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Abstract
Experiments of cell migration and chemotaxis assays have been classically performed in

the so-called Boyden Chambers. A recent technology, xCELLigence Real Time Cell Analy-

sis, is now allowing to monitor the cell migration in real time. This technology measures

impedance changes caused by the gradual increase of electrode surface occupation by

cells during the course of time and provide a Cell Index which is proportional to cellular mor-

phology, spreading, ruffling and adhesion quality as well as cell number. In this paper we

propose a macroscopic mathematical model, based on advection-reaction-diffusion partial

differential equations, describing the cell migration assay using the real-time technology.

We carried out numerical simulations to compare simulated model dynamics with data of

observed biological experiments on three different cell lines and in two experimental set-

tings: absence of chemotactic signals (basal migration) and presence of a chemoattractant.

Overall we conclude that our minimal mathematical model is able to describe the phenome-

non in the real time scale and numerical results show a good agreement with the experi-

mental evidences.

Introduction

Despite significant progress regarding potential therapeutic targets aimed at improving sur-
vival, patients affected by solid tumours frequently die for systemic spread of the disease to dis-
tant sides. Indeed, when cancer cells acquire the ability to separate and move away from the
primary tumour mass, migrate through the surrounding tissue, and enter the lymphatic system
and/or blood circulation, the prognosis becomes poor. Therefore, the control of cell motility is
a new and attractive approach for the clinical management of metastatic patients. The quanti-
tative assessment of tumour cell migration ability for each patient could provide a new poten-
tial parameter predictive of patient outcomes in the future.
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To metastasise, tumour cells have to early acquire the ability to move and respond to moto-
gen gradients [1]. Cell migration is a spatially and temporally coordinated multistep process
that orchestrates physiological processes such as embryonic morphogenesis, tissue repair and
regeneration, and immune-cell trafficking [2]. When cell migration is deregulated, it contributes
to numerous disorders including tumour metastasis [3, 4]. Due to its important role in regulat-
ing physiological and pathological events, methods aimed to examine cell migration may be
very useful and important for a wide range of biomedical research such as cancer biology,
immunology, vascular biology, and developmental biology. Migrating cells respond to a pleth-
ora of mitogen stimuli, and serum (as mixture of growth factors, cytokines and chemokines) is a
major source of chemoattractants. These chemoattractants, through the interaction with their
cognate receptors allow cells to acquire a polarizedmorphologywith the extension of adhesive
protrusions [4]. This is followed by the attachment of the protrusion to the substratum at the
cell front, the translocation of the cell body and, finally, the detachment of the trailing end of the
cell from the substratum [5, 6]. Such a complex process requires the coupling of extracellular
signals with the internal signallingmachinery that controls cytoskeleton dynamics [7].

The most widely used technique to study cell motility in vitro is the Boyden chamber assay
in which cells placed in the upper compartment of the chamber are allowed to migrate through
a microporous membrane into the lower compartment, in which chemotactic agents are pres-
ent; after an appropriate incubation time, the membrane between the two compartments is
fixed, stained, and the number of cells that have migrated to the lower side of the membrane is
determined [8]. The subjective nature of measurements and the inability to assess cell motility
along the time are the major limitations of this assay.

Current molecular studies are providing a more global physicochemical picture of cell loco-
motion in which the role of spatial and temporal components of the process are detailed [9].
Recently, to overcome the manual and highly subjective nature of measurements, accelerate
analysis and translate conventional Boyden chamber assay into an automated, quantitative
high-throughput system, ACEA Biosciences developed the xCELLigence Real Time Cell Analy-
sis (RTCA) technology able to automatically monitor cell motility in real-time without the
incorporation of labels. The xCELLigence RTCA technologymeasures impedance changes in a
meshwork of interdigitated gold microelectrodes located at the bottom side of a microporous
membrane (CIM-plate). These changes are caused by the gradual increase of electrode surface
occupation by migrating cells during the course of time and provide an index of cell migration.
The relative electrical changes during a measurement are displayed by xCELLigence software as
a unit less parameter termed Cell Index, which is calculated as a relative change in actual
impedance divided by a previously registered background value. This method of quantitation
is directly proportional to cellular morphology, spreading, ruffling and adhesion quality as well
as cell number [10, 11]. To reach a quantitative understanding of the mechanisms underlying
these processes, concepts and methods from mathematics and physics can be extremely valu-
able, as we will see in the following.

In general, mathematical models can be very useful to modelize a wide variety of biological
systems including cell dynamics and cancer [12–18]. In particular, the development of quanti-
tative predictive models, based on biological evidence, whose parameters are calibrated on bio-
logical data, can help in saving time and resources when designing novel experiments.
Moreover, even though a mathematical model is not aimed to replace a real experiment, it can
represent a guide to interpret acquired biological data and investigate new insights. In relation
to in vitro assays in tumour chamber some mathematical model have been already proposed in
the scientific literature, mainly focused on cell invasion experiments. In such context, the inva-
sive ability of the cells is measured by the placement of a coating of extra-cellularmatrix pro-
teins on top of the porous membrane. In the papers [19, 20] a continuous model, based on
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partial differential equations (PDEs), was proposed in relation to a Boyden like cell invasion
experiment. Then, in [21] the authors proposed a similar model to investigate some modulat-
ing factors of the cancer cell invasion, making also use of a real-time impedance-based in vitro
technology.

