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Variability and Standardization of Quantitative Imaging
Monoparametric to Multiparametric Quantification, Radiomics,
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Abstract: Radiological images have been assessed qualitatively in most clinical set-
tings by the expert eyes of radiologists and other clinicians. On the other hand, quan-
tification of radiological images has the potential to detect early disease that may be
difficult to detect with human eyes, complement or replace biopsy, and provide clear
differentiation of disease stage. Further, objective assessment by quantification is a
prerequisite of personalized/precision medicine. This review article aims to summa-
rize and discuss how the variability of quantitative values derived from radiological
images are induced by a number of factors and how these variabilities are mitigated
and standardization of the quantitative values are achieved.We discuss the variabilities
of specific biomarkers derived from magnetic resonance imaging and computed to-
mography, and focus on diffusion-weighted imaging, relaxometry, lung density
evaluation, and computer-aided computed tomography volumetry. We also re-
view the sources of variability and current efforts of standardization of the rapidly
evolving techniques, which include radiomics and artificial intelligence.
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Q uantitative imaging, defined as the extraction of quantifiable fea-
tures from radiological images,1 has been increasingly performed

for the measurement of normal biological and pathological processes,
patient risk stratification, evaluation of treatment response and out-
come, and drug development.2 Such features of quantitative imaging
in clinical settings are called biomarkers (quantitative imaging bio-
markers [QIBs]), which is a characteristic that is objectively measured
and evaluated.3 Although the term “biomarker” is often meant to imply
a measurand (the true value of the quantity intended to be measured) of
laboratory assays, such as blood sugar tests, it can also denote clinical
measurands such as blood pressure and metrics obtained with quantita-
tive imaging. Quantitative imaging biomarkers are continuous variables,
whereas ordinal variables, such as the PI-RADS (Prostate Imaging
Reporting and Data System) with 5 numbered categories for assessment
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of prostate carcinoma,4 are not considered to be QIBs.5 Biomarkers are
important in healthcare for a physician to determine the most appropriate
management for a patient's unique state of disease at the molecular level.
This concept is called personalized or precision medicine. A biopsied
specimen is only a small fraction of the entire tissue that is sampled at
a certain time point, and spatial/temporal sampling biases are not negligi-
ble.1 On the other hand, QIB covers awide segment or thewhole of a sub-
ject and can provide more comprehensive spatial information concerning
the tissues. Repetitive sampling is also much easier for imaging than a bi-
opsy, and imaging data can be dynamically obtained in some cases in the
order of seconds to milliseconds.6,7 In addition, QIBs may enable the de-
tection of a subclinical presentation of disease that is too subtle to be de-
tected by human eyes8; this leads to a better outcome for patients than
when disease is detected after the clinical presentation is recognized. Re-
liable QIBs can also help foster the development of medical products in
regulatory settings.9 For example, if a QIB is qualified by the Food andDrug
Administration for drug development, it could help deliver a new therapy to
the public through either a traditional or accelerated approval pathway.10

In addition to the clinical relevance and sensitivity to the disease
process, good reproducibility is the key element of a qualified bio-
marker.11 Although QIBs can be used similarly to laboratory assays,
its clinical application has been hindered by its generally lower reproduc-
ibility. This is partly because the extraction of most QIBs from radiolog-
ical images is not yet fully automated, and it requires a radiologist or other
experienced practitioner to engage in the analysis process, which intro-
duces an inevitable variability arising from human perception.12 Further,
the variability of a QIB is also derived from acquisition hardware, soft-
ware, procedures, operators, and the measurement methods. The Quan-
titative Imaging Biomarkers Alliance (QIBA) was established by the
Radiological Society of North America (RSNA) in 2007 to proceed
quantitative imaging and introduce the use of QIBs in clinical trials and prac-
tice by engaging researchers, healthcare professionals, and the industry
(https://www.rsna.org/en/research/quantitative-imaging-biomarkers-alliance).
The mission of QIBA is to improve the value and practicability of QIB by
reducing variability across devices/sites, patients, and time. The QIBA has
been developing QIBA Profiles that standardize methods for each selected
QIB to achieve a useful level of performance.13 Claimswritten in the Profiles
describe the performance of the QIB and focus on a quantitative interpreta-
tion of the measurements for the individual subject. Conformance to the
specifications of a Profile is required not only for hardware, software,
and analysismethods, but also for operators and analysts. In collaboration
with QIBA, the Japan Radiological Society and European Society of
Radiology have also established Japan QIBA (J-QIBA) (http://www.
radiology.jp/j-qiba/english/index.html) and European Imaging Bio-
marker Alliance, respectively, both of which have the same goal.

This review article aims to summarize and discuss how the vari-
ability of quantitative values derived from radiological images are in-
duced by a number of factors and how variabilities are mitigated and
standardization of the quantitative values are achieved. For the interpretation
of studies related to evaluating the performance of QIBs, terminology and
key statistics will be explained. We also discuss the variabilities of spe-
cific biomarkers derived from magnetic resonance imaging (MRI) and
computed tomography (CT). Further, we review the sources of variability
and current standardization efforts for rapidly evolving techniques,
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including radiomics and artificial intelligence (AI). Overall, the termi-
nologies related to variability used in this article conform to those sug-
gested by the QIBATerminology Working Group in 2015.9

STATISTICS
In this section, we explain the statistics and related terminology

to understand the literature describing the performance of QIBs and to
help readers conduct an appropriate evaluation of a QIB by themselves.

Terminology
For a QIB to be clinically useful, it is desired to be reliably com-

parable to known reference measurements or true value, and it must be
comparable to one another in the same subjects for repetitive measure-
ments.14 These properties of a QIB can be characterized by accuracy
(systematic measurement error or bias) and precision (randommeasurement
error), which are together called uncertainty.9 Measurement bias can be esti-
mated only when the true value is known, and it can bemitigated by improv-
ing the calibration of a measurement system. The term measurand
refers to the true value of the quantity intended to be measured.15

Accuracy commonly describes a range of characteristics including
how a measured value relates to a known reference. Accuracy in terms of
quantitative imaging usually consists of linearity and bias. Linearity is
the ability of a measurement to provide a directly proportional value to
the measurand or a known reference. Bias is an estimate of systemic
measurement error; it describes the difference between the average of
a measurement made on a subject and its true value or known reference.

Although reliability, agreement, precision, repeatability, and re-
producibility are often used interchangeably, these terms are distinc-
tive.9,15 Reliability is defined as the ratio of variance based on the
between-subject measurement to total variance based on the observed
measurement. In other words, reliability represents how well different
subjects can be distinguished from each other despite a QIB's uncer-
tainty or measurement errors. Reliability is typically assessed by an
intraclass correlation coefficient (ICC). Agreement has a broader meaning
than reliability and indicates the degree of closeness between measure-
ments made on the same subject by different observers or measurement
methods. Precision or repeatability represents the closeness between
measured values obtained by replicate measurements of the same subject
with the same measurement method under the identical or near-identical
conditions—including subject, measurement procedure, environment,
and scanner—over a short period. Repeatability studies are often referred
to as test-retest or scan-rescan.

Reproducibility describes the closeness of measurements under a
set of conditions that includes different locations, operators, measuring
systems, or replicate measurements on the same or similar subjects.
These conditions are analogous to real clinical practice where various
external factors cannot be tightly regulated.

Linearity
Linearity can be evaluated by regressing the measurements

(Y values) on the true values (X values). A linear model can be fit by
least squares as:

Y ¼ β0 þ β1X

where β0 is the intercept and β1 is the slope. If the relationship between
Y andX is well explained by a line (ie, R2 >0.90), then the assumption of
linearity is met.16 Although linearity is the ideal condition, monotonic
relation (ie, the relationship of a QIB and the measurand can be described
as a strictly increasing or decreasing function) is necessary and generally
sufficient for a QIB to be clinically useful; it does so by discriminating ev-
ery distinct value of measurands.9 However, the slope of a function is re-
lated to sensitivity. If the relationship between Y and X is nonlinear, the
ability of a measurement to detect change in the measurand is inconstant.15

If there is lack of a standard reference, another imaging measurement
602 www.investigativeradiology.com
method for which proportionality is established can be used as the ref-
erence standard to evaluate the new imaging measurement method.

Bias
Bias is the difference between the sampled mean and true value

or known reference. %Bias is calculated by dividing the bias by the true
value or known reference. If the true value or known reference is un-
available, bias cannot be evaluated. Hence, bias is typically calculated
using validated phantoms with a well-defined reference. At least 5 to
7 similarly spaced values over the relevant range of true values should
be chosen.15 If the data are fromvarious cohorts and the bias is inconsistent,
a bias profile should be reported rather than a single bias value.16 For exam-
ple, bias for tumors with different sizes, shapes, and densities can be re-
ported as a bias profile for CT volumetry.17 Inconstant biases should be
specified cautiously, especially when assessment of change in the QIB is
the focus; this is because the different biases do not cancel out in calculating
the change.15 In this case, transformations, such as log-transformation,
may render an inconstant bias constant. The assessments of linearity
and bias are directly linked to each other; both should be presented
when assessing either for the technical performance of a QIB.

Precision (Repeatability)
Precision, or repeatability, is concerned with whether a measure-

ment agrees with a second measurement of the same quantity; high pre-
cision is a good indicator of the ability of a QIB to reveal an effect of
treatment, identify disease, or discriminate between groups using the
same scanner, sequence, software, and analysis method. Precision can
be assessed by repeated imaging of a phantom, although it does not per-
fectly reflect the real clinical situation. When precision is assessed by
repeated imaging of human subjects, the variance in measurements
can be contaminated by subject-related variability due to a variety of
reasons including behavioral, physiological, and psychological factors
that may have changed between scans, even if the actual process of im-
aging acquisition remains unchanged. Further, it may be ethically inap-
propriate to scan subjects with repeated doses of radiation or with the
use of contrast agents or tracers. Awashout period also needs to be con-
sidered before a rescan if a contrast agent or tracer is used.

Precision can be expressed numerically by measures of variability
such as within-subject standard deviation (wSD), within-subject coeffi-
cient of variation (wCV), or 95% precision limit.9 The wSD represents
the standard deviation of measurements from the same or similar subjects
under specified conditions. The wCV for repeated measurements of a
subject is the wSD divided by the mean. The wCVas a group is typically
acquired by taking the square root of themean of wCV2 per subject. Only
precision, not biological variation, is recommended to be included when
reporting the performance of a QIB. Within-subject variance may also
arise from patient repositioning and scanner calibrations. If the precision
varies over a range of relevant magnitudes in the measurands, a precision
profile should be considered; it should be reported as a table or plot
showing estimates of precision—possibly stratified by one or more var-
iables affecting the precision. The 95% precision limit is calculated as
the repeatability coefficient (RC) or % repeatability coefficient (%RC).
The standard deviation of the difference between 2 repeated measure-
ments is

ffiffiffi

2
p

wSD. Repeatability coefficient is the least significant differ-
ence between 2 repeated measurements at a 2-sided significance of
α = 0.05, and it is calculated as15:

RC ¼ 1:96
ffiffiffi

2
p

wSD ¼ 2:77 wSD

Likewise, %RC is calculated as:

%RC ¼ 1:96
ffiffiffi

2
p

wCV ¼ 2:77 wCV

The limit of agreement (LOA), the interval containing 95% dif-
ferences between repeated measurements on the same subjects, is −RC
© 2020 The Author(s). Published by Wolters Kluwer Health, Inc.
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to +RC. It represents the minimum detectable difference in 2 measure-
ments with 95% confidence. A meta-analysis of the literature can sum-
marize an RC by taking a weighted average of the reported values.16

Bland-Altman Graph Analysis
The Bland-Altman plot provides a graphic representation of

agreement in addition to the 95% LOA.18 The 95% LOA is the interval
that is expected to contain 95%of differences between the measurement
and true value or the other measurement, and it is calculated using the
standard deviation of the difference. The Bland-Altman plot illustrates
the differences between a measurement method and another one, or
the true value, plotted against their mean. If the true value is used, one
may plot the differences against the true value instead of their mean.
The differences can also be expressed as percentages, which is useful
when the variability of the difference increases as the magnitude of
the measurement increases. The Bland-Altman plot also helps to dem-
onstrate the relationship between bias and variance.

