
scored by two observers in the three frequency bands. Only 
responses on which the two observers agreed are considered. 
Inter‐observer agreement is assessed via Cohen's κ and is 
considered to be reasonable if κ > 0.4. Here, we study DRs 
that cover at least the spike and ripple band. The presence of a 
fast ripple is not required as these occur rarely (van 't Klooster 
et al., 2011).

Next, the onset time of DRs is determined by visual anal-
ysis of the single‐trial responses. For each trial, a time–fre-
quency image is produced using the same settings as used 
for the averaged time–frequency images. The onset is then 
marked as the first time point where both increased activity 
in the time–frequency image and a clear onset of the DR in 
the time signal is visible. We compare the onset time between 
two groups of DRs, that is those which are preceded by an 
ER and those that are not. Using the Wilcoxon rank‐sum test 
(function ranksum in MATLAB), we test whether the median 
values of these two groups are equal against the alternative 
hypothesis that the median onset time of DRs preceded by an 
ER is later. We reject the null hypothesis for p < .05.

2.4  |  Path length of DRs in ER networks
We use the detected ERs to construct a network representing 
effective connectivity (Entz et al., 2014; Hebbink et al., 2019; 
Keller et al., 2014; van Blooijs et al., 2018). Each electrode 
represents a node in this network. An edge from node A to 
B is present if stimulation involving electrode A evokes an 
ER at electrode B. The result is an unweighted directional 
network.

Next, we study the distance from stimulation pairs to the 
electrodes on which they evoke DRs in the ER network. We 
define distance as the length of the shortest path between a 
stimulation pair and an electrode. Starting from a stimulation 
pair, all electrodes on which an ER is evoked are at a distance 
one from the stimulation pair. Next, a node has distance two 
from the stimulation pair if it can be reached via some edge 
from a node with distance one in the ER network, provided 
the node itself did not exhibit an ER. Continuing this way, 
a node is at distance n from the stimulation pair if it is not 
at distance n − 1 or closer and it can be reached via an edge 
from a node at distance n − 1. Nodes that cannot be reached 
in this way have an infinite distance to the stimulation pair. 
This does not imply that the tissue under such an electrode is 
disconnected from the tissue under the stimulated electrodes 
as the electrode grid only samples a part of the brain and it 
might be connected via an uncovered part of the brain.

We investigate the distance from stimulation pair to DR 
electrode in SPES data of 11 patients recorded during long‐
term ECoG monitoring at the UMC. For each patient, we 
calculate the percentage of DRs at a distance of at most 1, 
2, 3 up to nel  –  2 from the stimulation pair in the ER net-
work, where nel is the number of electrodes. In all patients, 
SPES was performed for clinical reasons with the protocol 
described above. Patients had been admitted to the intensive 
epilepsy monitoring unit of the University Medical Centre 
of Utrecht, the Netherlands. All patients gave prior informed 
consent which was recorded in the patient's electronic file, 
and the entire investigation was performed under the ap-
proval of the UMC Utrecht's ethical committee under Dutch 
law. Data were retrospectively collected and handled coded 
anonymously according to the guidelines of the institutional 
ethical committee following the principles of good clinical 
practice and adhering to the Declaration of Helsinki.

2.5  |  Mathematical model
To model the observed ECoG responses to SPES, we use a 
system of coupled neural masses. Each of these neural masses 
can be thought to model the tissue underneath an electrode of 
the ECoG grid. We consider an extended version of the neu-
ral mass proposed by Wendling et al. (2002); see Figure 4a. 
This neural mass models the average membrane potential of 
four neuronal populations, that is pyramidal cells (py), local 
excitatory cells (ex), slow inhibitory cells (is) and fast inhibi-
tory cells (if). As pyramidal cells are the main contributor to 
EEG signals, their average membrane potential is considered 
to be proportional to EEG signals (Cona et al., 2011; Jansen 
& Rit, 1995; Sotero et al., 2007; Wendling et al., 2002) and 
taken as the output of the model.

The average membrane potential of a population deter-
mines the activity of that population, that is the mean fir-
ing rate of the neurons in the population, via a non‐linear 
function S(u) (see Figure 4b). Following Wilson and Cowan 
(1972); David et al. (2005); Wang and Knösche (2013), we 
shift this function such that S(0)  =  0, to model deviations 
from the normal activity. Accordingly, negative values are 
interpreted as activity below baseline.