In this paper, first we analysed basal (absence of chemotactic gradient) and directional
(presence of serum as a source of chemotactic agents) cell migration of three different cell lines
by the xCELLigence cell analyser:Melanoma A375, fibrosarcoma HT1080, and chondrosar-
coma Sarc cell lines have been previously characterized for their migration ability by us and
used as models of three different tumour types [22–24]. Then, we apply a theoretical analysis
to describe cellular motility events, and we propose a mathematical model for the cell migra-
tion assay using the xCELLigence Real Time Cell Analysis (RTCA) technology. The proposed
macroscopic model, based on advection-reaction-diffusionequations, adapts and extends the
mathematical models in the aforesaid cited papers to the specific in vitro experiment in our
analysis (see sectionDiscussion and conclusions). We calibrated model parameters using real
data, as well as information available in scientific and modellistic literature. With such estimate
we carried out numerical simulations to compare simulated behaviour with the experimental
data in absence or presence of chemotactic gradient. Our numerical results show a very good
concordance with the experimental curves. Finally, we validated the model, simulating differ-
ent experimental conditions, as the initial cell density, and then comparing numerical curves
with data obtained from relative experiments. In this regard recorded experimental data on
chondrosarcoma Sarc cell line seem to confirm theoretical results.

Results

Basal and directional cell migration of three different cell lines

For this study we considered three human, neoplastic cell lines which we have previously char-
acterized for their cell migration ability [22–24]. Melanoma A375, fibrosarcoma HT1080, and
chondrosarcoma Sarc cell lines (Fig 1 panel A) were subjected to both cell proliferation and
migration assays using the xCELLigence Real Time Cell Analysis (RTCA) technology. This
technologymeasures impedance changes in a meshwork of interdigitated gold microelectrodes
located at the well bottom (E-plate for proliferation assay) or at the bottom side of a micropo-
rous membrane interposed between a lower and an upper compartment (CIM-plate for migra-
tion assay). In this way, the impedance-baseddetection of cell attachment, spreading and
proliferation due to the gradual increase of electrode surface occupation may be monitored in
real time and expressed as Cell Index. To determine the doubling time of A375, HT1080, and
Sarc cell lines, cells re-suspended in growth medium were seeded on E-plates and impedance
changes were continuously monitored for 70 h (Fig 1B). Only curves generated by seeding
4 × 103 cells/well were considered since those generated by seeding 2 × 103 cells/well did not
reached a plateau until 90 h. According to their smaller sized dimension, A375 cells exhibited a
long lasting adhesion/spreading phase and entered the growth phase (proliferation) and then
stationary phase (plateau phase of growth) due to occupation of all entire microelectrode sur-
face later, as compared to HT1080 and Sarc cells (Fig 1A and 1B). A375, HT1080 and Sarc cells
reached the plateau phase after�70 h, 65 h, and 50 h, respectively (Fig 1B), and their doubling
times calculated from the cell growth curve during the exponential growth were 32.8 ± 1.1 h,
16.2 ± 0.5 h and 10.87 ± 0.3 h, respectively (see S1 Fig). Since we did not employed cells sub-
jected to cell cycle synchronization, we cannot exclude that, in the presence of serum, some cell
division may occur on the bottom side of filter membranes, thereby affectingCell Index. There-
fore, to minimize the contribution of any cell division, cell migration experiments were per-
formed for 12 h.
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To evaluate cell motility in a system representative of the in vivo context, we compared the
ability of A375, HT1080, and Sarc cell lines to migrate toward fetal bovine serum (FBS) which
is a rich source of growth factor stimuli and chemotactic agents, which signal through binding
to their cognate receptors [21]. To this end, cells (2 × 104 cells/well) were seeded on CIM-plates
and allowed to migrate toward serum-freemedium (basal cell migration) or growth medium,
containing 10% FBS as a source of chemoattractants (directionalmigration), as described in
[25]. As shown in Fig 1C, all cell lines exhibited a scarce basal cell motility (black lines), as their
Cell Indexes did not change significantly along the time. On the other hand, all cell lines were
able to respond to serum, although to a different extent. In agreement with their reported high
motility [23, 24], both fibrosarcoma HT1080 and chondrosarcoma Sarc cells exhibited a com-
parable, high motility whereas a low response to FBS was retained by A375 cells (Fig 1C).

Fig 1. Experimental data. A. Representative images of human melanoma A375, fibrosarcoma HT1080, or chondrosarcoma Sarc cells analysed by

phase contrast microscopy. Original magnifications: 400x. Scale bar: 100 μm. B. Time-dependent proliferation of the considered human cell lines.

Cells (2 × 103 cells/well) were seeded on E-plates and allowed to grow for 70 h in serum containing medium. The impedance value of each well was

automatically monitored by the xCELLigence system and expressed as a Cell Index. Data represent mean ± SD (standard deviation) from a

quadruplicate experiment. C. Cell migration of the indicated human cell lines monitored by the xCELLigence system. Cells were seeded on CIM-

plates and allowed to migrate towards serum free medium (basal cell migration, black line) or medium plus 10% FBS. Cell migration was monitored in

real-time for 12 h and expressed as Cell Index. Data represent mean ± SD from a quadruplicate experiment.

doi:10.1371/journal.pone.0162553.g001
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The mathematical model

In our mathematical model we schematize a single well of the CIM-plate used in the experi-
ments as two cylindrical chambers, the upper and the lower chamber respectively, interfaced
through the permeablemembrane (Fig 2). The model considers two variables: the cell density
and the amount of available FBS, that contains many chemotactic agents. Therefore, we have
to take into account the possibility that some chemotactic agents may be degraded, consumed
or internalized during the experiment. Thus, the FBS variable will describe the serumdynamics
which includes a possible inactivation of some chemotactic agents. For both cells and the
chemical signal we adopt a continuous description. This is justified by the high number of cells
(or molecules) involved in the migration assay, typically in the order of 105 cell/cm3.