Intraclass Correlation Coefficient
Instead of reporting the components of uncertainty (eg, bias and

precision) in a separate manner, ICC can also be used to summarize the
uncertainty.9 Intraclass correlation coefficient considers both the within-
subject variance originating from measurement error and variance origi-
nating from the difference between subjects.19 The ICC is the fraction of
the total variance that is attributed to the subjects and is calculated as:

ICC ¼ Between−Subject variance
Between−Subject varianceþ Variance from measurement error

If the measurement error is small compared with the true vari-
ance between subjects, ICC approaches 1. Although subjective, adjec-
tives to describe ranges of ICC values include the following: poor (0
to 0.5), moderate (0.5 to 0.75), substantial (0.75 to 0.9), and excellent
(0.9 to 1).20 A moderate ICC can be considered sufficient when a mea-
surement is used for group-level comparisons for research purposes.
However, if a measurement is used in individual patients for important
clinical decisions, an excellent ICC is required.21 Intraclass correlation
coefficient can help us stop being excessively concerned about mea-
surement error when between-subject variance is large. However, ICC
depends on the subject population being studied,22,23 and ICC calculated
for a group of subjects may not be applicable to another population. For
example, when ICC is calculated for a group of healthy subjects, it may
become unacceptably low because a group of healthy subjects tends
to be homogenous and biological variance is low. However, ICC may
be acceptable when calculated for a group of patients, which may typ-
ically be more heterogenous than a group of healthy subjects. Further,
when we assess the subtle differences within a subject (eg, evaluating
treatment response), ICC is often impractical. In this case, precision re-
ported by RC would be more suitable, as the RC shows the smallest
within-subject change that can be reliably detected.

Pearson Correlation Coefficient
The Pearson correlation coefficient has been frequently used to

compare repeated measurements or a new measurement technique with
the old one. However, this approach only evaluates the linear association
between 2measurementswithout consideration of bias, and it does not give
an indication of repeatability or agreement.18 Further, a large between-
subject variation makes the correlation coefficient higher. High correlation
coefficients may be achieved for 2 QIBswith wide ranges, even when they
are in poor agreement, such as when one is twice the size of the other.

Reproducibility Coefficient and Multicenter Study
The reproducibility coefficient (RDC) is a measure of precision

that is used when scanners, imaging procedures, location, operator, an-
alysts, and/or algorithms differ at 2 time points. It shows the minimum
© 2020 The Author(s). Published by Wolters Kluwer Health, Inc.
detectable difference between 2 repeated measurements performed un-
der different conditions with a 95% confidence, and it can be measured
directly from clinical studies.16 Just like RC and %RC, RDC and %
RDC are calculated as 2.77 wSD and 2.77 wCV, respectively, under dif-
ferent rather than unchanged imaging acquisitions. An example of a re-
producibility study may compare the volume of an organ measured by
CTwith that measured by MRI for the same organ of the same subject.

Reproducibility is especially important in multicenter studies
where reproduction of the same measurement is required across differ-
ent centers and often with different kinds of scanners.24 Multicenter
studies of human subjects enable a comprehensive investigation of the
disease. This is an advantage, especially when the disease is rare. How-
ever, if reproducibility across scanners is low, variability across scan-
ners may reduce the statistical power of detecting differences between
groups and annul the benefit of using data frommultiple centers.25Mit-
igation of variation across centers can be achieved by (1) setting scan-
ning and analysis procedures to be as identical as possible so that any
systemic errors are replicated across participating centers26 or (2)
aiming for high accuracy at each center.27 Although standardizing the
scanning protocol is the simplest method for reducing measurement
variabilities, differences in the scanners produced by different vendors
may prevent identical protocols from being used at every site. In a
cross-sectional study that compares groups, all groups should be in-
cluded at each center, and the effect of the center should be added as
a covariate in the statistical analysis.11

Meta-analysis of Technical Performance Studies
Before a QIB is accepted for clinical use, performance metrics,

such as repeatability and reproducibility, should be evaluated. Ideally,
this evaluation should involve summaries frommultiple studies to over-
come any limitations arising from a small sample size (typically 10 to
20 subjects) of a study concerning technical performance and include
a wider range of relevant clinical settings and patient populations.28 Al-
though a meta-analysis of any technical performance metric is theoret-
ically feasible, a meta-analysis of reproducibility and agreement is more
complicated than that of repeatability because the studies that assess re-
producibility and agreement are more heterogenous than those of re-
peatability. For example, a reproducibility study can be performed using
scanners of the same type across different sites, scanners of different types
from the same vendor, or different scanners from multiple vendors.
Generally, reproducibility of the measurement decreases in this order.
VARIABILITY SOURCES, STANDARDIZATION,
AND HARMONIZATION

This section focuses on the variability sources common to QIBs
(Fig. 1) and how these variabilities could bemitigated. Variability sources
specific to the modality or each biomarker will be discussed later in the
corresponding section. The degree of measurement imperfections in
comparison to the pathophysiological changes due to disease determines
the significance of measurement imperfections for each QIB and hence
the amount of effort required to be taken to reduce such variabilities. This
effort may include building and keeping quality assurance (QA) at each
center and improving the acquisition/analytical method. For example,
the MAGNIMS (magnetic resonance in multiple sclerosis) research
group has led a number of multicenter studies on MS, which occasion-
ally included MRI physicists traveling to different centers in Europe,
sometimes with a phantom, to decrease the measurement variability.11

Patient Positioning and Movement
The operator should be trained for adequate and consistent posi-

tioning of the phantoms/human subjects. Movement of the subject dur-
ing and between scan sequences can cause artifacts and degrade the
image quality. This can be mitigated by paying careful attention to the
www.investigativeradiology.com 603
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FIGURE 1. Variability sources of quantitative imaging biomarkers.
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comfort level of the subject. Involuntary movement, such as respiratory,
cardiac, and gut motion, can also cause degradation of the image.

Region of Interest
The size of the region of interest (ROI) has been known to affect

the repeatability and reproducibility of QIBs.29 AQIB is oftenmeasured as
themeanvalue of amapwithin an ROI, where an increase in the size of the
ROI leads to a smaller variance (ie, higher repeatability/reproducibility)
of the measurement. This is important when the ROI size can be vari-
able due to treatment response or disease progression, whenmonitoring
the effect of treatment on lesions such as tumors,30 or when the ROI size
is small such as in the case of measuring multiple sclerosis focal
plaques.31–33 The appropriate selection of an ROI size and estimation
of size effect would help adjust the decision threshold by a QIB in mon-
itoring a treatment effect.29 The ROI placement procedure can also be
variable among radiologists. Before starting a clinical trial involving a
number of radiologists, especially when they are from different sites,
the variability across them should be assessed and desirably standard-
ized. Region of interest placement using automated techniques, such
as deep learning, is a possible approach34 that reduces the burden of cli-
nicians and may increase both repeatability and reproducibility.

Observer
If an analysis (eg, ROI placement) involves observers, observers

should be trained to a set of well-defined rules. Agreement across ob-
servers should also be assessed using ICC. There is a possibility of a
practice effect, so observers should perform the actual analysis after
reaching the plateau of their learning curve.5 Software for semiautomated
or fully automated analyses will increase the repeatability. Automated
techniques using deep learning trained with a large dataset is expected
to reduce the variability in tasks such as tumor segmentation.35
FIGURE 2. Variable flip angle measurement of T1 relaxation time on the origi
overestimates the T1 compared with the original measurements. Postupgrade
and the body coil (reproduced with permission from Keenan et al36).

604 www.investigativeradiology.com
Hardware and Software Upgrades
Hardware and scanner software upgrades may introduce more

bias and/or less precision in the derived QIB.36 For example, Keenan
et al36 showed that the variable flip angle (VFA) T1 measurements on
upgraded systems (hardware and software) had an overestimation of ap-
proximately 18% compared with the measurements of the original sys-
tem (Fig. 2). Lee et al37 also showed that a consistent bias of up to 3%
was observed between VFAT1 measurements before and after a scan-
ner software upgrade. Even when performing a study that uses only a
single scanner, consistent versions should be used for both hardware
and software.

Standardization
The performance of QIBs can be assessed with the true value

(eg, phantoms, digital reference objects [DROs], simulation, and test-
retest datasets—assuming no change), a reference standard, or without
a reference standard (eg, agreement studies between algorithms and
studies of algorithm precision). Phantoms and simulation data are
cost-effective and reliable, and can be in large amount. Phantoms can
be scanned repeatedly without any ethical constraints and are relatively
easy to transport between centers. However, one must bear in mind that
optimization of a QIB to a phantom or simulation data may not work
well on in vivo data, due to the lack of realism. For example, pulmonary
nodules in a phantom have several characteristics that may differ from
human pulmonary nodules, including sharp margins, smooth surfaces,
elemental shapes (spheroids and conics), homogeneous density, no vas-
cular interaction, and no motion artifact. An algorithm that is optimized
for any of these properties may appear to have an overly optimistic per-
formance and may not show high performance for real in vivo data.

In human studies assessing QIB performance, the true value is
often unavailable. Although histology or pathology tests are usually
nal and postupgrade systems. Following upgrade, variable flip angle
measurements were completed using 3 different head coils (coils A–C)

© 2020 The Author(s). Published by Wolters Kluwer Health, Inc.

www.investigativeradiology.com


Investigative Radiology • Volume 55, Number 9, September 2020 Standardization of Quantitative Imaging
considered as the true value, these are more appropriately referred to as
reference standards; they are described as well-accepted or commonly
used methods for measuring a biomarker but also have associated bias
and/or random error.38 For example, histology and pathology are known
to be affected by fixation and staining, spatial and temporal sampling er-
rors due to heterogeneity in tissue and the difference in time between im-
aging and sampling, the nonquantitative nature of the histopathology
examinations, and subjective interpretations by humans. Specialist mark-
ings (eg, setting a boundary of a region for volumetry) are also sometimes
considered as the true value, but they often have a variable degree of
interreader variation and should be considered as a reference standard.39

Data Harmonization
Although a multicenter study has the potential to increase statis-

tical power, the inclusion of different scanner vendors, acquisition pro-
tocols, image reconstruction algorithms, and field strengths results in
unwanted systematic variation. Data harmonization aims to remove
these variations retrospectively after acquisition while preserving the bi-
ological variability. Harmonization can be performed using traveling
human data acquired at each site by determining a scanner-specific cor-
rection factor.40–42 If only postprocessed data (eg, fractional anisotropy
map and cortical thickness) are available, regression analysis or more
sophisticated statistical approaches can be performed for harmonization.43,44

Harmonization of raw data is particularly important for diffusion-
weighted imaging (DWI) data to be analyzed by multicompartment
models or tractography, and model-free methods for harmonization of
raw DWI signals have also been suggested.45,46 Harmonization by deep
learning has also been proposed, but the algorithm should be trained on
the data of same subjects acquired on different scanners that are
intended to be harmonized.47
MAGNETIC RESONANCE IMAGING
Magnetic resonance imaging can extract a variety of quantitative

tissue properties that include not only length and volume but also relaxation
properties (T1, T2, and T2*), diffusion, perfusion, phase, fat fraction, tem-
perature, tissue chemical properties (eg, spectroscopy and chemical ex-
change saturation transfer), and physical properties (eg, elastography).48

However, a large number of variabilities in image acquisition methods
and postprocessing algorithms hinder the extraction of accurate and re-
producible quantitative information from MRI. In this section, we dis-
cuss sources of variability in QIBs that are specific to MRI and the
importance of periodic QA to maintain sufficient accuracy and preci-
sion.We also discuss the current body of knowledge regarding the stan-
dardization of quantitative MRI metrics that are fundamental in MRI.