The activity of a population influences the mean mem-
brane potential of other populations via synaptic transmis-
sions. Such synaptic transmission converts the mean firing 
rate of the sending population into a postsynaptic potential at 
the receiving population and is modelled by a linear, second‐
order differential equation. The time course of the synaptic 
transmission is determined by the rising time of the synapse. 
Following Jansen and Rit (1995); Wendling et al. (2002), we 
set the rising time for excitatory synapses to 10 ms. For the 
fast inhibition, modelling fast GABAA transmission, we take a 
rising time of 3.3 ms, which is inside the physiological plausi-
ble range reported by Molaee‐Ardekani, Benquet, Bartolomei, 
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and Wendling (2010). Finally, we assume that slow inhibition 
models mainly transmission of slow GABAA but also partly 
transmission of GABAB. We therefore set this time scale to 
100 ms, which is slightly slower than 30–70 ms for GABAA 
but faster than the 200–400 ms for GABAB as suggested by 
Molaee‐Ardekani et al. (2010). The impulse responses of the 
three different synapse types are shown in Figure 4c.

In each neural mass, the pyramidal cells play a key role, 
as they are reciprocally connected to all other populations. In 
addition, slow inhibitory cells project to fast inhibitory cells. 
The relative strength of the connections is set to commonly 
used values (Wendling et al., 2002) as derived previously from 
anatomical studies (Jansen & Rit, 1995). To arrive at absolute 
connection strengths, these relative strengths are multiplied 
by a constant C, governing the general internal connectivity. 
This C can also be seen as a measure for the excitability of a 
neural mass as increasing C results in more epileptiform dy-
namics of the neural mass (Goodfellow, Schindler, & Baier, 
2011; Touboul, Wendling, Chauvel, & Faugeras, 2011).

Apart from local interactions, neural masses also receive 
excitatory external input. In the original model, this input 
projects only to the pyramidal cells. Here, also the inhibitory 
populations receive external input. We model the strength of 
the feedforward inhibitory input relative to the feedforward 
excitatory input, using scaling constants β and γ for slow and 
fast populations, respectively. External input originates from 
three sources, that is other neural masses, background activ-
ity and SPES. Input from other neural masses depends on 
the activity of their pyramidal cells and connection strength. 
Background inputs are modelled by independent Gaussian 
white noise with zero‐mean and standard deviation σ. SPES 
input to a neural mass is modelled as a short transient external 
input (block pulse). This input mimics the activation of the 
outgoing fibres of a stimulated region which are thought to 
be activated during SPES rather than the cell bodies (David, 
Bastin, Chabardès, Minotti, & Kahane, 2010; Keller et  al., 
2014). Therefore, SPES input is given simultaneously to all 
neural masses connected to the stimulated area.

We consider two feedforward coupled neural masses in 
two different configurations (see Figure 4d,e). In both con-
figurations, the first neural mass receives SPES input and 
has a connection with strength k to the second neural mass. 
Depending on the case, SPES input to the second neural mass 
might be present or absent. Following our hypothesis, we in-
tend to model an ER on the first and a DR on the second 
neural mass. Depending on the configuration, this DR is pre-
ceded by an ER on the second neural mass or not, capturing 
some of the different cases seen in the data (see Figure 2). In 
both cases, the complete system comprises a set of 20 cou-
pled differential equations (see Appendix S1).

Our first modelling step concerns simulating a realistic 
ER, both with and without a N2 component. For this part, we 
adapt the input strengths to the two inhibitory populations, β 

and γ. Once these parameters are set, we proceed with mod-
elling DRs by varying the connectivity strength between 
the neural masses. We perform bifurcation analysis using 
Matcont (Dhooge, Govaerts, Kuznetsov, Meijer, & Sautois, 
2008) to infer a mechanism explaining the stochastic occur-
rence of DRs. Next, we add background noise to the model, 
which we neglect in the first part, to show a stochastically 
occurring DR. Finally, we study how the excitability of the 
second neural mass and the connection strength influence the 
rate at which DRs occur.