In the following, we first describe the rationale behind the proposed mathematical model,
then we provide the explicit formulation in terms of equations. The cell population dynamics is
the results of different contributions: diffusion, chemotaxis, spontaneous transport, cell adhe-
sion/spreading. In particular, we consider a diffusion effect of cells in the environmental
medium and the chemotactic effect of the FBS that attracts cells toward its higher concentra-
tions. The transport term represents the so called basal migration, describing the cell transport
through the pores of the permeable membrane, that we experimentally observe also in absence
of chemotactic stimuli. The additional term of adhesion/spreading/proliferation represents the

Fig 2. Schematic representation of a well of the CIM-plate. An upper and a lower chamber are separated

by a permeable membrane ΓM. In the migration assay in presence of chemoattractant, cells are placed in the

upper chamber, and the chemoattractant is added in the lower chamber (directional migration). When

measuring the basal migration experiment the well contains only cells (in the upper chamber) and a serum-

free medium. In the mathematical formulation the spatial x−axis is oriented from the top to the bottom.

doi:10.1371/journal.pone.0162553.g002
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increase of Cell Index due to multiple reasons: better adhesion of cells to the biosensor, cell
spreading, and possible cell proliferation. Such effects are indistinguishable, since the imped-
ance-based estimate is related to the proportion of biosensor surface in contact with cells.
Therefore, a better adherent, or spreaded cell, or duplicated cells produce an analogous incre-
ment of the surface contact. In this context, since we are limiting the observation time to 12 h
(approximately or below the doubling time, see previous subsection), the observed effect can
be related mostly to adhesion/spreading. The FBS variable is governed by a diffusion effect,
coupled with a degradation term due to the chemotactic action (binding) during the cell migra-
tion. On the other hand an enzymatic degradation for FBS can be neglected in the considered
experimental time range. The permeable membrane is modelled assigning the fluxes of the cell
density and of the chemical signal through it, typically proportional to the difference of con-
centrations on the two sides of the interface.

Now we introduce the general equations of the mathematical model. Let O the domain con-
sisting of the upper (OT) and lower (OB) chamber. We indicate with ΓT, ΓB and ΓM, respec-
tively, the boundaries of the upper (top) chamber, of the lower (bottom) chamber, and the
middle permeable membrane (see Fig 2). Then, let u(x, t) the cell density and φ(x, t) the FBS
concentration, from the above considerations we have:

@tu
z}|{

Cell density rate in time

¼ Du�u
zfflffl}|fflffl{

Cell diffusion

� r � u�ð’Þr’ð Þ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{

Chemotaxis

� r � V transpu
� �zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{

Spontaneous transport

þ gðu; ’Þ
zfflfflffl}|fflfflffl{

Cell adhesion=spreading

;

@t’
z}|{

Chemoattr: rate in time

¼ D’�’
zfflffl}|fflffl{

Chemoattr: diffusion

� �u’
z}|{
Binding

;

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

ð1Þ

whereDu, Dφ, δ are positive constants, and χ(φ), g(u, φ) suitable functions, that will be specified
later. On the boundarywe assume the following conditions:

Duru � uVtransp

� �
� n ¼ 0; on GT; GB; ð2Þ

rφ � n ¼ 0; on GT; GB; ð3Þ

Duru � uwðφÞrφ � uVtransp

� �
� n ¼ kuðuÞðuB � uTÞ; on GM; ð4Þ

Dφrφ � n ¼ kφðφB � φTÞ; on GM; ð5Þ

where n is the downward normal versor, kφ is a constant, while ku(u) depends on the cell den-
sity, and finally uT, φT, uB, φB are the limit values of u and φ on the interface ΓM from the
upper and lower chamber, respectively.

Let us now specify the contribution of the different terms in the first and second equation of
the proposed system, Eq (1)1 and Eq (1)2. For the diffusion term in Eq (1)1 we assume a con-
stant diffusion coefficientDu. The chemotaxis term involves a modulating function χ(φ),
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which takes into account a possible saturation effect for high concentration of chemoattractant.
A possible choice is

wðφÞ ≔
w1φ

w2 þ φ
; ð6Þ

with χ1 and χ2 positive constants. Similar modelling functions can be found, for example, in
[26]. The spontaneous transport of the cell in absence of chemoattractant is modelled as a
transport term at velocityVtransp. We can assume a constant velocity in the direction of the vec-
tor n as the limit velocity achieved by the cells in the viscous environment. About the cell adhe-
sion/spreading effect, we consider the function

gðu;φÞ ≔ a1u 1 �
u
a3

� �
φ

a2 þ φ
a2 þ �φ

�φ
WðxÞ; ð7Þ

that establishes a logistic growth for u, as it can be deduced from related experiments of prolif-
eration (see previous subsection, Fig 1, and sectionMaterials and methods). The functionW(x)
is a weight function, which spatially forces the spreading effect as described in the following.
Firstly, from the experimental point of view we observe that when cells migrate in the lower
chamber, they remain adherent to the bottom side of the membrane. However, for simplicity
reasons, in the proposed model cells crossing the membrane are not confined on its lower sur-
face, but they can freely move in the lower chamber. Therefore, to obtain the number of
migrated cells, it is necessary to consider the entire lower well, integrating the cell density on it.
In our framework, the adhesion/spreading effect involves the cells on the upper face of the
membrane and also all cells crossed into the lower chamber. Therefore, a possible choice for
the W function, along the x-axis, is

WðxÞ ≔

0; if x � �x;

exp �
ð�x � xMÞ

2

ð�x � xMÞ
2
� ðx � xMÞ

2
þ 1

 !

; if �x < x � xM;

1; if x > xM;

8
>>>><

>>>>:

ð8Þ

where xM is the position of the central membrane and �x a suitable constant. In the following
we will assume �x in the order of two cell diameters. The term �

a2þ�

a2þ
��

��
in Eq (7) considers that

FBS serum promotes the cell adhesion/spreading through its growth factors (previous subsec-
tion), possibly with a saturation effect, while in its absence (for example in the basal migration
experiment) such increase in cell density is assumed negligible. The constants α1, α3 can be esti-
mated, for a specific cell line, fitting related proliferation data obtained at concentration of FBS
� ¼ ��. The underlining assumption of these estimates is that proliferation assays and migra-
tion assay show similar adhesion/spreading rate at least in the earlier times (see next subsec-
tion, and sectionMaterials and methods).We recall that if the time of observation of the
migration assay remains limited in the interval of 12 h, the increment of Cell Index, can be
mostly attributed to the adhesion/spreading effect. However, on higher times the contribution
of Eq (7) could be able to reproduce also an increase in cell density due to cell proliferation (see
also sectionDiscussion and conclusions).