Temperature
Temperature control is required for phantom scanning. T1 and

T2 of Ni-DTPAwere reported to change 0.2% to 1% and approximately
1.3% to 1.5%, respectively, per °C at a temperature approximately 21°C.49

The apparent diffusion coefficient (ADC) of the pure water changes
approximately 3% per °C at room temperature.50 The phantom should be
stored in theMRI room and reach a temperature close to that in the magnet
bore so that the temperature of the phantom does not fluctuate during the
scan. The temperature of the phantom should bemeasured and recorded af-
ter the scan is complete. Conversion of the acquired values to those at a
standard temperature might be possible.11 In case of a human scan, tem-
perature control is assumed to be unnecessary because homeostasis pro-
vides intrinsic temperature control. However, core temperature can
increase more than 1°C byMRI scan, especially at 3 T for obese subjects,
and this thermal effect on quantitative MRI remains to be investigated.

B1 Field Nonuniformity
Nonuniformity in the radiofrequency transmit field (B1

+) is the
major cause of error in quantitative MRI, especially when using high
© 2020 The Author(s). Published by Wolters Kluwer Health, Inc.
magnetic fields and surface coils for transmission.50 Body coil excitation
is preferable for uniform transfmission.26 Calibration of the transmitter
output can be carried out periodically as part of routine maintenance.
The accuracy of flip angle depends on the B1

+ inhomogeneity at a given
spatial location, which can bemeasured by B1

+ mapping.51 Notably, every
vendor uses their own radiofrequency pulse shapes that lead to variability
in flip angle, complicating comparison across scanners from different
vendors. The acquired B1

+ map can be used for the measurement of tis-
sue parameters such as T1 and magnetization transfer to correct the
achieved flip angle for the intended one.52,53 The B1

+ field is smooth
compared with anatomical structures, even at high field strengths, so
B1
+ maps are often acquired at low resolution to spare acquisition time.54

With the increasing use of a large number of coils and parallel
imaging, the receive sensitivity field (B1

−) nonuniformity should be ad-
dressed. B1

− nonuniformity used to be measured from a B1
+ map based

on the reciprocity principle (B1
+ = B1

−) if the excitation and receiving
are done by the same coil. The reciprocity principle can still be used
when different coils are used by performing an additional acquisition
in which the transmit coil is used for receiving.55 However, the reci-
procity principle becomes less accurate at a field strength of 3 T or
higher.56,57 B1

− nonuniformity affects the spatial distribution of image
intensity and thereby any quantitativeMRI, especially the measurement
of proton density and absolute metabolite concentration. The receiver
gain can be automatically set or changed during the prescan procedure,
but it is desired to be fixed during the acquisition of the image series.

B0 Field Nonuniformity
When an object is placed in the magnet, the magnetic suscepti-

bility of the object alters the static magnetic field B0 in the object
slightly. The shim coil usually adjusts to obtain a spatially uniform B0

distribution. However, for extended fields of view, observable devia-
tions from uniformity and image degradation can occur in the periph-
ery.58 Spatially varying tissue susceptibility, especially at the air-tissue
interface, can also induce B0 field nonuniformity. This is one cause of
a generally higher repeatability and reproducibility for in vitro phantom
studies than for in vivo human studies. In human subjects, the ROIs have to
be put on spatially variable places, and signal variability becomes higher as
the pixel departs from isocenter of the magnet. Proton density fat fraction
is vulnerable to B0 field nonuniformity because differentiation between
the phase shifts, due to B0 nonuniformity and those due to chemical shift
utilized for extracting fat signal, is difficult.59

Field Strength
Some tissue parameters, including ADC, diffusion tensor imag-

ing, proton density, volume, and perfusion, are independent of field
strength. However, a higher field strength may contribute to an in-
creased signal-to-noise ratio. Other parameters, including T1, T2, and
magnetization transfer, are dependent on field strength.60

Quality Assurance in Quantitative MRI
Quality assurance is an ongoing process of ensuring that the in-

strument continues to operate adequately.61–63 To use a QIB in a clinical
routine, regular QA on a weekly basis (possibly on a daily basis as an
initial assessment) is required. Quality assurance for quantitative MRI
can be performed in healthy controls and/or in phantoms. Phantoms
have the advantage of providing accurate values and being stable and al-
ways available. Phantoms and analysis software are ideally developed
specifically for each QIB to address some of the variabilities. Anthropo-
morphic phantoms have been developed for certain body parts including
the breast,64 prostate,65 and brain,66 considering the fact that spatial re-
lationship between scan objects and the coil affects the patterns of field
inhomogeneity. For example, the breast phantoms were developed
partly because the previous phantoms were not physically compatible
with a breast coil.64 The properties of the phantom may vary over time
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due to the instability of the material due to fungal invasion, chemical de-
cay, evaporation, or contamination by water vapor. Temperature depen-
dence is also a problem, whereas human temperature is homeostatically
controlled.11 Further, the realism of a phantommay not be sufficient be-
cause many potential sources of variability in vivo (eg, movement, po-
sitioning variability, and B1 variation due to subject shape) are absent.
Normal white matter can be a standard for some MRI parameters (eg,
ADC or magnetization transfer) because the normal biological range is
narrow. In a multicenter study, standardized QA procedures should be
followed by all institutions to keep the acquired data as uniform as possible.

Computer-simulated phantoms, or DROs, can also be used to
evaluate the performance of the propagation of error in quantitative
MRI regarding error from both the measurement and bias of parameter
constraints or assumptions, as well as that from noise. However, simu-
lations often do not match measurements in vivo due to the negligence
of biological effects different than those being simulated.67

Diffusion-Weighted Imaging
One of the most widely investigated MRI QIBs in clinical trials

is the ADC derived from DWI, which is sensitive to the random motion
of water molecules.68 Although DWI is used clinically as a qualitative
indicator of disease presence, ADC has been investigated in clinical tri-
als for diagnosis, staging tumors, assessing treatment response, and
predicting tumor aggressiveness. However, confidence in its use has
not been fully established due to differences across scanners and popu-
lations, which hinders the use of ADC in the clinical workflow. The
complexity of the tissue structures makes ADC dependent on a number
of factors including pulse sequence construction,69 acquisition parame-
ters, modeling techniques, anatomic regions being evaluated, and the
subject orientation with respect to the diffusion directions.68,70–72 An
example of systematic ADC variations arises from a scanner upgrade
to a high-end machine that allows shorter echo time for improving
DWI quality, which would shorten the diffusion time, lead to a possible
decrease in the visibility of acute brain infarction, and increase in the
FIGURE 3. Apparent diffusion coefficient dependency on diffusion time. Diffus
times (Δeff ) (C) shows acute infarction at the right paramedian aspect of the
Diffusion-weighted imaging with short Δeff (A) demonstrated decreased cont
diffusion-weighted imaging with longer Δeff (B and C). D–F, Images show AD
diffusion coefficient values of the lesion were increased with short Δeff (D) comp
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measuredADCvalue (Fig. 3).71,73 It is accepted that ADC is independent
of field strengths,74,75 although higher field strengths may be beneficial
due to improvements in signal-to-noise ratio. Huo et al76 reported lower
variance in ADC measurement at 3 T compared with 1.5 T. Control of
these variabilities may enable ADC to replace biopsy, such as for the dif-
ferential diagnosis between tumor recurrence and necrosis.77

The presumption for using ADC in clinical practice for manag-
ing tumors is that treatment-associated change in the microenvironment
precedes changes in the lesion size, thereby encouraging the use of
ADC as a biomarker of treatment response.78 Conformance to the spec-
ifications of the QIBA DWI Profile13 by all relevant staff, scanner, and
software involved in ADC acquisition/measurement supports the following
claim: ameasured change in theADCof lesions in the brain,79–81 liver,82–85

prostate,86–90 and breast91,92 of 11%, 26%, 47%, and 13% (each denotes
%RC), respectively, or larger indicates that a true change has occurred
with 95% confidence. Due to the intrinsic dependence of the measured
ADC on biophysical tissue properties, these claims are organ specific.
Notably, the Profile requires usage of the same scanner and image acqui-
sition parameters for baseline and subsequent measurements with peri-
odic QA (Fig. 4). Estimation of reproducibility based on previous
studies is more complicated than repeatability because the reproducibil-
ity condition is heterogenous among studies. When interscanner CV is
evaluated, one should be careful if the scanners are from the same ven-
dor or from different vendors as significant intervendor bias in ADC
measurement of the brain has been reported with a %bias up to 7%.93

Before a multicenter trial, qualification of each site should be
assessed according to the specific protocol for the site's ability to adopt
a standardized acquisition protocol and image analysis. The perfor-
mance of ADC in each site should be assessed by the ice-water DWI
phantom.50,94,95 Although substrates, such as sucrose,96 alkane,97 and
copper sulfate,98 have been used to achieve a wide range of ADC values,
sensitivity of ADC values to temperature variation has been problematic;
ADC of pure water changes approximately 3% per °C.50 The ice-water
phantom was designed to eliminate thermal variability and keep
ion-weighted imaging with short (A), intermediate (B), and long diffusion
pons, responsible for medial longitudinal fasciculus syndrome.
rast of the lesion with the surrounding tissue compared with
C maps of corresponding diffusion-weighted imaging. The apparent
ared with long Δeff (F) (reproduced with permission from Boonrod et al71).

© 2020 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 4. Typical quantitative diffusion-weighted magnetic resonance imaging trial workflow for treatment response assessment with key QIBA
(Quantitative Imaging Biomarkers Alliance) Profile activities (reprinted with permission from QIBA RSNA diffusion-weighted imaging profile
v:12.20.2019: https://qibawiki.rsna.org/index.php/Profiles).
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the phantom at 0°C by filling the phantom with an ice-water bath.
The inner tube is typically filled with distilled water,94,95 giving an
ADC of 1.1� 10−3 mm2/s, or alternatively, polyvinylpyrrolidone solu-
tions with a range of ADC values.99

Magnetic Resonance Relaxometry
The signal intensity of conventionalMR images, such as T1- and

T2-weighted images, depends on many acquisition parameters and MR
scanner variations. Thus, absolute signal intensity has no direct mean-
ing, and the evaluation of MRI scans mainly involves comparison with
surrounding tissues in the same slice. Absolute quantification of longi-
tudinal relaxation time (T1), transverse relaxation time (T2) or their in-
verse relaxation rates (R1 and R2), and proton density (PD) provides an
absolute scale; hence, it enables a more objective evaluation of develop-
ment,100 aging,101 and diseases.102

Proton density indicates the amount of detectable protons byMRI
and is proportional to theMRI signal intensity. Calculation of PD is based
on the estimation of the magnetization at equilibrium (M0), which repre-
sents the signal intensity in the absence of any relaxation.103

T1 relaxation time characterizes the approach of the polarized
spins to equilibrium in the direction of the external magnetic field,
and it is affected by a number of tissue properties including free water
content, macromolecules, iron, and gadolinium chelate. T1 values sig-
nificantly increase with the field strength.60 The criterion standard
method for measuring T1 relaxation time is the inversion recovery tech-
nique, in which only one echo is acquired at a time and full spin relax-
ation is awaited (approximately 5 T1 periods) before the next spin
inversion. This technique is time-consuming and infeasible in clinical
settings. To aim for time efficiency, 2 other techniques, namely, the
Look-Locker (LL)104 and VFA105 techniques, were introduced. Stikov
et al52 compared inversion recovery, LL, and VFA techniques using a
phantom and the brains of healthy volunteers. Although these tech-
niques agreed well on the phantom, LA and VFA respectively showed
consistently underestimated and overestimated T1 values measured by
the inversion recovery technique. The deviations reached over 30% in
WM, from 750 milliseconds (LL) to 1070 milliseconds (VFA). They
found that major sources of differences were inaccurate B1

+ mapping
and incomplete spoiling of transverse magnetizations. Thus, they con-
cluded that quality assessment of T1mapping techniques should be per-
formed both for a phantom and in vivo.
© 2020 The Author(s). Published by Wolters Kluwer Health, Inc.
T2 relaxation time indicates the rate at which the transverse com-
ponent of magnetization decays to zero, and it is primarily driven by
nearby nuclei. By changing the echo time, T2 relaxation time can be
measured by spin echo technique with as few as 2 measurements—
assuming monoexponential decay; however, the measurement suffers
from partial volume and is susceptible to noise.106 Further, the acquisi-
tion time is very long because full T1 relaxation is required during the
acquisitions. Multiecho T2 (MET2) accelerates the spin echo method
by using multiple refocusing pulses at increasing TE. A version of
MET2, termed the Carr-Purcell-Meiboom-Gill sequence, accelerates
MET2 by incorporating a 180-degree phase increment to refocusing
pulses and is now considered to be the criterion standard for T2 mea-
surement.107,108 Another approach for T2 measurement is driven equi-
librium single-pulse observation of T2 (DESPOT2), which uses a balanced
steady-state free precession pulse sequence.109 An alternative approach to
T2 measurement is to separate the imaging section of the sequence from
T2-weighting using the T2 preparation pulse (T2-prep), which enables
acquisition of multiple echo with fast imaging technique.110 As with T1
measurement, all these methods are affected by B1

+ and B1
− inhomogene-

ities. T2 measurements are also affected by magnetization transfer effects
between the water and macromolecular protons, resulting in diminished
signal in the free water and inaccurate T2 measurement.111,112 Similar
to the discrepancy among T1 measurement methods, T2 measurement
methods are known to show disagreement with each other.113 Jutras et al114

reported that the WM T2 of 70 and 50 milliseconds was measured by
MET2 and DESPOT2, respectively, in the same subject, partly due to
the different weighting of each tissue component by these methods.