3  |   RESULTS

3.1  |  Data analysis
The relatively late appearance of DRs compared to ERs after 
stimulation suggests that DRs could be indirect responses due 
to propagation of activity via the ER network. Example data 
supporting this hypothesis are shown in Figure 3a. SPES de-
livered at an electrode pair (yellow nodes) evokes ERs at green 
nodes. These green nodes correspond to all outgoing connec-
tions of the stimulation pair in the ER network. Also, the same 
stimulation evokes DRs, for instance at the orange‐coloured 
electrode. Next, blue nodes indicate that if that electrode is 
stimulated, then the orange node shows an ER; hence, they 
correspond to all nodes that project to the orange node in the 
ER network. The overlap is indicated by the green‐blue striped 
pattern. We see that in this network, there are multiple, that is 
5, paths of length two in the ER network from the stimulation 
electrodes to the electrode showing a DR. These length‐two 
paths are the shortest routes between the stimulation pair and 
the orange electrode in the ER network, as the orange elec-
trode does not show an ER for this stimulation pair (see also 
the response of this electrode in Figure 2c). Therefore, the or-
ange electrode is at a distance two from the stimulation pair.

Next, we investigate the distance between stimulation pair 
and DR in 11 patients. The bar chart in Figure 3d shows the 
fraction of DRs that can be reached by a path of a certain 
length. For most patients, a path of length one, that is an ER 
and DR are seen on the same electrode, explains only half 
of the DRs. With a path of at most length two, one reaches 
on average 92% of the DRs, which is rather constant over 
all patients. A path length of three or four gives a slight im-
provement, but higher path lengths do not add anymore. This 
suggests to model DRs as second‐order responses in the ER 
network. The simplest network architecture satisfying this 
constraint is a feedforward network consisting of two nodes, 
which we will consider in this work.

3.2  |  Modelling ERs
To model ERs, we consider a single neural mass receiv-
ing a short transient input (see Figure 4). An example of a 
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simulated ER is shown in Figure 5a. Here, the thick line indi-
cates the output of the model, that is the simulated potential 
of the pyramidal cells. Note that the simulated ER has a simi-
lar shape as those observed in the data. The latency of the P0, 
N1, P1 and N2 peaks is also realistic as they are found 6, 23, 
50 and 118 ms after stimulation, respectively.

The potential of the pyramidal cells is the sum of the 
contributions from the other populations and the SPES 
input, which are indicated by the thin coloured lines in 
Figure 5a. The initial increase in the potential of the py-
ramidal cells is a direct consequence of the stimulation. 
As the stimulation has a similar effect on both inhibitory 
populations, these populations are activated and start to in-
fluence the pyramidal cells. First, input from the fast inhib-
itory population comes into play yielding the N1 peak. The 
effect of the slow inhibitory population appears much later 
and results in the N2 peak. The local excitatory cells only 
play a minor role in the generation of ERs as they are not 
directly activated by the SPES stimulus. The amplitude of 
the ER depends approximately linearly on the stimulation 
strength as is shown in Figure 5b.

The external input to the inhibitory cells is the crucial as-
pect for the occurrence of the N1 and N2 peaks. Figure 5c,d 
show the influence of variations in β and γ, respectively. 
Variations in β only affect the amplitude of the N2 peak, 
which scales approximately linear with β. As a consequence, 
ERs without N2 component can be modelled by setting 
β = 0. Variations of γ affect mostly the N1 peak. For moder-
ate values of γ, the N1 peak scales approximately linear. For 
low values of γ, the N1 peak occurs at the same time, but as 
the amplitude of the peak is small, the neural mass proceeds 
differently to the N2. For high values of γ, the amplitude of 
the N1 peak grows only slowly, while the latency increases 
slightly.

3.3  |  Modelling DRs
We now consider two feedforward coupled neural masses, as 
depicted in Figure 4d, where the first neural mass projects to 
the second with connectivity strength k. The first neural mass 
shows ER activity upon stimulation. Figure 6a shows the re-
action of the second neural mass for various k values. For 