For the FBS signal in Eq (1)2 we have a diffusion term with constant coefficientDφ. Along
with this, we consider a serum consuming term proportional to the product between cell den-
sity and chemical signal, which takes into account the inactivation of the chemotactic agents
due to binding process. Conversely, on the scale of the examined experiment the molecular
degradation of the serum can be neglected.

Mathematical Model for Cell Migration Assays
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About the boundary conditions, Eqs (2) and (3) represent zero flux for the cell and for the
chemoattractant on the top and bottom side of the well, since no mass leaves our domain. In
Eqs (4) and (5) we fix Kedem-Katchalsky boundary conditions, meaning that the flux of cells
and FBS through the membrane is proportional to the difference between the concentrations at
the top (uT) and bottom (uB) sides of the boundary (see [27], and [28] for a mathematical and
modellistic treatment of this conditions). For the φ signal we assume a constant transmission
coefficient,while for u the transmission term is considered as a function of the cell density. In
particular in ku(u) we assume possible crowding effects on both sides of the interface. A suit-
able function can be

kuðuÞ ≔
ku1

1þ ku2uT þ ku3

Z

OB

u dx
� �p ; ð9Þ

where ku1, ku2, ku3 are constants. Notice that Eq (9) decreases for increasing cell density on the
membrane. In particular, we have two contributions in the denominator: one given by the cell
density on the upper side of the interface ΓM (uT); the other given by a similar contribution on
the lower side of ΓM, possibly up to the power p. As we have observed above, we need to inte-
grate the cell density on the entire lower chamber OB. Numerical data suggest p = 2 as a suitable
power, which we will assume in the following. All the above considerations are then summa-
rized in the following system of equations:

@tu ¼ DuDu � r � u
w1φ

w2 þ φ
rφ

� �

� r � Vtranspu
� �

þ a1u 1 �
u
a3

� �
φ

a2 þ φ
a2 þ �φ

�φ
WðxÞ;

@tφ ¼ DφDφ � duφ;

Duru � uVtransp

� �
� n ¼ 0; on GT; GB;

rφ � n ¼ 0; on GT; GB;

Duru � u
w1φ

w2 þ φ
rφ � uVtransp

� �

� n ¼
ku1ðuB � uTÞ

1þ ku2uT þ ku3

R

OB
u dx

� �2
; on GM;

Dφrφ � n ¼ kφðφB � φTÞ; on GM:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð10Þ

Initial concentrations for u(x, t) and φ(x, t) will be in the form

uðx; 0Þ ¼
u0; if x 2 Ou � OT;

0; otherwise;

(

ð11Þ

φðx; 0Þ ¼
φ

0
; if x 2 OB;

0; otherwise;

(

ð12Þ

Ou being the portion of the upper chamber, with positive cell density at t = 0.
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Parameter estimation and sensitivity analysis of the mathematical

model

In our numerical tests we applied the mathematical model to three different cell lines: Sarc,
HT1080, A375; and two conditions: migration toward chemoattractant (FBS in our case) and
basal migration. The second condition corresponds to choose χ1 = α1 = 0 in the system (10), so
that Eq (10)1 and Eq (10)2 decouple, and we can simulate only the dynamics of the cell density.

For symmetry reasons, we can simulate a one-dimensional version of system (10), length-
wise the cylindrical domain. Such assumption is in agreement to the impedance-basedmea-
surement of the Cell Index performed by the cell analyser, and used to compare numerical
data.

In order to simulate the dynamic of the model, all parameters have to be chosen. To this
purposewe remark that some of them are already available in biological or modellistic litera-
ture, while the others have been calibrated on the experimental data. Table 1 summarizes the
set of parameters used in our simulations for the different cell lines. For those retrieved from

Table 1. Initial data and parameters of the mathematical model.

Initial datum or

parameter

Definition Estimated value Source

u0 initial maximum cell denity in Eq (11) �30200,�45300,�60400 cellcm−1 (Sarc)�30200 cellcm−1

(HT1080, A375)

Exp. setup: sec. Mat.

and Meth.

φ0 initial maximum FBS concentration in Eq

(12)

18.39 μlcm−1 Exp. setup: sec. Mat.

and Meth.

Du cell diffusion 1 × 10−3 cm2 h−1 (Sarc) 2.5 × 10−3 cm2 h−1 (HT1080) 8 × 10−4

cm2 h−1 (A375)

data driven from basal

migr. exp.

Dφ FBS diffusion 3.7 × 10−3 cm2 h−1 [29]

χ1 first chemotactic constant 3 × 10−3 cm3 μl−1 h−1 (Sarc) 2.5 × 10−3 cm3 μl−1 h−1 (HT1080)

1 × 10−3 cm3 μl−1 h−1 (A375)

data driven from migr.

exp.

χ2 second chemotactic constant 4.75 × 10−8 μlcm−1 (Sarc, HT1080, A375) data driven from migr.

exp.

Vtransp transport velocity 9 × 10−3 cmh−1 (Sarc) 2 × 10−3 cmh−1 (HT1080) 1.3 × 10−9

cmh−1 (A375)

data driven from basal

migr. exp.

α1 logistic growth coefficient 0.154 h−1 (Sarc) 0.135 h−1 (HT1080) 0.118 h−1 (A375) data driven from prolif.

exp.

α2 dependence on FBS in the logistic

growth

10−6 μlcm−1 (Sarc, HT1080, A375) data driven from migr.

exp.