Instead of measuring T1, T2, and PD separately, these values can
also be measured simultaneously. Simultaneous measurement has
attracted attention for its merit in inherent alignment of the acquired
maps and potential reduction in scan time. Two major approaches are
quantitative synthetic MRI102 and MR fingerprinting (MRF).115 Quan-
titative synthetic MRI is commonly performed by a 2D multidynamic
multiecho (MDME) sequence, which is a turbo spin-echo sequence typ-
ically performed with 4 delay times and 2 echo times in the brain so that
the scan time is clinically feasible—approximately 6 minutes for the
whole head coverage (Fig. 5). B1

+ field measurements can be simulta-
neously performed based on the same acquisition data.116 The perfor-
mance of the MDME sequence was examined on 3 scanners from 3
different vendors.117 The highest intrascanner wCVs for T1, T2, and
www.investigativeradiology.com 607
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FIGURE 5. Quantification using quantitative synthetic magnetic resonance imaging. The QRAPMASTER acquisition was applied to retrieve the R1 map
(top row), R2 map, and proton density map. Based on these maps, conventional (eg, T2-weighted) images can be synthesized (middle row).
Furthermore, the R1, R2, and proton density maps provide an absolute scale and hence a robust input to brain segmentation. An example of one of these
segmentations (of myelin) is shown in the bottom row. The quantitative synthetic magnetic resonance imaging method provides maps that are
independent of the magnetic resonance scanner and hence provide the same result on all major platforms. For this example, the subject was scanned at
3.0 T on a GE 750 (A), Siemens Skyra (B), Philips Ingenia (C), and at 1.5 T on a GE 450 W (D), Siemens Aera (E), and Philips Ingenia (F) (adapted and
reproduced with permission from Hagiwara et al116).
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PD were 2.07%, 7.60%, and 12.86%, respectively, for the ISMRM/NIST
standardized phantom, and 1.33%, 0.89%, and 0.77%, respectively, for
healthy volunteer brains. The highest interscanner wCVs of T1, T2,
and PD were 10.86%, 15.27%, and 9.95%, respectively, for the phan-
tom, and 3.15%, 5.76%, and 3.21%, respectively, for the volunteer
brains. Estimating the myelin volume fraction in each voxel by using
a 4-compartment model based on the MDME data has also been sug-
gested118 and applied to diseases such as multiple sclerosis33,119 and
Sturge-Weber syndrome.120 For applications in other organs, the se-
quence may have to be adjusted to each target tissue.121,122 Because ra-
diologists are not accustomed to reading parameter maps, synthetic
MRI techniques have also been applied to the MDME data. Synthetic
MRI enables the creation of clinically used contrast-weighted images
including T1-weighted, T2-weighted, and fluid-attenuated inversion re-
covery (FLAIR) images based on the T1, T2, and PD maps.123 Al-
though the image quality of synthetic FLAIR is generally perceived
to be inferior to FLAIR acquired by conventional methods, improve-
ment of synthetic FLAIR quality by deep learning has also been sug-
gested.124 Hence, relaxometry data derived from MDME may
become an adjunct to contrast-weighted images in clinical settings.
The effect of variability in in-plane resolution on the volumetry based
on the MDME data was found to be little in healthy volunteers and
MS patients, presumably because the segmentation algorithm considers tis-
sue partial volumes in the interval of 0% to 100% rather than assigning a
single tissue type to each voxel.125,126 The 3-dimensional (3D) version
of the MDME, namely, 3D-QALAS (3D-quantification using an inter-
leaved LL acquisition sequence with T2-prep pulse), was recently de-
veloped for the heart127 and has also been applied to the brain.128,129

SyntheticMR angiography constructed by deep learning is also feasible
based on the 3D-QALAS data of high resolution.130

Another promising approach of simultaneous relaxometry is
MRF. In contrast to quantitative synthetic MRI, MRF adopts a novel
approach that does not rely on a traditional curve fitting approach. In
MRF, radiofrequency pulses and repetition times are simultaneously
varied in a pseudorandom fashion to create signal evolutions that
characterize the various relaxation processes unique for each type
of tissue (so-called fingerprint).131 The acquired signal evolutions are
608 www.investigativeradiology.com
pattern-matched against a separately simulated dictionary data, allowing
the extraction of multiple tissue properties, including but not limited to
T1, T2, PD, and B0. Proton density is estimated as a scaling factor be-
tween the acquired and simulated signal evolutions. Magnetic resonance
fingerprinting can measure any property that can be simulated by the
Bloch equation, for example, and recent works have also incorporated
the measurements of B1

+,132,133 T2*,134 magnetization transfer,135 am-
ide,136 spectroscopy, perfusion,137 andmicrovascular characteristics into
the MRF.138 The pattern matching can be performed even in the
presence of undersampling artifacts; hence, the scan can be highly
accelerated to reduce the scan time.139 The effect of motion on the
resulting image is also small as long as the errors are incoherent in such
away that pattern-matching is still possible; however, MRF is known to
be more vulnerable to through-planemotion than to in-plane motion.140

The dictionary of MRF should cover the signal evolutions of a physio-
logically possible range of tissue properties. The dictionary size pre-
sents a trade-off between accuracy and the speed of pattern-matching.
The pattern-matching process may benefit from deep learning in terms
of both accuracy and speed.141 The pattern-matching process is a dis-
tinctive factor of MRF in view of standardization because resulting
maps are dependent on the structure of the dictionary (Fig. 6). The dic-
tionary should be carefully prepared based on the intended purpose,
computational resource, and acceptable matching time.

Sequence design is flexible in MRF, and several sequence de-
signs have been used, including balanced steady-state free precession,131

fast imaging with steady-state precession (FISP),142 RF-spoiled gradient
echo, and quick echo splitting nuclear magnetic resonance.143 The MRF
has been primarily investigated for brain and phantom imaging, but
methods for adjusting MRF acquisition to the heart,144 abdomen,145

and prostate146 have also been proposed. High-resolution 3DMRFwith
the resolution of 1 mm isovoxelwas also proposed with a scan time less
than 8 minutes for full brain coverage.147

Kato et al148 investigated FISP-based MRF with B1
+ correction

and T1 and T2 measurements on the ISMRM/NIST phantom scanned
for 100 days and showed high repeatability with a CVof T1 less than
1% and that of T2 less than 3%, which were better than the values re-
ported by Jiang et al149 without B1

+ correction. Korzdorfer et al150
© 2020 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 6. Magnetic resonance fingerprinting relies on pattern-matching of through-time signals of highly undersampled images to separately simulated
dictionary data. The resulting maps depend not only on the pulse sequence, like conventional magnetic resonance imaging, but also on the dictionary
with which the raw data are processed. Although the images processed with 2 different dictionaries in this figure look similar, their histograms are quite
different from each other.
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investigated the repeatability and reproducibility of T1 and T2measure-
ments by FISP-based MRF with B1

+ correction on the brains of 10
healthy volunteers, each of which were scanned 4 times using 4 or more
of the 10MRI scanners; these include 3 different models at 3 T from the
same vendor at 4 sites. Repeatability, defined by 95% confidence inter-
vals on relative difference, was 2.0% to 3.1% for T1 and 3.1% to 7.9%
for T2 in GM and WM, respectively. Interscanner reproducibility was
3.4% for T1 and 8% for T2 in GM andWM. Larger variations of T2 were
likely attributed to scanner imperfections related to certain system charac-
teristics, such as different eddy current behaviors and the diffusion effect.132
Multiparametric Quantitative MRI
There is a growing amount of evidence showing that multiparametric

MRI can offer better diagnostic ability151 or more specific biological in-
formation152 than each quantitative measurement. However, this ap-
proach is limited by time constraint; hence, a balance between benefit
and time should be considered before clinical implementation. One
possible approach for implementing multiparametric MRI into clinical
practice is setting a cutoff value for each parameter.146,153 Pinker et al154

evaluated the diagnostic accuracy of contrast-enhancedMRI, DWI, and
MR spectroscopy in combinations of 2 or 3 and used a single measure
by setting a threshold for each parameter. As a result, 3 parameters
achieved higher accuracy for differentiating between benign and malig-
nant breast lesions than did 1 or 2 parameters. Although the current
practice of cancer assessment by multiparametric MRI relies largely
on qualitative analysis, if interscanner differences can be overcome or
quantified, the current practice may be replaced by more objective
and precise quantitative analyses. However, approaches taken toward
a single QIB may not be appropriate for multiparametric imaging. For
example, the use of multiple QIBs at the same time leads to increases
in false-positives for declaring change in at least one QIB, especially
when the correlations between the QIBs are low.155 This could be
solved by introducingMahalanobis distance (ie, distance between a point
and zero in a multivariate space that is corrected by variance), resulting in
an appropriate type I error rate. Currently, the QIBA Multiparametric
Metrology Group is working on developing guidelines for treating
multiparametric imaging data.155

Another possible application of multiparametric MRI in clinical
practice is feeding the data into machine learning for diagnosis,156 tumor
grading,157 or the prediction of treatment response.158 Multiparametric
quantitative MRI can also be used for extracting new measures that re-
flect subvoxel microstructural information such as myelin and axon
density, axon diameter, and membrane permeability.152,159 Geometric
distortion of images, image misregistration, and different interpolation
techniques will introduce errors in created maps; hence, these issues
should be cautiously handled.
© 2020 The Author(s). Published by Wolters Kluwer Health, Inc.
COMPUTED TOMOGRAPHY
Since the beginning of the clinical application of multidetector

row CT (MDCT) in the late 1990s, CT has played a critical role in rou-
tine clinical practice. Further, in the last decade, some societies have
considered the application of quantitative CT-based indexes as QIBs
for patient management, including therapeutic planning and treatment
response assessment, and have worked on standardizing the CT proto-
cols for quantitative assessment of CT-based indexes.160,161 In addition,
several investigators have proposed CT-basedQIBs for the management
of chronic obstructive pulmonary disease (COPD), pulmonary nodules,
interstitial lung disease, pulmonary thromboembolism, and pulmonary
hypertension.162–169 In line with this, RSNA QIBA has been working
on standardizing the CT protocols and has published profiles through
the following committees: (1) CT angiography, (2) CT volumetry, (3)
lung density, and (4) small lung nodule.170

However, academic and social interests in radiation dose reduction
for CT examinations without any accompanying reduction in diagnostic
capability have been steadily on the rise. In addition, newly developed it-
erative reconstruction (IR) methods have been introduced and applied in
routine clinical practice.171,172 In fact, dose reduction strategies have been
realized by employing a variety of techniques for data acquisition, such as
tube current reduction, tube voltage reduction, increased helical pitch,
scan length optimization, scan protocol individualization, and utilization
of automatic exposure control (AEC).172–176 In contrast to RSNAQIBA,
J-QIBA primarily aims to determine state-of-the-art CT protocols while
keeping the suggested accuracy of CT numbers and bronchial wall thick-
ness, as well as volumetry, within QIBA CT profiles.170

Lung Density Evaluation for Quantitative Assessment
of Chronic Obstructive Pulmonary Disease

Computed tomography is currently the most widely used modal-
ity to evaluate morphologic and pulmonary functional changes for the
assessment of COPD.168,177–180 For both clinical and academic pur-
poses, several commercially available and proprietary software and vi-
sual scoring systems have been adopted for the CT-based assessment
of pulmonary emphysema.168,177 Two major approaches have been re-
ported for the quantitative assessment of COPD.168,177,181–183 One ap-
proach determines the percentage of low attenuation area in the lung,
which reflects the destruction of the lung parenchyma,168,177,181–183

and the other determines the percentage of wall area in the bronchi,
which reflects bronchial narrowing and wall thickening.183 In addition,
3D airway luminal volumetry has been introduced as another quantita-
tive airway evaluation method for COPD patients.184–186 Taking these
quantitative CTassessments of COPD and the current situation regard-
ing radiation dose reduction strategies into consideration,168,177,181–186

the application of IR can be viewed as an important issue not only
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related to radiation dose reduction, but also the accuracy of quantitative
CT evaluation of COPD.