F I G U R E  3   Delayed responses (DRs) as indirect response in a patient. (a) Example of a DR as second‐order response in a schematic 
overview of the electrode grid. The stimulation pair (yellow) induces a DR on the orange electrode (time trace shown in Figure 2c) and early 
responses (ERs) on all green (solid + striped) electrodes. Blue (solid + striped) electrodes are part of stimulation pairs that induce ERs on the 
magenta electrode. The arrows indicate length‐two paths between stimulation pair and DR electrode. (b) Responses of the green‐blue striped 
electrodes on stimulation of the yellow stimulation pair. (c) Responses of the orange electrode on stimulation pairs that consist of the green‐blue 
striped electrodes. (d) Fraction of DRs that can be reached by a path of a certain length in the ER network, where order ∞ means that the DR can be 
reached by a path of arbitrary length. For each path order, the 11 bars represent the results of the 11 patients, while the red dashed line indicates the 
mean over all patients. [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  4   Overview of the neural mass model. (a) Architecture of a single neural mass. The circles represent the four populations, that is 
pyramidal cells (py), local excitatory cells (ex), slow inhibitory cells (is) and fast inhibitory cells (if). Arrows represent excitatory connections; 
circles and squares are slow and fast inhibitory connections. (b) Graph of the sigmoid function used to convert the average membrane potential of a 
population into a firing rate. (c) Impulse response of the different synapse types. (d,e) The two configurations of feedforward coupled neural masses 
considered in this work. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  5   Simulated early responses (ERs). (a) Simulated ER using default parameters (thick black line). Thin coloured lines indicate the 
four different sources, that is external input (ext) and input from excitatory (ex), slow inhibitory (is) and fast inhibitory (if) populations, adding 
up to the potential of the pyramidal cells (py). (b) Variation of stimulation strength, where P0 = 1,500 is the default strength (indicated with the 
thick black line). (c) Influence of varying β, the fraction of external input added to slow inhibitory cells. (d) Influence of varying γ, the fraction of 
external input added to the fast inhibitory cells. [Colour figure can be viewed at wileyonlinelibrary.com]
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low values of k, the second neural mass shows virtually no 
response. For k ≳ 20, a large response, comprising a few os-
cillations followed by a slow wave, appears. This waveform 
is qualitatively similar to the DRs in Figure 2a,b, although the 
frequency of the oscillations in the limit cycle is slower, that 
is ~28 Hz compared to the high‐frequency activity (>80 Hz) 
at the start of the DRs.

A possible way to model an ER succeeded by a DR is to 
apply SPES input to both NMMs as in Figure 4e. For this, k 
needs to be large, that is k ≳ 75 (see Figure 6b). The shape of 
this DR is similar to the DRs that are not preceded by an ER. 
For k values below the threshold, only ERs are observed on 
the second neural mass.

Next, we study the influence of the connectivity strength 
k on the latency of the DRs. For each DR, we consider three 
time points, that is the onset of the oscillations, to; the transition 
from oscillations to slow wave, tt; and the time the slow wave 
reaches its minimum, ts (see inset of Figure 6c). Here, we de-
fined to and tt as the first and last time at which the response 

crosses upy = 3.5. As is shown in Figure 6c, the latency of the 
DRs decreases rapidly for k slightly above the threshold for 
which DRs emerge. If k gets bigger, the time the DR shows os-
cillations grows as the to remains decreasing for high k, while tt 
gets bigger if k is above 60 (in case of a DR not preceded by an 
ER). The difference between tt and tw remains almost constant.

The model predicts that DRs which are preceded by an ER 
occur later than those which are not. We investigate this in the 
patient data. Figure 7a shows a histogram of the onset times 
of DRs for the two groups in a single patient confirming that 
DRs preceded by an ER occur in general later than those 
that are not. Histograms of the other patients are supplied in 
Appendix S1. The box plot in Figure 7b summarizes the re-
sults for all patients. Note that the timing of the simulated 
DRs without an ER is comparable to the data. DRs preceded 
by an ER occur rather late in the simulations in comparison 
with the data. Observe that in some patients, a clear differ-
ence between the distributions is visible, while for others, 
the median values are close together. A one‐sided Wilcoxon 

F I G U R E  6   Simulating delayed responses (DRs). (a) Results for the configuration in Figure 4d. Neural mass 1 shows an early response 
(ER) upon stimulation (green line). Depending on the coupling strength k, the second neural mass shows a DR (other colours). (b) Results for 
the configuration in Figure 4e. Both neural masses show an ER. For sufficiently high values of the coupling strength k, also a DR is simulated 
on the second neural mass. (c) Latency of the simulated DRs against the coupling strength k for the situation in a (green) and b (magenta) for 
three reference points. The inset shows the location of the three reference points on the wave shape of a DR. [Colour figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  7   Onset time of delayed responses (DRs) in vivo. (a) Distribution of the onset time of DRs preceded by an early response (ER) 
(magenta) and DRs not preceded by an ER (green) in patient 2. (b) Box plots for all patients showing the onset of the DRs, where colours refer to 
the same groups as in (a). Values between brackets indicate p‐values of the statistical test, and significant results (significance level .05) are marked 
with *. If p < .001, results are marked with **. [Colour figure can be viewed at wileyonlinelibrary.com]
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rank‐sum yields a significant p‐value in 8 of the 11 patients 
for a significance level of .05.