α3 limit value in the logistic growth 2.08 × 105 cellcm−1 (Sarc) 2.26 × 105 cellcm−1 (HT1080) 1.04

× 105 cellcm−1 (A375)

data driven from prolif.

exp.

�φ� FBS concentration in proliferation

experiments

19.64 μlcm−1 Exp. setup: sec. Mat.

and Meth.

δ FBS degradation 10−8 cmh−1 cell−1 (Sarc, HT1080) 3.5 × 10−5 cmh−1 cell−1

(A375)

data driven from migr.

exp.

ku1 cell transmission coefficient on the

membrane

2 cmh−1 (Sarc, HT1080, A375) data driven from basal

migr. exp.

ku2 crowding coefficient on the upper side of

the membrane

1 × 10−5 cmcell−1 (Sarc) 5 × 10−5 cmcell−1 (HT1080) 2 × 10−8

cmcell−1 (A375)

data driven from basal

migr. exp.

ku3 crowding coefficient on the lower side of

the membrane

6 × 10−8 cell−2 (Sarc, HT1080, A375) data driven from basal

migr. exp.

kφ FBS transmission coefficient on the

membrane

8.8 × 10−2 cmh−1 (Sarc, HT1080, A375) data driven from migr.

exp.

Estimates of initial data, physical and biological parameters. About the model parameters, values were retrieved from scientific literature, or estimated from

proliferation or migration assays. For those obtained from migration experiments we used 2 × 104 cells/well.

doi:10.1371/journal.pone.0162553.t001
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scientific papers we provide the reference in the last column, while for the others, marked as
“data driven”, we specify the experiment (i.e. proliferation, migration, or basal migration) from
which we have derived them.

In detail, the constants u0, φ0, �φ were assigned by the experimental protocol (section
Materials and methods). The coefficientDφ was set according to [29]. Coefficients related to
the cell proliferation, i.e. α1, α3, were obtained, for a specific cell line, from proliferation
experiments. This kind of assays was performed in real time on E-plates, using the same tech-
nology of the migration ones, for each cell line and at a known FBS concentration �φ (section
Materials and methods). Experimental curves showed a logistic growth in the cell density,
and were interpolated to estimate the above mentioned parameters of our interest. Then, the
parameters which do not involve chemotactic or growth effects, that are Du, Vtransp, ku1, ku2,
ku3, were calibrated on the basal migration curves, fixing in the model χ1 = α1 = 0. Finally, χ1,
χ2, α2, δ, kφ, were calibrated consistently with the other parameters, on the migration curves
in presence of chemoattractant.

We observe that, as in many mathematical models of biological phenomena, the lack of
complete information from the experiments on the parameter values necessarily imposes an
uncertainty in the response of the model. To obtain as reliable results as possible, we have stud-
ied the influence of the parameters on the behaviour of the model through a local sensitivity
analysis [30, 31], as described below. Such approach allows us to estimate an influence index
between the variation of a parameter and a particular observedoutput of the model. In our
analysis we consider the variation of a single parameter at a time, so interactions among coeffi-
cients are neglected. This is useful for a first exploration of the parameter space.

Let p0 a parameter value and ε a small deviation on p0, let f(p0) an output obtained for the p0

value, we defined the sensitivity index S as the following ratio between relative variations:

S ≔
jf ðp0 � εÞ � f ðp0Þj

f ðp0Þ

ε
p0

� �� 1

: ð13Þ

Table 2 shows the S value in Eq (13) for the parameters that we calibrated on the experimen-
tal data. The small deviation ε was assumed equal to 0.05p0, that is a 5% deviation on the
parameter value. The observedoutput f was the Cell Index at the final time of observation, cor-
responding to 12 h. Moreover, Table 2 shows also, in the second column, the percentage varia-
tion of the examined parameter given by

Dfrel ≔
f ðp0 � εÞ � f ðp0Þ

f ðp0Þ
100: ð14Þ

Numerical simulations on basal and directional cell migration of three

different cell lines

In this sectionwe show the performance of our dynamical model in describing experimental
results. In order to compare our numerical data with those obtained by xCELLigence analyser
we express the cell density in term of Cell Index. The Cell Index linearly depends on the cell
density [32], and the coefficients of this linear dependence can be estimated from an experi-
ment of cell proliferation, in which a known number of cells is placed on an impedance-based
biosensor and their Cell Index measured in time (sectionMaterials and methods).

In our simulations we chose the domain O = [0, 1.8] (cm) according to the well height in the
used CIM-plate, which permeable membrane is placed in the middle, at x = 0.9 cm [33]. As
observed in previous sections, the observation time was fixed at 12 h (Fig 1 in section Results).
For the space discretisation, to preserve stability we adopted a non-uniform mesh. In
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particular, we fixed Δx = 10−2 cm, while in proximity of the membrane we reduced the spatial
step to the finer Δxf = 10−6 cm. The time step was chosen as the maximum value able to
ensure stability and non-negativity of the solution, that is Δt = 10−3 h (for further details see
section Materials and methods).

In all numerical tests, the parameters of the model, estimated as described in previous sec-
tion, were chosen according to Table 1. Dynamical simulations were compared with the rela-
tive experimental curves computed as describedbelow. For each cell line at least three
independent experiments were available. Each experiment was performed in quadruplicate on
the same CIM-plate, and the xCELLigence data were recorded as mean value (sectionMaterials
and methods).We consider as resulting experimental curve for each cell line, the average of the
independent replicates (see S2 Fig for full raw data).

For each comparison we estimated also the relative MSE error, given by

MSE ≔
Pn

i ðĉi � ciÞ
2

Pn
i c2

i

; ð15Þ

where n is the number of experimental time steps, and ĉi, ci are respectively the numerical and
the experimental Cell Index. When necessary, ĉi was interpolated on time steps of ci. In the fol-
lowing we will indicate with MSEmigr and MSEbasal respectively the MSE relative to the migra-
tion and basal migration simulations.