In the meanwhile, Chen-Mayer et al187members of RSNAQIBA
published an article regarding the standardization of CT protocols for
64-detector row CT using a variety of scanner models. They provided
a quantitative assessment of the variations observed in CT lung density
measurements attributed to nonbiological sources, including scanner
calibration, the x-ray spectrum, and filtration. However, this study did
not address the differences in scan protocols, reconstruction methods,
or tube current, and so on. Hence, Ohno et al,188 as part of J-QIBA ac-
tivity, compared the effect of different acquisition and reconstruction al-
gorithms on the radiation dose and accuracy of CT number measurements
using a 320-detector rowCTand the same phantom used by Chen-Mayer
et al.187 They found that the use of a forward projected model-based iter-
ative reconstruction (FIRST, model-based IR method) and adaptive itera-
tive dose reduction using 3D processing (AIDR 3D, hybrid-type IR
method) for the 80-detector row helical and wide-volume acquisitions
can reduce the radiation dose to a level of 10 mA while keeping the
CT number accuracy smaller than the RSNA QIBA Profile request.
Therefore, a collaboration between RSNAQIBA and J-QIBAwill pro-
vide not only standard CT protocols, but also state-of-the art CT proto-
cols for lung density measurement and the application of CT number as
one of the QIBs for pulmonary diseases.

Computer-Aided Volumetry for Quantitative
Assessment of a Small Pulmonary Nodule

Several large cohort trials, including the National Lung Screen-
ing Trial for reducing lung cancer mortality,189 showed that lung cancer
screening with low-dose CT could reduce lung cancer-specific
mortality.163,190–194 Many studies have reported the importance of vol-
ume measurements and/or doubling time assessment by computer-
aided volumetry (CADv) software in nodule management.163,190–195

In linewith this, the RSNA-QIBA has evaluated the measurement accu-
racy of various CADv software programs provided by many vendors in
a QIBA recommended phantom study196 and given feedback to sup-
pliers. The J-QIBA contributed to this study by providing scan data.
However, this study did not address the effect of differences in scan
methods, tube currents, or reconstruction methods. Hence, Ohno et al197

performed a phantom study in accordance with QIBA recommendations
to evaluate the effects of tube current and reconstruction methods on the
nodule volume measured with 3D CADv software (CT Lung Nodule
Analysis; Vital Images Inc,Minnetonka,MN).197 In this study, an anthro-
pomorphic thoracic phantom with 30 simulated nodules with various
FIGURE 7. Typical variability sources in radiomics analysis. Each feature is the
factors that introduce variabilities in the resulting features are shown for each
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densities and diameters were scanned with an area-detector CTat several
tube currents. The mean absolute measurement errors of AIDR 3D and
FIRSTmethods were significantly lower than those of the FBP algorithm
in ultra-low-dose CT. For all nodule types, absolute measurement errors
of the FBP method in ultra-low-dose CTwere significantly higher than
those of standard-dose CT. Both IR algorithms were thus shown to be
more effective than the FBP algorithm for radiation dose reduction. Ohno
et al are now considering to perform a studywith the RSNA-QIBA inves-
tigating clinical application of the 3D CADv software with deep learning
technique in routine clinical practice.
RADIOMICS
Radiomics is based on the high-throughput computer extraction

of potentially innumerable numbers of quantitative imaging metrics, or
“radiomic features,”which will be collectively used for the prediction of
diagnosis and prognosis and gene expression profiling.198 These radiomic
features can be combined with other patient characteristics to increase
the accuracy of prediction. Because radiomics analyses can be con-
ducted with conventionally used clinical images such as T1-weighted
images, FLAIR images, and ADC maps, it is conceivable that conver-
sion of radiological images to mineable data will become routine prac-
tice for improving decision-making in precision medicine. Radiomic
features are often categorized into shape and first- and higher-order fea-
tures. First-order features are based on histogram-based analyses and
includemean, maximum,minimum, and entropy. Higher-order features
are described as texture features related to spatial patterns of voxel in-
tensities. Due to the complexity of radiomic features, there is the danger
of overfitting, and hence, dimensionality should be reduced by pri-
oritizing the features. This can be performed by detecting redundant
features that are highly correlated with each other. Determining the
repeatability and reproducibility of each feature and extracting sta-
ble ones can also help the prioritization process in reducing redundant
dimensions.199 Radiomics-specific phantoms with known features are
useful in evaluating the effect of scanner and vendor variance on
radiomic features, optimizing protocols and image processing in
obtaining radiomic features.200–202

In general, a lack of reproducibility in radiomic features is a limita-
tion for radiomics to be widely used in clinical practice.199,203,204 The sta-
bility of radiomic features is sensitive, at various degrees, to a number of
processing factors, including image acquisition parameters, reconstruction
algorithms, digital image preprocessing, and feature extracting methods
(Fig. 7). For example, Zhao et al205 reported that different reconstruction
formulas (sharp or smooth) for lung CT introduce variability in radiomic
result of multiple processes performed on radiological images. Example
process in the bottom row.

© 2020 The Author(s). Published by Wolters Kluwer Health, Inc.
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features of tumors. Voxel size resampling is often performed for CT
datasets acquired with variable voxel sizes in order to obtain more repro-
ducibleCT features.206–208However, the selection of interpolationmethods
(eg, nearest neighbor, trilinear and tricubic interpolation) has been revealed
to affect the reproducibility of radiomic features.209 Also, how the software
treats the boundary of the volume of interest also affects radiomic features;
when the voxels outside the ROI are treated as zero, these boundary regions
can have an extremely high gradient and may affect the resulting feature
values. Eroding the ROI to include only the core of the target tissue210

and generating 3 different regions (the tumor, boundary, and peritumor)211

are possible approaches to achieve reproducible features.
In 2018, Traverso et al206 reported the results of a systematic re-

view of previous articles investigating repeatability and reproducibility
of radiomic features. Overall, first-order features had higher reproduc-
ibility than shape and higher-order features, with entropy being consis-
tently reported as one of the most stable features. Among higher-order
features, coarseness and contrast were generally poorly reproducible. In-
terobserver differences in segmentation affected radiomic features, and
variabilities were higher for higher-order features. Semiautomated or
fully automated methods improved feature reproducibility.212 However,
the articles included in this systematic review were mostly about CTand
PET. A more recent study investigated the stability of radiomic features
extracted from ADCmaps by a multicenter trial and concluded that 122
of 1322 features were stable with a concordance correlation coefficient
of more than 0.85 for all tumor entities investigated (ie, ovarian cancer,
lung cancer, and colorectal liver metastasis).213 For magnetic field strength
and vendor differences, 245 and 209 features, respectively, were stable.
In a phantom study, Baeßler et al214 showed that FLAIR provided
the highest number of stable radiomic features among T1-weighted,
T2-weighted, and FLAIR images. It is largely unknown how the repeat-
ability and reproducibility of each feature are propagated to the final result
of radiomics, and therefore, validation of a radiomics algorithm against
another independent dataset is considered to be crucial.215

There are several multi-institutional efforts to standardize and in-
crease the reproducibility of the radiomics approach; this includes pro-
viding guidelines, standardized framework, and DROs. The Imaging
Biomarker Standardization Initiative provides consensus-based recom-
mendations, nomenclature, and guidelines to improve the reproducibility
of radiomic studies.208 Radiomics Ontology, which is publicly accessible
via the NCBO BioPortal (https://bioportal.bioontology.org/ontologies/
RO), provides a semantic framework for radiomic features that is in line
with the nomenclature addressed by Imaging Biomarker Standardization
Initiative. The NRG Oncology investigators have provided recommen-
dations and a guideline specifically for use in the National Clinical Tri-
als Network.216 They suggest that the radiomics quality score217,218

may serve to evaluate the quality of radiomics studies.
ARTIFICIAL INTELLIGENCE
Artificial intelligence, including machine learning and deep

learning, has been increasingly applied to medical imaging.219 Promis-
ing results have been shown in various tasks related to radiological im-
ages, such as the detection of lesions,220 segmentation (eg, labeling
organs),221 classification (eg, pneumonia vs cancer),222 reconstruction
(eg, MRI k-space to clinical image),223 and noise reduction.224 In rela-
tion to standardization of QIB, an AI algorithm that automates the pro-
cess of QIB extraction has the capability to decrease variability, such as
through an automated pipeline that can reduce ambiguity and variability
in lesion segmentation.225 Extracting a QIB using AI in a fully auto-
mated manner is also feasible. For example, it can predict the functional
flow reserve from cardiac CT data by point estimatioin.226 The major
advantages of AI approaches over manual approaches in terms of de-
creasing variability in QIB are as follows: (1) no variance is caused by fa-
tigue as in human analysts, and (2) AI returns consistent results from the
same input. There are several recommendations and guidelines for
© 2020 The Author(s). Published by Wolters Kluwer Health, Inc.
the development and evaluation of an AI algorithm in the medical
field.219,227,228 In brief, desired steps to develop a reliable AI algorithm
include the following: (1) using reliable reference standards, (2)
using a training dataset that matches the intended use, (3) tuning
hyperparameters on a dataset independent of the training dataset, and
(4) using external datasets to evaluate the model performance. To de-
velop an AI algorithm that is robust to variability in acquisition param-
eters, machine settings, and clinical conditions, the algorithm should
be trained with a heterogeneous dataset.229 The standardization/
harmonization of the input images could be one approach to making
an algorithm that is generalizable to multiple scanners—although this
is unrealistic for multiple vendors, especially when the inputs are mul-
timodal. Although a QIB extracted using AI can be assessed through con-
ventional approaches, there comes a possible issue specific to AI; AI
models can be further fine-tuned at each institution using its own data,
and the repeatability and reproducibility may change through each update.
Quality assessment methods of AI algorithms that are easy to be imple-
mented at each institution still remain to be established.

CONCLUSIONS
Quantification of radiological images has the potential to enable

earlier detection of disease, complement or replace biopsy, provide clear
differentiation of disease stage, and play an important role in precision
medicine. Various sources of variabilities in QIBs have been identified,
and extensive efforts have been made to achieve accurate and precise re-
sults. Artificial intelligence, especially deep learning techniques, may
also further mitigate the variabilities of QIB. In recent years, there has
been a surge of interest in multiparametric imaging, including radiomics,
but evaluation methods of accuracy and precision of the end results for
such techniques still remain to be investigated.

REFERENCES

1. Sullivan DC, Bresolin L, Seto B, et al. Introduction to metrology series. Stat
Methods Med Res. 2015;24:3–8.

2. Buckler AJ, Bresolin L, Dunnick NR, et al. A collaborative enterprise for multi-
stakeholder participation in the advancement of quantitative imaging. Radiology.
2011;258:906–914.

3. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints:
preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;
69:89–95.