3.4  |  A mechanism for DRs
So far, we have shown that DRs can be modelled as indirect re-
sponses to SPES. We observed that DRs emerge all of a sudden, 
if the connectivity strength passes some critical value. The next 
step is to understand the mechanism causing this sudden appear-
ance. Using bifurcation analysis, we study the influence of pa-
rameters on stationary and periodic solutions, that is equilibria 
and limit cycles, characterizing the activity of the neural mass.

For this analysis, we focus solely on the second neural 
mass and treat the external input, I, as a parameter. Note that 
the input to this neural mass depends on both the connectiv-
ity strength k, and the activity of the first neural mass. So by 
studying the input as a bifurcation parameter, we aim to get 
insight in the sudden appearance of DRs when the connectiv-
ity strength passes some critical value.

Results of the bifurcation analysis varying I are shown in 
Figure  8a. Under normal circumstances, the external input, 
I, is zero. For this value, the neural mass has an equilibrium 
(stationary solution) with upy = 0. This equilibrium is stable, 
that is for any small perturbation of the equilibrium state, the 
neural mass will converge to the equilibrium if time proceeds. 
The solid blue line at the bottom of Figure 8a shows how this 
equilibrium behaves if I is varied. For positive values of I, the 
equilibrium remains stable. For negative values of I, the equi-
librium becomes unstable at I ≈ −5.46, where it undergoes a 
Hopf bifurcation (Kuznetsov, 2004). The unstable equilibrium 
curve, indicated by the dashed blue line in Figure 8a, contains 
twofold bifurcation at I ≈ −5.58 and I ≈ 14.20. At both these 
points, the equilibrium curve changes direction, although the 
equilibrium remains unstable as it leaves the graph.

For I ≲ −4.58, the neural mass has a stable limit cycle (pe-
riodic solution), with a waveform (Figure 8b) similar to that 

of the simulated DRs (Figure 6a,b). Like for the equilibrium, 
we continue the limit cycle varying I. The minimum and max-
imum amplitude of the limit cycle are indicated by the solid 
red lines in the bifurcation diagram. The limit cycle vanishes 
at I ≈ −4.58 via a homoclinic bifurcation (Kuznetsov, 2004), 
which is characterized by an increase in the period of the 
limit cycle towards infinity (Figure 6c). In Appendix S1, we 
discuss the bifurcation diagram in more detail.

From the bifurcation diagram, we can deduce the mecha-
nism responsible for generating DRs in the model. First, note 
that the input neural mass 2 receives from neural mass 1 show-
ing an ER, is negative, as the average membrane potential of the 
pyramidal cells of neural mass 1 is negative. Therefore, neural 
mass 2 will follow the stable equilibrium branch for negative 
I. If k is small, I stays above the Hopf bifurcation at I ≈ −4.58 
and the neural mass will stay on the stable equilibrium branch 
while the input returns to zero. On the other hand, for larger 
k, I will cross the Hopf bifurcation. As the stable equilibrium 
is not present here, the neural mass moves to the stable limit 
cycle. While the neural mass follows the limit cycle for approx-
imately one period, the input I returns to zero and crosses the 
homoclinic bifurcation where the limit cycle vanishes. As a 
consequence, the neural mass returns to the equilibrium state.

3.5  |  Stochastic DRs and local excitability
We can use the mechanism described above to model DRs 
that have a stochastic appearance. Consider again two feed-
forward coupled neural masses as in Figure 4d and set the 
connectivity strength around the critical value for which DRs 
emerge, that is k = 20. By adding noisy background input to 
the model, the second neural mass will pass the Hopf bifurca-
tion occasionally, and hence, DRs will appear stochastically 
as shown in Figure 9.