Table 2. Sensitivity analysis for the parameters of the mathematical model.

Parameter variation Cell Index variation at 12 h S

Du + ε +0.38% 0.08

Du − ε −0.39% 0.08

χ1 + ε +0.90% 0.18

χ1 − ε
χ2 + ε

−0.97%

−1.2 × 10−4%

0.19

2.3 × 10−5

χ2 − ε +1.2 × 10−4% 2.3 × 10−5

Vtransp + ε +0.59% 0.12

Vtransp − ε −0.59% 0.12

α2 + ε < 10−5% < 10−5

α2 − ε < 10−5% < 10−5

δ + ε +7.9 × 10−3% 1.6 × 10−3

δ − ε −8 × 10−3% 1.6 × 10 − 3

ku1 + ε +5.2 × 10−2% 1 × 10−3

ku1 − ε −5.7 × 10−2% 1.1 × 10−3

ku2 + ε −7.5 × 10−5% 1.5 × 10−5

ku2 − ε +7.5 × 10−5% 1.5 × 10−5

ku3 + ε −5.2 × 10−2% 1 × 10−2

ku3 − ε 5.3 × 10−2% 1 × 10−2

kφ + ε +0.15% 0.03

kφ−ε −0.17% 0.03

Local sensitivity analysis for parameters in Table 1 calibrated from numerical simulations. Second column

shows the relative percentage variation as in Eq (14), choosing as observed output f the Cell Index at the

final time of the simulation (12 h), and considering ε corresponding to a 5% variation. Third column contains

S in Eq (13).

doi:10.1371/journal.pone.0162553.t002
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Fig 3 shows a numerical simulation of the model (10) with parameters fixed as in Table 1
in comparison with the experimental data. Specifically, panel (a) and (b) refer to Sarc cell line,
reporting results for basal migration (a) and full system (10) (b) respectively. Experimental
curves are marked in red for basal migration, and green for chemotactic migration. Both pan-
els display the Cell Index curve versus time. The estimate of the relative MSEs are given by
MSEbasal = 0.0376 and MSEmigr = 0.0052. Fig 3(c) and 3(d) refer to HT1080 cell line. In this
case we obtain the values MSEbasal = 0.0166 and MSEmigr = 0.0068. Finally, in Fig 3(e) and 3(f)
we consider the A375 cell line. For the relative MSE we estimate MSEbasal = 0.0083 and
MSEmigr = 0.0054.

Confirming the mathematical model on chondrosarcoma Sarc cells

In previous sectionwe have shown that, after a suitable parameter calibration, the proposed
mathematical model was able to describe the cell migration of three different cell lines, with a
very good concordance with the experimental data. Here we investigated the model capability
to make predictions about new experiments. To this aim, we used our model to predict the Cell
Index on Sarc cell lines performedwith different numerosities of cells. Therefore, we applied
our mathematical model, using the parameters estimated on the Sarc cell line in the case of
2 × 104 cells in migration (Table 1), and we estimate the behaviour corresponding to 3 × 104

and 4 × 104 cells/well. Then, in related experiments, cells were seeded at these two different
densities on CIM-plates and allowed to migrate towards serum-freemedium (basal cell migra-
tion) or medium plus 10% FBS. Cell migration was monitored in real-time for 12 h as changes
in Cell Index. In Fig 4 we show the comparison between these numerical curves and Cell Index
data obtained by the xCELLigence analyser in the case of migration towards chemoattractant.
The displayed experimental data represent an average value of three and four different experi-
ments, respectively for the case of 3 × 104 and 4 × 104 cells/well (see S2 Fig). In all cases we
found a nice agreement with the experimental evidences. In particular, for 3 × 104 and 4 × 104

cells/well, we estimated respectively the relative MSE value as MSEmigr = 0.0077, and MSEmigr

= 0.0183.

Discussion and conclusions

Cell migration is a process that offers rich targets for intervention in key pathologic conditions,
including cancer. Indeed, the development of metastases requires the activation of a series of
physiological and biochemical processes that govern the migration of tumour cells from the
primary tumour site, the invasion through the basement membrane, the entry of metastatic
cells into the blood vessels and finally localization to the second site [1]. Therefore, targeting
cell motility has been increasingly accepted as a new approach for the clinical management of
metastatic patients and in the future, quantitative analysis of the motility of tumour cells
derived from cancer patients could provide a new potential parameter predictive of patient out-
comes. The recent expansion of mathematical modelling is already contributing to cancer
research by helping to elucidate mechanisms of tumour initiation, progression and metastases
as well as intra-tumour heterogeneity, treatment responses and resistance [12]. Parametriza-
tion of cell motility is often difficult given the available experimentalmodel systems. With the
advent of high throughput systems, there has been a movement towards the use of a number of
cell-based assays useful for studying cell migration. A recent technology, xCELLigence RTCA,
has been increasingly accepted as a platform for high-throughput determination of cell motility
dynamics in real time using micro-electronic biosensors [34]. In this paper we propose a mac-
roscopic mathematical model, based on convection-reaction-diffusion equations, for the cell
migration assay.
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Fig 3. Numerical simulations on Sarc, HT1080, and A375 cell lines. For each cell line, panels on the left (a),(c),(e) show the basal migration in

absence of chemoattractant. Numerical curves (blue) were compared with experimental data (red). Panels on the right (b),(d),(f) show the migration

curves. The simulated values of Cell Index (blue) were compared with experiments (green). Here and in the following figures the experimental curves

were obtained as the average of at least three experiments in quadruplicate (S2 Fig). About the MSE value on the Cell Index, defined in Eq (15), we

estimated, respectively, the following values: panels (a)-(b) MSEbasal = 0.0376 and MSEmigr = 0.0052; panels (c)-(d) MSEbasal = 0.0166 and MSEmigr

= 0.0068; panels (e)-(f) MSEbasal = 0.0083 and MSEmigr = 0.0054.