4. Horn GL Jr., Hahn PF, Tabatabaei S, et al. A practical primer on PI-RADS ver-
sion 2: a pictorial essay. Abdom Radiol (NY). 2016;41:899–906.

5. Anvari A, Halpern EF, Samir AE. Essentials of statistical methods for assessing
reliability and agreement in quantitative imaging. Acad Radiol. 2018;25:391–396.

6. Souchon R, Gennisson JL, TanterM, et al. Measurement of pulsatile motionwith
millisecond resolution by MRI. Magn Reson Med. 2012;67:1787–1793.

7. SagawaH, KataokaM,Kanao S, et al. Impact of the number of iterations in com-
pressed sensing reconstruction on ultrafast dynamic contrast-enhanced breast
MR imaging.Magn Reson Med Sci. 2019;18:200–207.

8. Jeong D, Malalis C, Arrington JA, et al. Mean apparent diffusion coefficient
values in defining radiotherapy planning target volumes in glioblastoma. Quant
Imaging Med Surg. 2015;5:835–845.

9. Kessler LG, Barnhart HX, Buckler AJ, et al. The emerging science of quantita-
tive imaging biomarkers terminology and definitions for scientific studies and
regulatory submissions. Stat Methods Med Res. 2015;24:9–26.

10. Buckler AJ, Bresolin L, Dunnick NR, et al. Quantitative imaging test approval
and biomarker qualification: interrelated but distinct activities. Radiology.
2011;259:875–884.

11. Tofts PS, Collins DJ. Multicentre imaging measurements for oncology and in the
brain. Br J Radiol. 2011;84 Spec No :S213–S226.

12. Kundel HL. History of research in medical image perception. J Am Coll Radiol.
2006;3:402–408.

13. Radiological Society of North America, Diffusion-Weighted Imaging Task Force
subgroup of the Perfusion Diffusion and Flow Biomarker Committee. QIBA
Profile: Diffusion-Weighted Magnetic Resonance Imaging (DWI). 2019. Avail-
able at: http://qibawiki.rsna.org/images/6/63/QIBA_DWIProfile_Consensus_
Dec2019_Final.pdf. Accessed January 15, 2020.

14. Moertel CG, Hanley JA. The effect of measuring error on the results of therapeu-
tic trials in advanced cancer. Cancer. 1976;38:388–394.
www.investigativeradiology.com 611

https://bioportal.bioontology.org/ontologies/RO
https://bioportal.bioontology.org/ontologies/RO
http://qibawiki.rsna.org/images/6/63/QIBA_DWIProfile_Consensus_Dec2019_Final.pdf
http://qibawiki.rsna.org/images/6/63/QIBA_DWIProfile_Consensus_Dec2019_Final.pdf
www.investigativeradiology.com


Hagiwara et al Investigative Radiology • Volume 55, Number 9, September 2020
15. Raunig DL, McShane LM, Pennello G, et al. Quantitative imaging biomarkers: a
reviewof statistical methods for technical performance assessment. Stat Methods
Med Res. 2015;24:27–67.

16. Obuchowski NA, Buckler A, Kinahan P, et al. Statistical issues in testing confor-
mance with the quantitative imaging biomarker Alliance (QIBA) profile claims.
Acad Radiol. 2016;23:496–506.

17. Petrick N, Kim HJ, Clunie D, et al. Comparison of 1D, 2D, and 3D nodule sizing
methods by radiologists for spherical and complex nodules on thoracic CT phan-
tom images. Acad Radiol. 2014;21:30–40.

18. Bland JM, Altman DG. Statistical methods for assessing agreement between two
methods of clinical measurement. Lancet. 1986;1:307–310.

19. Cohen JA, Fischer JS, Bolibrush DM, et al. Intrarater and interrater reliability of
the MS functional composite outcome measure. Neurology. 2000;54:802–806.

20. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation co-
efficients for reliability research. J Chiropr Med. 2016;15:155–163.

21. Kottner J, Audige L, Brorson S, et al. Guidelines for reporting reliability and
agreement studies (GRRAS) were proposed. J Clin Epidemiol. 2011;64:96–106.

22. Bland JM, Altman DG. Measurement error and correlation coefficients. BMJ.
1996;313:41–42.

23. Nevill AM, Atkinson G. Assessing agreement between measurements recorded
on a ratio scale in sports medicine and sports science. Br J Sports Med. 1997;31:
314–318.

24. Prohl AK, Scherrer B, Tomas-Fernandez X, et al. Reproducibility of structural
and diffusion tensor imaging in the TACERN multi-center study. Front Integr
Neurosci. 2019;13:24.

25. Zhou X, Sakaie KE, Debbins JP, et al. Quantitative quality assurance in a multi-
center HARDI clinical trial at 3T. Magn Reson Imaging. 2017;35:81–90.

26. Tofts PS, Steens SC, Cercignani M, et al. Sources of variation in multi-Centre
brain MTR histogram studies: body-coil transmission eliminates inter-Centre
differences.MAGMA. 2006;19:209–222.

27. Tofts PS, BrixG, BuckleyDL, et al. Estimating kinetic parameters from dynamic
contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quan-
tities and symbols. J Magn Reson Imaging. 1999;10:223–232.

28. Huang EP,WangXF, Choudhury KR, et al. Meta-analysis of the technical perfor-
mance of an imaging procedure: guidelines and statistical methodology. Stat
Methods Med Res. 2015;24:141–174.

29. Jafari-Khouzani K, Paynabar K, Hajighasemi F, et al. Effect of region of interest
size on the repeatability of quantitative brain imaging biomarkers. IEEE Trans
Biomed Eng. 2019;66:864–872.

30. Voglein J, Tuttenberg J, Weimer M, et al. Treatment monitoring in gliomas: com-
parison of dynamic susceptibility-weighted contrast-enhanced and spectro-
scopic MRI techniques for identifying treatment failure. Invest Radiol. 2011;
46:390–400.

31. Hagiwara A, HoriM,YokoyamaK, et al. Utility of a multiparametric quantitative
MRI model that assesses myelin and edema for evaluating plaques, periplaque
white matter, and normal-appearing white matter in patients with multiple scle-
rosis: a feasibility study. AJNR Am J Neuroradiol. 2017;38:237–242.

32. Hagiwara A, HoriM, YokoyamaK, et al. Analysis of white matter damage in pa-
tients with multiple sclerosis via a novel in vivo MR method for measuring my-
elin, axons, and G-ratio. AJNR Am J Neuroradiol. 2017;38:1934–1940.

33. Hagiwara A, Kamagata K, Shimoji K, et al. White matter abnormalities in mul-
tiple sclerosis evaluated by quantitative synthetic MRI, diffusion tensor imaging,
and neurite orientation dispersion and density imaging. AJNRAm J Neuroradiol.
2019;40:1642–1648.

34. Le Berre A, Kamagata K, Otsuka Y, et al. Convolutional neural network-based
segmentation can help in assessing the substantia nigra in neuromelanin MRI.
Neuroradiology. 2019;61:1387–1395.

35. Perkuhn M, Stavrinou P, Thiele F, et al. Clinical evaluation of a multiparametric
deep learning model for glioblastoma segmentation using heterogeneous
magnetic resonance imaging data from clinical routine. Invest Radiol. 2018;
53:647–654.

36. Keenan KE, Gimbutas Z, Dienstfrey A, et al. Assessing effects of scanner up-
grades for clinical studies. J Magn Reson Imaging. 2019;50:1948–1954.

37. Lee Y, Callaghan MF, Acosta-Cabronero J, et al. Establishing intra- and inter-
vendor reproducibility of T1 relaxation time measurements with 3TMRI.Magn
Reson Med. 2019;81:454–465.

38. Obuchowski NA, Reeves AP, Huang EP, et al. Quantitative imaging biomarkers:
a review of statistical methods for computer algorithm comparisons. Stat
Methods Med Res. 2015;24:68–106.

39. Reeves AP, Biancardi AM, Apanasovich TV, et al. The lung image database con-
sortium (LIDC): a comparison of different size metrics for pulmonary nodule
measurements. Acad Radiol. 2007;14:1475–1485.
612 www.investigativeradiology.com
40. Pohl KM, Sullivan EV, Rohlfing T, et al. Harmonizing DTI measurements across
scanners to examine the development of white matter microstructure in 803 ad-
olescents of the NCANDA study. Neuroimage. 2016;130:194–213.

41. Yamashita A, Yahata N, Itahashi T, et al. Harmonization of resting-state func-
tional MRI data across multiple imaging sites via the separation of site differ-
ences into sampling bias and measurement bias. PLoS Biol. 2019;17:e3000042.

42. Wrobel J, Martin M, Bakshi R, et al. Intensity warping for multisite MRI harmo-
nization. bioRxiv 679357. 2019.

43. Fortin JP, Parker D, Tunc B, et al. Harmonization of multi-site diffusion tensor
imaging data. Neuroimage. 2017;161:149–170.

44. Fortin JP, Cullen N, Sheline YI, et al. Harmonization of cortical thickness mea-
surements across scanners and sites. Neuroimage. 2018;167:104–120.

45. HuynhKM, ChenG,WuY, et al.Multi-site harmonization of diffusionMRI data
via method of moments. IEEE Trans Med Imaging. 2019;38:1599–1609.

46. Cetin Karayumak S, Bouix S, Ning L, et al. Retrospective harmonization of
multi-site diffusion MRI data acquired with different acquisition parameters.
Neuroimage. 2019;184:180–200.

47. Dewey BE, ZhaoC, Reinhold JC, et al. DeepHarmony: a deep learning approach
to contrast harmonization across scanner changes.Magn Reson Imaging. 2019;
64:160–170.

48. Keenan KE, Biller JR, Delfino JG, et al. Recommendations towards standards
for quantitative MRI (qMRI) and outstanding needs. J Magn Reson Imaging.
2019;49:e26–e39.

49. Tofts PS, Shuter B, Pope JM. Ni-DTPA doped agarose gel–a phantom material
for Gd-DTPA enhancement measurements. Magn Reson Imaging. 1993;
11:125–133.

50. Keenan KE, Ainslie M, Barker AJ, et al. Quantitative magnetic resonance imag-
ing phantoms: a review and the need for a system phantom. Magn Reson Med.
2018;79:48–61.

51. Cheng HL, Wright GA. Rapid high-resolution T(1) mapping by variable flip an-
gles: accurate and precise measurements in the presence of radiofrequency field
inhomogeneity. Magn Reson Med. 2006;55:566–574.

52. Stikov N, Boudreau M, Levesque IR, et al. On the accuracy of T1 mapping:
searching for common ground. Magn Reson Med. 2015;73:514–522.

53. Samson RS, Wheeler-Kingshott CA, Symms MR, et al. A simple correction for
B1 field errors in magnetization transfer ratio measurements.Magn Reson Imag-
ing. 2006;24:255–263.

54. BrinkWM, Bornert P, Nehrke K, et al. Ventricular B1 (+) perturbation at 7 T- real
effect or measurement artifact? NMR Biomed. 2014;27:617–620.

55. Hoult DI. The principle of reciprocity in signal strength calculations—a mathe-
matical guide. Concepts Magn Reson. 2000;12:173–187.

56. Wang J, Qiu M, Yang QX, et al. Measurement and correction of transmitter and
receiver induced nonuniformities in vivo.Magn Reson Med. 2005;53:408–417.

57. Volz S, Noth U, Deichmann R. Correction of systematic errors in quantitative
proton density mapping.Magn Reson Med. 2012;68:74–85.

58. Huang SY, Seethamraju RT, Patel P, et al. Body MR imaging: artifacts, k-space,
and solutions. Radiographics. 2015;35:1439–1460.

59. Bray TJ, Chouhan MD, Punwani S, et al. Fat fraction mapping using magnetic res-
onance imaging: insight into pathophysiology. Br J Radiol. 2018;91:20170344.

60. Rooney WD, Johnson G, Li X, et al. Magnetic field and tissue dependencies of
human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med. 2007;
57:308–318.

61. Barker GJ, Tofts PS. Semiautomated quality assurance for quantitative magnetic
resonance imaging.Magn Reson Imaging. 1992;10:585–595.