Next, we investigate how the probability of evoking a DR 
depends on both the connectivity strength k and the intrinsic 

F I G U R E  8   Bifurcation analysis. (a) Bifurcation diagram for varying external input I. Blue lines indicate equilibria; red lines are minima and 
maxima of limit cycles. Solid lines indicate stable solutions, while dashed lines indicate unstable ones. Fold (F), Hopf (H) and homoclinic (Hom) 
bifurcations are indicated by yellow circles. (b) Time profile of the stable limit cycle for I = −7. (c) Period of the stable limit cycle. The period 
approaches infinity near the homoclinic bifurcation. [Colour figure can be viewed at wileyonlinelibrary.com]
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excitability of the second neural mass C. Figure 10 shows the 
result of simulating one hundred SPES stimulations of the 
model for various values of C and k. Both increasing k and C 
increase the probability of evoking DRs. If C gets too large, 
the probability decreases slightly, because the neural mass 
also shows spontaneous interictal discharges in this case. 
The relation between k and C agrees with results found using 
bifurcation analysis varying I and C (see Appendix S1).

4  |   DISCUSSION

With our data‐driven modelling study, we have revealed how 
network connectivity and intrinsic excitability lead to patholog-
ical delayed responses upon stimulation. This sheds new light 
on their role as a clinical biomarker for epileptogenic tissue.

Starting with direct responses to stimulation, that is ERs, 
we showed that the two common peaks, that is the N1 and 
N2, can be explained by triggering not only the pyramidal 
cells but also both fast and slow inhibitory cells. This is in 
line with a modelling study by Alarcón et  al. (2018) using 
linear response theory. The NMM predicted an additional P0 
peak which we subsequently identified in the data.

Next, based on connectivity analysis of ER networks 
(Hebbink et al., 2019; van Blooijs et al., 2018), we concluded 
that DRs are indirect responses to the stimulation. Model 
simulations show that they may arise from feedforward prop-
agation of ER activity and notably projections to inhibitory 
populations that normally restrain neural activity. Moreover, 
the model correctly predicted that DRs preceded by an ER 
occur later than DRs that are not. We find that DRs may 
appear when the input falls below a threshold, temporarily 
allowing the neural mass to enter a spiking state. This thresh-
old also explains the stochastic appearance of DRs through 
noisy background activity. The probability for a DR to occur 
depends on both the intrinsic excitability of a neural mass 
and the strength of the input from other regions with ERs. A 
higher intrinsic excitability moves this threshold closer to the 
normal state, so that less input is needed to pass the threshold, 
while stronger connections amplify input deviations to this 
region.

4.1  |  Limitations of modelling
In this work, we considered Wendling's neural mass that can 
generate several activity types as observed in ECoG signals 
(Blenkinsop, Valentin, Richardson, & Terry, 2012; Wendling 
et al., 2002) and explains transitions in these activities seen 
during epileptic seizures (Wendling, Benquet, Bartolomei, 
& Jirsa, 2016). However, an important feature which can-
not be modelled is high‐frequency activity. Model exten-
sions with self‐feedback for the fast inhibitory population 
(Chehelcheraghi, Nakatani, Steur, & van Leeuwen, 2016; 
Ursino et  al., 2010) allow to simulate responses with fre-
quencies up to approximately 70 Hz. Another study (Molaee‐
Ardekani et al., 2010) considered a NMM consisting of only 
pyramidal and fast inhibitory cells to produce HFA. Their 
analysis shows that the connectivity constants in the loop be-
tween the fast inhibitory and pyramidal cells are important 
for the maximum frequency that the neural mass can gener-
ate. Adjusting these constants, the systems’ activity will reso-
nate with this frequency allowing frequencies up to 120 Hz. 
Thus, it may be possible to simulate such high frequencies 
with a Wendling‐type NMM extended with self‐feedback for 
the fast inhibitory population, which may allow to increase 
the frequency of the fast oscillations at the start of the simu-
lated DRs. Simulating higher frequencies with neural masses 
poses a challenge, as these models only take synaptic trans-
missions into account and not the fast electric transmissions 
via gap junctions which are, among other factors, hypoth-
esized to play an important role in generation of fast ripples 
(Traub et al., 2001; Wendling et al., 2016).