doi:10.1371/journal.pone.0162553.g003
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Fig 4. Sarc chondrosarcoma cell line. Confirming the mathematical model. Model (10) was simulated with

parameters fixed as in Table 1, obtained with 2 × 104 cells/well, and varying the initial cell density u0. In (a) and (b)

numerical data of migration curves were compared with experimental Cell Index respectively in the case of

3 × 104 and 4 × 104 initial cell number. MSE value on the Cell Index was estimated in MSEmigr = 0.0077 and

MSEmigr = 0.0183, respectively in (a) and (b).

doi:10.1371/journal.pone.0162553.g004
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Previous mathematical models on in vitro Boyden-like assays dealt mainly with the inva-
sion experiment [19–21]. Among these, the authors in [21] studied cancer cell invasion
through a theoretical model compared with real-time impedance-based assays. By contrast,
in this paper, we proposed a PDEs model in relation to the cell migration experiment relying
on the xCELLigence real-time technology. Our model differs from [21], where it was
assumed that the simulated Cell Index is proportional to the fraction of cells that reaches the
upper well bottom. The authors assumes that the pores dimension of the permeable mem-
brane are larger enough to allow cells, quite easily, to cross it. On the contrary, cell lines
employed in our migration experiments present much larger dimensions than membrane
pores (8μm) (Fig 1A). For this we consider the effective cell crossing through the porous
interface, and the simulated Cell Index was computed on the basis of the fraction of cells
migrating in the lower chamber. Moreover, our transmission coefficient in the boundary
conditions includes also possible crowding effects, being assumed as a decreasing function of
the cell density on both the faces of the separating membrane. Finally, to model the basal
migration effect, as described in section Results, our model considered also a spontaneous
transport of cells across the permeable membrane, present even in absence of chemotactic
stimuli, that is not considered in [21]. This allowed us to recover experimental data through
the basal experiment and to estimate on it some parameters to be included in the full migra-
tion model.

Numerical simulations has been performed to compare the model dynamics with experi-
mental raw data obtained by the xCELLigence RTCA in absence or presence of a chemotactic
gradient. We also validate the performance of our model by comparing the results of simula-
tions with other experimental data, on chondrosarcoma Sarc cell line, not used for estimating
model parameters. Numerical findings showed a nice agreement with the acquired experi-
mental data. Therefore, overall we can infer that tumour cells migration can be described
using mathematical models as a predictable process dependent on biophysical laws and exper-
imental parameters.

Starting from the present paper, some interesting issues can be investigated as future per-
spectives. Firstly, we could explore the quantitative and qualitative accuracy of the model to
simulate different experimental conditions in a migration assay, such as the initial serum con-
centration, or to test the effects of various chemoattractants. In this regard, it could also be
interesting to introduce the action of chemotactic inhibitors on the cell motility. In the future,
we will explore the possibility of simulating in silico the ability of inhibitors of cell migration to
counteract the motility of primary tumour cells derived from patients affected by solid
tumours, in order to design more personalized therapeutic strategies.

Materials and methods

Cell Lines

Human melanoma A375 cell line purchased from American Type Culture Collection (ATCC)
was cultured in RPMI 1640 medium (Lonza, Milan, Italy), supplemented with 3 mM L-gluta-
mine (Invitrogen-Gibco1/Life Technologies, Monza, Italy), 2% penicillin/streptomycin and
10% fetal bovine serum (FBS). Highly mobile human fibrosarcoma HT1080 cell line [23], also
purchased from ATCC, and human chondrosarcoma Sarc cells derived from a chondrosar-
coma primary culture [24], preliminary characterized for their ability to migrate toward several
chemoattractants [35], were cultured in DulbeccoModified Eagle Medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS), 100 IU/ml penicillin and 50 μg/ml streptomycin.
All cells were maintained at 37°C in a humidified atmosphere of 5% CO2.
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Cell Proliferation

Cell proliferation was assessed using the xCELLigence RTCA technology as described [36]. For
these experiments, the impedance-baseddetection of cell attachment, spreading and prolifera-
tion was assessed by using E-plates which are provided of microelectrodes attached at the bot-
tom of each well. First, 100 μl of growth medium was added to each well, the plate was locked
at 37°C in a humidified atmosphere of 5% CO2 and the background impedance was measured.
Cells were counted, suspended in in 100 μl growth medium, seeded (2 × 103 or 4 × 103 cells/
well) and allowed to grow for 70 h. The impedance value of each well was automatically moni-
tored by the xCELLigence system and expressed as a Cell Index.

Cell Migration

Cell migration was monitored using the xCELLigence RTCA technology as described in [36].
For these experiments, the impedance-baseddetection of cell migration was assessed using
CIM-plates which are provided of interdigitated gold microelectrodeson bottom side of a
microporous membrane (containing randomly distributed 8 μm-pores) interposed between a
lower and an upper compartment. Briefly, 160 μl of serum-freemedium with/without 10% FBS
and 30 μl of serum-freemedium were added to the lower and upper chambers, respectively,
prior to lock the plate at 37°C in a humidified atmosphere of 5% CO2 for 60 minutes (to obtain
the equilibrium between the two compartments), according to the manufacturer’s guidelines.
Then, background signals generated by cell-freemedia were measured, detached cells were
counted, suspended in 100 μl serum-freemedium and seeded (2 × 104, 3 × 104, 4 × 104 cells/
well) in the upper chamber. Microelectrodesdetect impedance changes which are proportional
to the number of migrating cells and are expressed as Cell Index. Cell migration was monitored
in real-time for 12 h. Each experiment was performed at least three times in quadruplicate.
Raw data are given in S1 and S2 Files.