62. Firbank MJ, Harrison RM, Williams ED, et al. Quality assurance for MRI: prac-
tical experience. Br J Radiol. 2000;73:376–383.

63. Belli G, Busoni S, Ciccarone A, et al. Quality assurance multicenter comparison
of different MR scanners for quantitative diffusion-weighted imaging. J Magn
Reson Imaging. 2016;43:213–219.

64. Keenan KE, Wilmes LJ, Aliu SO, et al. Design of a breast phantom for quantita-
tive MRI. J Magn Reson Imaging. 2016;44:610–619.

65. NeumannW, Bichert A, Fleischhauer J, et al. A novel 3D printed mechanical ac-
tuator using centrifugal force for magnetic resonance elastography: initial results
in an anthropomorphic prostate phantom. PLoS One. 2018;13:e0205442.

66. Chen SJ, Hellier P, Marchal M, et al. An anthropomorphic polyvinyl alcohol
brain phantom based on Colin27 for use in multimodal imaging. Med Phys.
2012;39:554–561.

67. Fieremans E, Lee HH. Physical and numerical phantoms for the validation of
brain microstructural MRI: a cookbook. Neuroimage. 2018;182:39–61.

68. Padhani AR, Liu G, Koh DM, et al. Diffusion-weighted magnetic resonance im-
aging as a cancer biomarker: consensus and recommendations.Neoplasia. 2009;
11:102–125.
© 2020 The Author(s). Published by Wolters Kluwer Health, Inc.

www.investigativeradiology.com


Investigative Radiology • Volume 55, Number 9, September 2020 Standardization of Quantitative Imaging
69. Stocker D, Manoliu A, Becker AS, et al. Image quality and geometric distortion
of modern diffusion-weighted imaging sequences in magnetic resonance imag-
ing of the prostate. Invest Radiol. 2018;53:200–206.

70. Maekawa T, Hori M, Murata K, et al. Choroid plexus cysts analyzed using
diffusion-weighted imaging with short diffusion-time. Magn Reson Imaging.
2019;57:323–327.

71. Boonrod A, Hagiwara A, Hori M, et al. Reduced visualization of cerebral infarc-
tion on diffusion-weighted images with short diffusion times. Neuroradiology.
2018;60:979–982.

72. Andica C, Hori M, Kamiya K, et al. Spatial restriction within intracranial epider-
moid cysts observed using short diffusion-time diffusion-weighted imaging.
Magn Reson Med Sci. 2018;17:269–272.

73. Hori M, Irie R, SuzukiM, et al. TeachingNeuroimages: obscured cerebral infarc-
tion on MRI. Clin Neuroradiol. 2017;27:519–520.

74. Jafar MM, Parsai A, Miquel ME. Diffusion-weighted magnetic resonance imag-
ing in cancer: reported apparent diffusion coefficients, in-vitro and in-vivo repro-
ducibility. World J Radiol. 2016;8:21–49.

75. Grech-Sollars M, Hales PW, Miyazaki K, et al. Multi-centre reproducibility of
diffusion MRI parameters for clinical sequences in the brain. NMR Biomed.
2015;28:468–485.

76. Huo J, Alger J, KimH, et al. Between-scanner and between-visit variation in nor-
mal white matter apparent diffusion coefficient values in the setting of a multi-
center clinical trial. Clin Neuroradiol. 2016;26:423–430.

77. Verma N, Cowperthwaite MC, Burnett MG, et al. Differentiating tumor recur-
rence from treatment necrosis: a review of neuro-oncologic imaging strategies.
Neuro Oncol. 2013;15:515–534.

78. Galban S, Brisset JC, Rehemtulla A, et al. Diffusion-weighted MRI for as-
sessment of early cancer treatment response. Curr Pharm Biotechnol. 2010;
11:701–708.

79. Bonekamp D, Nagae LM, Degaonkar M, et al. Diffusion tensor imaging in chil-
dren and adolescents: reproducibility, hemispheric, and age-related differences.
Neuroimage. 2007;34:733–742.

80. Paldino MJ, Barboriak D, Desjardins A, et al. Repeatability of quantitative pa-
rameters derived from diffusion tensor imaging in patients with glioblastoma
multiforme. J Magn Reson Imaging. 2009;29:1199–1205.

81. Pfefferbaum A, Adalsteinsson E, Sullivan EV. Replicability of diffusion tensor
imaging measurements of fractional anisotropy and trace in brain. J Magn Reson
Imaging. 2003;18:427–433.

82. Braithwaite AC, Dale BM, Boll DT, et al. Short- and midterm reproducibility of
apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imag-
ing of the abdomen. Radiology. 2009;250:459–465.

83. Deckers F, De Foer B, VanMieghem F, et al. Apparent diffusion coefficient mea-
surements as very early predictive markers of response to chemotherapy in he-
patic metastasis: a preliminary investigation of reproducibility and diagnostic
value. J Magn Reson Imaging. 2014;40:448–456.

84. Heijmen L, Ter Voert EE, Nagtegaal ID, et al. Diffusion-weighted MR imaging
in liver metastases of colorectal cancer: reproducibility and biological validation.
Eur Radiol. 2013;23:748–756.

85. MiquelME, Scott AD,Macdougall ND, et al. In vitro and in vivo repeatability of
abdominal diffusion-weighted MRI. Br J Radiol. 2012;85:1507–1512.

86. Gibbs P, Pickles MD, Turnbull LW. Repeatability of echo-planar-based diffusion
measurements of the human prostate at 3 T. Magn Reson Imaging. 2007;
25:1423–1429.

87. Jambor I, Merisaari H, Aronen HJ, et al. Optimization of b-value distribution for
biexponential diffusion-weightedMR imaging of normal prostate. JMagn Reson
Imaging. 2014;39:1213–1222.

88. Jambor I, Merisaari H, Taimen P, et al. Evaluation of different mathematical
models for diffusion-weighted imaging of normal prostate and prostate
cancer using high b-values: a repeatability study. Magn Reson Med. 2015;
73:1988–1998.

89. Litjens GJ, Hambrock T, Hulsbergen-van de Kaa C, et al. Interpatient var-
iation in normal peripheral zone apparent diffusion coefficient: effect on
the prediction of prostate cancer aggressiveness. Radiology. 2012;265:
260–266.

90. Fedorov A, Vangel MG, Tempany CM, et al. Multiparametric magnetic reso-
nance imaging of the prostate: repeatability of volume and apparent diffusion co-
efficient quantification. Invest Radiol. 2017;52:538–546.

91. Newitt DC, Zhang Z, Gibbs JE, et al. Test-retest repeatability and reproducibility
of ADC measures by breast DWI: results from the ACRIN 6698 trial. J Magn
Reson Imaging. 2019;49:1617–1628.

92. Sorace AG, Wu C, Barnes SL, et al. Repeatability, reproducibility, and accuracy
of quantitative MRI of the breast in the community radiology setting. J Magn
Reson Imaging. 2018.
© 2020 The Author(s). Published by Wolters Kluwer Health, Inc.
93. Sasaki M, Yamada K, Watanabe Y, et al. Variability in absolute apparent diffusion
coefficient values across different platforms may be substantial: a multivendor,
multi-institutional comparison study. Radiology. 2008;249:624–630.

94. Chenevert TL, Galban CJ, Ivancevic MK, et al. Diffusion coefficient measure-
ment using a temperature-controlled fluid for quality control in multicenter stud-
ies. J Magn Reson Imaging. 2011;34:983–987.

95. Malyarenko DI, Newitt D, J Wilmes L, et al. Demonstration of nonlinearity bias
in the measurement of the apparent diffusion coefficient in multicenter trials.
Magn Reson Med. 2016;75:1312–1323.

96. Laubach HJ, Jakob PM, Loevblad KO, et al. A phantom for diffusion-weighted
imaging of acute stroke. J Magn Reson Imaging. 1998;8:1349–1354.

97. Maekawa T, Hori M,Murata K, et al. Changes in the ADC of diffusion-weighted
MRI with the oscillating gradient spin-echo (OGSE) sequence due to differences
in substrate viscosities. Jpn J Radiol. 2018;36:415–420.

98. Delakis I, Moore EM, Leach MO, et al. Developing a quality control protocol for
diffusion imaging on a clinical MRI system. Phys Med Biol. 2004;49:1409–1422.

99. Wagner F, Laun FB, Kuder TA, et al. Temperature and concentration calibration
of aqueous polyvinylpyrrolidone (PVP) solutions for isotropic diffusion MRI
phantoms. PLoS One. 2017;12:e0179276.

100. Lee SM, Choi YH, You SK, et al. Age-related changes in tissue value properties
in children: simultaneous quantification of relaxation times and proton density
using synthetic magnetic resonance imaging. Invest Radiol. 2018;53:236–245.

101. Badve C, Yu A, Rogers M, et al. Simultaneous T1 and T2 brain relaxometry in
asymptomatic volunteers using magnetic resonance fingerprinting. Tomography.
2015;1:136–144.

102. Hagiwara A,Warntjes M, HoriM, et al. SyMRI of the brain: rapid quantification
of relaxation rates and proton density, with synthetic MRI, automatic brain seg-
mentation, and myelin measurement. Invest Radiol. 2017;52:647–657.

103. Meyers SM, Kolind SH, Laule C, et al. Measuring water content using T2 relax-
ation at 3T: phantom validations and simulations. Magn Reson Imaging. 2016;
34:246–251.

104. Look D, Locker D. Time saving in measurement of NMR and EPR relaxation
times. Rev Sci Instrum. 1970;41:250–251.

105. WangHZ, Riederer SJ, Lee JN. Optimizing the precision in T1 relaxation estima-
tion using limited flip angles. Magn Reson Med. 1987;5:399–416.

106. Whittall KP,MacKay AL, Li DK. Are mono-exponential fits to a few echoes suf-
ficient to determine T2 relaxation for in vivo human brain? Magn Reson Med.
1999;41:1255–1257.

107. Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic
resonance experiments. Phys Rev. 1954;94:630–638.

108. Meiboom S, Gill D. Modified spin-Echo method for measuring nuclear relaxa-
tion times. Rev Sci Instrum. 1958;29:688–691.

109. Deoni SC, Peters TM, Rutt BK. High-resolution T1 and T2mapping of the brain
in a clinically acceptable timewithDESPOT1 and DESPOT2.Magn ResonMed.
2005;53:237–241.

110. Oh J, Han ET, Pelletier D, et al. Measurement of in vivo multi-component T2 re-
laxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T. Magn
Reson Imaging. 2006;24:33–43.

111. Maier CF, Tan SG, Hariharan H, et al. T2 quantitation of articular cartilage at
1.5 T. J Magn Reson Imaging. 2003;17:358–364.

112. Liu F, BlockWF, Kijowski R, et al. Rapid multicomponent relaxometry in steady
state with correction of magnetization transfer effects. Magn Reson Med. 2016;
75:1423–1433.

113. Yuan J, Patterson AJ, Ruetten PPR, et al. A comparison of black-blood T2 map-
ping sequences for carotid vessel wall imaging at 3T: an assessment of accuracy
and repeatability. Magn Reson Med Sci. 2019;18:29–35.

114. Jutras JD, Wachowicz K, De Zanche N. Analytical corrections of banding arti-
facts in driven equilibrium single pulse observation of T2 (DESPOT2). Magn
Reson Med. 2016;76:1790–1804.

115. Bipin Mehta B, Coppo S, Frances McGivney D, et al. Magnetic resonance fin-
gerprinting: a technical review. Magn Reson Med. 2019;81:25–46.

116. Warntjes JB, Leinhard OD, West J, et al. Rapid magnetic resonance quanti-
fication on the brain: optimization for clinical usage. Magn Reson Med. 2008;
60:320–329.

117. Hagiwara A, Hori M, Cohen-Adad J, et al. Linearity, bias, intrascanner repeat-
ability, and interscanner reproducibility of quantitative multidynamic multiecho
sequence for rapid simultaneous Relaxometry at 3 T: a validation study with a
standardized phantom and healthy controls. Invest Radiol. 2019;54:39–47.