Following other neural mass studies (Cona et  al., 2011; 
Jansen & Rit, 1995; Wang & Knösche, 2013; Wendling et al., 
2002), we compare the average membrane potential of the 
pyramidal cells to measured EEG signals. As the pyramidal 
cells are the main contributor of EEG signals, due to the par-
allel alignment of their dendrites, their average membrane 
potential is a reasonable first approximation of the EEG sig-
nal. More specifically, the average membrane potential is a 
weighted sum of the postsynaptic potentials (PSPs) on the 
pyramidal cells. The currents induced by these PSPs are the 
main source of EEG signals (Goodfellow, 2011). The precise 

F I G U R E  9   Simulating stochastic delayed responses (DRs). Simulation of ten stimulation trials for the configuration in Figure 4d where both 
neural masses receive additional background noise (σ = 1) for a coupling strength k = 20. An early response (ER) appears consistently on neural 
mass 1, while a DR appears stochastically on the second neural mass. [Colour figure can be viewed at wileyonlinelibrary.com]
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relation between the PSPs and the observed EEG, however, 
depends on multiple factors, for example the relative loca-
tion of the electrode with respect to the gyrus (Goodfellow, 
2011). Therefore, differences in the waveforms of observed 
responses, such as the relative amplitude of the N1 and N2 
responses, are not necessarily explained by different model 
parameters, but may originate from the precise measurement 
setup.

As a first step in understanding the mechanisms trigger-
ing early and delayed responses to SPES, we investigated the 
most simple network configuration, that is, we considered two 
feedforward coupled neural masses. These two neural masses 
model only a small part of neuronal tissue, while in reality 
also recurrent connections will be present. These factors will 
influence the precise waveforms of the ERs and especially 
the DRs. We think this could also explain the difference be-
tween the latency of DRs preceded by an ER in the model 
and in the data. Moreover, depending on the network topog-
raphy, the connectivity strength and the intrinsic parameters 
of the neural masses, complex transient dynamics may arise 
(Goodfellow, Schindler, & Baier, 2012). However, within the 
current model the mechanisms responsible for the ERs (di-
rect activation due to stimulation) and DRs (limit cycle) are 
robust with respect to small parameter changes.

We focused on modelling the two most common types 
of SPES responses, that is ERs and DRs. Besides these, two 
other responses have been observed, that is stable and re-
petitive responses (Flanagan et al., 2009; Valentín, Alarcón, 
García‐Seoane et al., 2005). Stable responses are small, con-
sistently appearing spikes or sharp waves, mostly superim-
posed on the N2 component of an ER (Flanagan et al., 2009). 
They appear at the same electrodes for a variety of stimula-
tion pairs (Flanagan et al., 2009), suggesting it to be a local 
phenomenon. Stable responses might therefore be modelled 
by slightly altering the parameters of a neural mass, or if 

needed, considering a small extension to the default neural 
mass. However, as stable responses are not related to the ep-
ileptic zone (Flanagan et al., 2009), such a change must not 
make the neural mass pathological.

Repetitive responses are observed exclusively in the 
frontal lobe and consist of an early response component 
which is repeated at least once (Valentín, Alarcón, García‐
Seoane et al., 2005). They seem to be induced by stimula-
tion of the epileptic zone and appear simultaneously in a 
spatially extended area (Valentín, Alarcón, García‐Seoane 
et al., 2005). The former suggests that it might be necessary 
to model the effect of the stimulation in detail. The latter 
might be explained by cortico‐subcortical loops (Valentín, 
Alarcón, García‐Seoane et al., 2005), which would require 
a spatially extended network of neural masses (Goodfellow 
et al., 2012).

4.2  |  ERs reveal feedforward inhibition
A crucial aspect in our model is that external input projects 
not only onto pyramidal cells but also to both slow and fast 
inhibitory populations. This is in line with the seminal work 
by Felleman and van Essen (1991) and has been considered 
in multiple computational modelling studies (Babajani‐
Feremi & Soltanian‐Zadeh, 2010; Cona et al., 2011; David 
et al., 2005; Eissa et al., 2017; Shamas et al., 2018; Spiegler, 
Kiebel, Atay, & Knösche, 2010). These projections lead to 
direct activation of the inhibitory populations upon stimula-
tion and as a consequence to the N1 and N2 peaks of ERs in 
the model. One might also consider external input projecting 
to the local excitatory cells of the neural mass. In Appendix 
S1, we show that adding this connection does not quantita-
tively change our results, provided it is not too strong.