Numerical methods

The numerical approximation scheme used in the simulation of the model (10) employed a
finite difference method on a spatial domain O = [a, b], consisting of upper and lower domains
OT, OB, interfaced through the membrane ΓM. Let Δx, Δt the space and time steps, we defined
the grid points (xi, tk), where xi = iΔx and tk = kΔt. The approximation of a function f(x, t) at
the grid point (xi, tk) was denoted as f ki . To ensure non-negativity in the numerical simulations,
due to the boundary conditions on the permeablemembrane, in its proximity we needed to dis-
cretise our equations on a finer spatial mesh xj = jΔxf, Δxf< Δx.

For the diffusion Eq (10)2 we applied on the internal nodes a central scheme in space and an
implicit scheme in time for the diffusive term, while the reaction term was put in explicit:

φkþ1
i � φk

i

Dt
¼ Dφ

φkþ1
iþ1
� 2φkþ1

i þ φkþ1
i� 1

Dx2
� duk

i φ
k
i :

Similarly on the finer mesh with spatial step Δxf.
For the advection-diffusionEq (10)1, let

V ≔
w1φ

w2 þ φ
@xφþ Vtransp; ð16Þ

we assumed

Vk
i ¼ wk

i

φk
iþ1
� φk

i� 1

2Dx
þ Vtransp; ð17Þ
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wk
i ≔

w1φk
i

w2 þ φk
i

; ð18Þ

and for the internal nodes we adopted the scheme

ukþ1
i � uk

i

Dt
¼ Du

ukþ1
iþ1
� 2ukþ1

i þ ukþ1
i� 1

Dx2
�

Vk
iþ1

uk
iþ1
� Vk

i� 1
uk
i� 1

2Dx

þa1uk
i 1 �

uk
i

a3

� �
φk

i

a2 þ φk
i

a2 þ �φ
�φ

WðxiÞ

þ
jVjkiþ1

uk
iþ1
� 2jVjki u

k
i þ jVj

k
i� 1

uk
i� 1

2Dx
;

with functionW(xi) defined in Eq (8), and where the last term introduced an artificial viscosity
in order to preserve scheme stability (see for example [37]).

For the boundary conditions (10)3,4 on ΓT (x = x0) and on ΓB (x = xN) we used the second
order one-sided approximation of the second derivative in the form:

Du

2Dx
� 3uk

0
þ 4uk

1
� uk

2

� �
� Vtranspu

k
0
¼ 0;

1

2Dx
� 3φk

0
þ 4φk

1
� φk

2

� �
¼ 0;

Du

2Dx
3uk

N � 4uk
N� 1
þ uk

N� 2

� �
� Vtranspu

k
N ¼ 0;

1

2Dx
3φk

N � 4φk
N� 1
þ φk

N� 2

� �
¼ 0:

On the boundaryΓM (x = xM), let uT, uB the variable u in OT, OB respectively. From Eq (10)5,6,
for u we employed

Du

2Dx
ð3uk

T;M � 4uk
T;M� 1 þ uk

T;M� 2Þ � uk
T;Mwk

i

kφ
Dφ
ðφk

B;M � φk
T;MÞ � Vk

transpu
k
T;M

¼ ðkuÞ
k
i ðu

k
B;M � uk

B;MÞ;

Du

2Dx
ð� 3uk

B;M þ 4uk
B;Mþ1 � uk

B;Mþ2Þ � uk
B;Mwk

i

kφ

Dφ
ðφk

B;M � φk
T;MÞ � V

k
transpu

k
B;M

¼ ðkuÞ
k
i ðu

k
B;M � uk

T;MÞ;

where wk
i was given by Eq (18) and

ðkuÞ
k
i ≔

ku1

1þ ku2u
k
T;M þ ku3

Z xN

xM

uk dx
� �2

:

Similarly, Eq (10)6 was discretised as

Dφ

2Dx
3φk

T;M � 4φk
T;M� 1 þ φk

T;M� 2

� �
¼ kφðφk

B;M � φk
T;MÞ;

Dφ

2Dx
� 3φk

B;M þ 4φk
B;Mþ1 � φk

B;Mþ2

� �
¼ kφðφk

B;M � φk
T;MÞ:

In our numerical simulations we usedΔx = 10−2 cm, while the interval [xM − Δx, xM + Δx]
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centred on the membrane was discretisedwith Δxf = 10−6 cm. Stability and non-negativity of
numerical solutions were obtained by choosingΔt = 10−3 h.

Supporting Information

S1 Fig. Doubling times of Sarc, HT1080, and A375 cell lines.Cells (2 × 103 cells/well) were
seeded on E-plates and allowed to grow for 70 h in serum containing medium. The impedance
value of each well was automatically monitored by the xCELLigence system and expressed as a
Cell Index. Doubling times were calculated, using the xCELLigence RTCA software, from the
cell growth curves during exponential growth given in round brackets for each cell line. Dou-
bling time is expressed in term of mean value ± SD (standard deviation) from a quadruplicate
experiment.
(TIF)

S2 Fig. Cell Index data recorded by xCELLigence of the different experiments in our study.
Panels (a),(c),(e),(g),(i) describe the basal migration, (b),(d),(f),(h),(j)the migration in presence
of FBS. In each panel the curves represent an independent experiment carried out in quadrupli-
cated and averaged. The observed curves in Figs 3 and 4 are obtained as the average of the
curves showed here.
(TIF)

S1 File. Basal migration xCELLigence raw data. The file contains 19 different spreadsheets
organized with respect to cell lines, initial cell numbers, and independent experimental repli-
cates. Within the same spreadsheet the first column contains the time (in hours), second and
third column contain the mean basal migration Cell Index of a quadruplicate experiment and
its standard deviation, respectively.
(XLSX)

S2 File. Migration xCELLigence raw data. The file contains 17 different spreadsheets orga-
nized with respect to cell lines, initial cell numbers, and independent experimental replicates.
Within the same spreadsheet the first column contains the time (in hours), second and third
column contain the mean migration Cell Index of a quadruplicate experiment and its standard
deviation, respectively.
(XLSX)
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