Single neuron measurements have revealed some distinct 
neuronal firing patterns after SPES, that is burst suppression, 
burst only, suppression only or unchanged (Alarcón et  al., 
2012), where suppression typically lasts 5–10 times as long as 
bursting activity. In our model, the different populations also 
show different firing patterns during an ER. Activity of the 
slow inhibitory cells is increased upon stimulation. Pyramidal 
cells and fast inhibitory cells first show increased activity fol-
lowed by a long‐lasting period of decreased activity. The local 
excitatory population mainly shows a long‐lasting decrease in 
activity. It has also been suggested that only N1 peaks reflect di-
rect activation of fibres, while the N2 might arise from cortico‐
cortical or cortico‐subcortico‐cortical reverberation circuits 
(Matsumoto et al., 2017). Our study shows that physiologically 
plausible values for the synaptic time constants, as reported in 
Molaee‐Ardekani et  al. (2010), can naturally explain the N1 
and N2 peaks as a direct consequence of the stimulation.

Our model is able to reproduce common properties of 
ERs, like the linear relation between stimulation strength and 
the amplitude of ERs (Donos, Mîndrută, Ciurea, Mălîia, & 

F I G U R E  1 0   Probability of evoking delayed responses 
for varying k and C. The connectivity strength k and the intrinsic 
excitability C are varied with steps of 0.5 and 2, respectively. For each 
combination of k and C, 100 stimulations were simulated with noise 
(σ = 1) and the number of evoked delayed responses was counted. 
[Colour figure can be viewed at wileyonlinelibrary.com]
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Barborica, 2016). It has been reported that the majority of the 
waveforms contains either a N1 or a N2 component, or both 
(Alarcón et al., 2018). Therefore, we considered two types of 
ERs, those with only a N1 component and those with a N1 
and N2 component. Simulations of ERs without N2 are easily 
achieved by weakening the projection to the slow inhibitory 
population.

4.3  |  Clinical role of DRs
Several studies have revealed the clinical value of DRs for 
supporting hypotheses when delineating the epileptogenic 
zone (Valentín, Alarcón, García‐Seoane et al., 2005; Valentín 
et al., 2002; van 't Klooster et al., 2011). Our study provides 
a theoretical explanation for DRs and their use. DRs indicate 
that, already under normal conditions, the underlying neural 
mass is close to a state of epileptiform activity.

In our centre, DRs are visually classified based on spikes, 
ripples and fast ripples using time–frequency images ob-
tained from wavelet analysis (van 't Klooster et  al., 2011). 
The majority of the DRs exhibits activity in at least the spike 
and ripple bands. The waveforms of the simulated DRs show 
a qualitative match, that is they consist of fast oscillations 
followed by a spike, although the frequency of the fast oscil-
lations is below the ripple band. The morphology of DRs has 
similarities with interictal epileptiform discharges (IEDs). 
Moreover, Nayak, Valentín, Selway, and Alarcón (2014) 
found that DRs were similar to at least one IED pattern for 
every patient, while in single neuron measurements, simi-
lar firing patterns were found during IEDs and after SPES 
(Alarcón et al., 2012). NMMs are also capable of simulating 
IEDs (Wendling et al., 2000). In fact, the mechanism respon-
sible for these IEDs (Blenkinsop et al., 2012) is exactly the 
same as the mechanism responsible for DRs, that is, both arise 
from temporarily escaping to the limit cycle corresponding 
to epileptiform activity. So, in patients with few spontaneous 
IEDs, SPES‐triggered DRs may be a useful addition.

Computational modelling of epilepsy surgery has received 
considerable attention in recent years with promising results 
(Goodfellow et  al., 2016; Hebbink, Meijer, Huiskamp, van 
Gils, & Leijten, 2017; Jirsa et al., 2017; Lopes et al., 2017; 
Sinha et  al., 2017; Terry, Benjamin, & Richardson, 2012). 
In this framework, neural masses or similar models are cou-
pled through a patient‐specific connectivity. Subsequently, 
the effect of surgery is predicted by removing nodes from 
the network and the results are compared against a baseline 
simulation of the model, as well as actual clinical outcomes. 
Typically for these studies, each node is equally excitable. 
Our finding that DRs depend on both local excitability and 
network effects suggests that both these factors play an im-
portant role in the ability of a node to start a seizure. Hence, 
SPES may improve the prediction of such frameworks in two 
ways: a patient‐specific network can be obtained from ERs 

(Hebbink et al., 2019; van Blooijs et al., 2018), and DRs can 
be used to differentiate excitability of the nodes.
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