118. Warntjes M, Engström M, Tisell A, et al. Modeling the presence of myelin and
edema in the brain based on multi-parametric quantitative MRI. Front Neurol.
2016;7:16.

119. Andica C, Hagiwara A, Kamagata K, et al. Gray matter alterations in early and
late relapsing-remitting multiple sclerosis evaluated with synthetic quantitative
magnetic resonance imaging. Sci Rep. 2019;9:8147.
www.investigativeradiology.com 613

www.investigativeradiology.com


Hagiwara et al Investigative Radiology • Volume 55, Number 9, September 2020
120. Andica C, Hagiwara A, Hori M, et al. Aberrant myelination in patients with
Sturge-Weber syndrome analyzed using synthetic quantitative magnetic reso-
nance imaging. Neuroradiology. 2019;61:1055–1066.

121. Lee SH, Lee YH, Song HT, et al. Quantitative T2 mapping of knee cartilage:
comparison between the synthetic MR imaging and the CPMG sequence.Magn
Reson Med Sci. 2018;17:344–349.

122. Chougar L, Hagiwara A, Andica C, et al. Synthetic MRI of the knee: new per-
spectives in musculoskeletal imaging and possible applications for the assess-
ment of bone marrow disorders. Br J Radiol. 2018;91:20170886.

123. Wallaert L, Hagiwara A, Andica C, et al. The advantage of synthetic MRI for the
visualization of anterior temporal pole lesions on double inversion recovery
(DIR), phase-sensitive inversion recovery (PSIR), and myelin images in a patient
with CADASIL. Magn Reson Med Sci. 2018;17:275–276.

124. Hagiwara A, Otsuka Y, Hori M, et al. Improving the quality of synthetic FLAIR
images with deep learning using a conditional generative adversarial network for
pixel-by-pixel image translation. AJNR Am J Neuroradiol. 2019;40:224–230.

125. Andica C, Hagiwara A, Hori M, et al. Automated brain tissue and myelin
volumetry based on quantitative MR imaging with various in-plane resolutions.
J Neuroradiol. 2018;45:164–168.

126. Saccenti L, Andica C, Hagiwara A, et al. Brain tissue and myelin volumetric
analysis in multiple sclerosis at 3T MRI with various in-plane resolutions using
synthetic MRI. Neuroradiology. 2019;61:1219–1227.

127. Kvernby S, Warntjes MJ, Haraldsson H, et al. Simultaneous three-dimensional
myocardial T1 and T2 mapping in one breath hold with 3D-QALAS. J Cardiovasc
Magn Reson. 2014;16:102.

128. Fujita S, Hagiwara A, Hori M, et al. 3D quantitative synthetic MRI-derived cor-
tical thickness and subcortical brain volumes: scan-rescan repeatability and com-
parison with conventional T1 -weighted images. J Magn Reson Imaging. 2019;
50:1834–1842.

129. Fujita S, Hagiwara A, Hori M, et al. Three-dimensional high-resolution simulta-
neous quantitative mapping of the whole brain with 3D-QALAS: an accuracy
and repeatability study. Magn Reson Imaging. 2019;63:235–243.

130. Fujita S, Hagiwara A, Otsuka Y, et al. Deep learning approach for generating
MRA images from 3D quantitative synthetic MRI without additional scans.
Invest Radiol. 2020.

131. Ma D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature.
2013;495:187–192.

132. Kobayashi Y, Terada Y. Diffusion-weighting caused by spoiler gradients in the
fast imaging with steady-state precession sequence may lead to inaccurate T2
measurements in MR fingerprinting. Magn Reson Med Sci. 2019;18:96–104.

133. Buonincontri G, Sawiak SJ.MR fingerprintingwith simultaneous B1 estimation.
Magn Reson Med. 2016;76:1127–1135.

134. Wyatt CR, Smith TB, Sammi MK, et al. Multi-parametric T2 * magnetic reso-
nance fingerprinting using variable echo times. NMR Biomed. 2018;31:e3951.

135. Hilbert T, Xia D, Block KT, et al. Magnetization transfer in magnetic resonance
fingerprinting. Magn Reson Med. 2019.

136. Cohen O, Huang S, McMahon MT, et al. Rapid and quantitative chemical ex-
change saturation transfer (CEST) imaging withmagnetic resonance fingerprint-
ing (MRF). Magn Reson Med. 2018;80:2449–2463.

137. Su P, Mao D, Liu P, et al. Multiparametric estimation of brain hemodynamics
with MR fingerprinting ASL. Magn Reson Med. 2017;78:1812–1823.

138. Christen T, Pannetier NA, Ni WW, et al. MR vascular fingerprinting: a new ap-
proach to compute cerebral blood volume, mean vessel radius, and oxygenation
maps in the human brain. Neuroimage. 2014;89:262–270.

139. Korzdorfer G, Pfeuffer J, Kluge T, et al. Effect of spiral undersampling patterns
on FISP MRF parameter maps. Magn Reson Imaging. 2019;62:174–180.

140. Yu Z, Zhao T, Asslander J, et al. Exploring the sensitivity of magnetic resonance
fingerprinting to motion. Magn Reson Imaging. 2018;54:241–248.

141. Hoppe E, Thamm F, Korzdorfer G, et al. Magnetic resonance fingerprinting re-
construction using recurrent neural networks. Stud Health Technol Inform. 2019;
267:126–133.

142. Jiang Y, Ma D, Seiberlich N, et al. MR fingerprinting using fast imaging with
steady state precession (FISP) with spiral readout. Magn Reson Med. 2015;
74:1621–1631.

143. Jiang Y, Ma D, Jerecic R, et al. MR fingerprinting using the quick echo splitting
NMR imaging technique.Magn Reson Med. 2017;77:979–988.

144. Hamilton JI, Jiang Y, Chen Y, et al. MR fingerprinting for rapid quantification of
myocardial T1, T2, and proton spin density.Magn Reson Med. 2017;77:1446–1458.

145. ChenY, Jiang Y, Pahwa S, et al. MR fingerprinting for rapid quantitative abdom-
inal imaging. Radiology. 2016;279:278–286.

146. Panda A, O'Connor G, Lo WC, et al. Targeted biopsy validation of peripheral
zone prostate cancer characterization with magnetic resonance fingerprinting
and diffusion mapping. Invest Radiol. 2019;54:485–493.
614 www.investigativeradiology.com
147. Liao C, Bilgic B, Manhard MK, et al. 3D MR fingerprinting with accelerated
stack-of-spirals and hybrid sliding-window and GRAPPA reconstruction. Neuroimage.
2017;162:13–22.

148. Kato Y, Ichikawa K, Okudaira K, et al. Comprehensive evaluation of B1
+-corrected

FISP-based magnetic resonance fingerprinting: accuracy, repeatability and re-
producibility of T1 and T2 relaxation times for ISMRM/NIST system phantom
and volunteers. Magn Reson Med Sci. 2019. [Epub ahead of print].

149. Jiang Y, Ma D, Keenan KE, et al. Repeatability of magnetic resonance finger-
printing T1 and T2 estimates assessed using the ISMRM/NIST MRI system
phantom. Magn Reson Med. 2017;78:1452–1457.

150. Korzdorfer G, Kirsch R, Liu K, et al. Reproducibility and repeatability of MR
fingerprinting Relaxometry in the human brain. Radiology. 2019;292:429–437.

151. Scheenen TW, Rosenkrantz AB, Haider MA, et al. Multiparametric magnetic
resonance imaging in prostate cancer management: current status and future per-
spectives. Invest Radiol. 2015;50:594–600.

152. Cercignani M, Bouyagoub S. Brain microstructure by multi-modal MRI: is the
whole greater than the sum of its parts? Neuroimage. 2018;182:117–127.

153. Pinker K, Moy L, Sutton EJ, et al. Diffusion-weighted imaging with apparent dif-
fusion coefficient mapping for breast cancer detection as a stand-alone parameter:
comparison with dynamic contrast-enhanced and multiparametric magnetic res-
onance imaging. Invest Radiol. 2018;53:587–595.

154. Pinker K, Bogner W, Baltzer P, et al. Improved diagnostic accuracy with
multiparametric magnetic resonance imaging of the breast using dynamic
contrast-enhanced magnetic resonance imaging, diffusion-weighted imaging,
and 3-dimensional proton magnetic resonance spectroscopic imaging. Invest
Radiol. 2014;49:421–430.

155. Quantitative Imaging Biomarkers Alliance (QIBA) Multiparametric Metrology
Group. Multiparametric Quantitative Imaging Biomarkers: A Framework
for Estimating and Testing Technical Performance. Presented at: 105th Scientific
Assembly and Annual Meeting of the Radiological Society of North America
(RSNA). 2019; Available at: https://qibawiki.rsna.org/index.php/QIBA_
posters_from_RSNA_2019_Annual_Meeting. Accessed January 12, 2020.

156. Eshaghi A, Riyahi-Alam S, Saeedi R, et al. Classification algorithmswith multi-
modal data fusion could accurately distinguish neuromyelitis optica from multi-
ple sclerosis. Neuroimage Clin. 2015;7:306–314.

157. Vamvakas A,Williams SC, Theodorou K, et al. Imaging biomarker analysis of ad-
vanced multiparametric MRI for glioma grading. Phys Med. 2019;60:188–198.

158. Tahmassebi A, Wengert GJ, Helbich TH, et al. Impact of machine learning with
multiparametric magnetic resonance imaging of the breast for early prediction of
response to neoadjuvant chemotherapy and survival outcomes in breast cancer
patients. Invest Radiol. 2019;54:110–117.

159. Hori M, Hagiwara A, Fukunaga I, et al. Application of quantitative microstruc-
tural MR imaging with atlas-based analysis for the spinal cord in cervical
spondylotic myelopathy. Sci Rep. 2018;8:5213.

160. Hsia CC, Hyde DM, Ochs M, et al. An official research policy statement of the
American Thoracic Society/European Respiratory Society: standards for
quantitative assessment of lung structure. Am J Respir Crit Care Med. 2010;
181:394–418.

161. Mulshine JL, Gierada DS, Armato SG 3rd, et al. Role of the quantitative imaging
biomarker alliance in optimizing CT for the evaluation of lung cancer screen-
detected nodules. J Am Coll Radiol. 2015;12:390–395.

162. Matsuoka S, Washko GR, Yamashiro T, et al. Pulmonary hypertension and com-
puted tomography measurement of small pulmonary vessels in severe emphy-
sema. Am J Respir Crit Care Med. 2010;181:218–225.

163. Henschke CI, Yankelevitz DF, Yip R, et al. Lung cancers diagnosed at annual CT
screening: volume doubling times. Radiology. 2012;263:578–583.

164. Wells JM,WashkoGR, HanMK, et al. Pulmonary arterial enlargement and acute
exacerbations of COPD. N Engl J Med. 2012;367:913–921.

165. Goldin JG. Computed tomography as a biomarker in clinical trials imaging.
J Thorac Imaging. 2013;28:291–297.

166. Shaw JG, Vaughan A, Dent AG, et al. Biomarkers of progression of chronic ob-
structive pulmonary disease (COPD). J Thorac Dis. 2014;6:1532–1547.

167. Hansell DM, Goldin JG, King TE Jr., et al. CT staging and monitoring of fi-
brotic interstitial lung diseases in clinical practice and treatment trials: a position
paper from the Fleischner society. Lancet Respir Med. 2015;3:483–496.

168. Hoffman EA, Lynch DA, Barr RG, et al. Pulmonary CT and MRI phenotypes
that help explain chronic pulmonary obstruction disease pathophysiology and
outcomes. J Magn Reson Imaging. 2016;43:544–557.

169. Matsuoka S, Kotoku A, Yamashiro T, et al. Quantitative CTevaluation of small
pulmonary vessels in patients with acute pulmonary embolism. Acad Radiol.
2018;25:653–658.

170. RSNA QIBA Profiles. Available at: http://qibawiki.rsna.org/index.php/Profiles.
Accessed January 10, 2010.
© 2020 The Author(s). Published by Wolters Kluwer Health, Inc.

https://qibawiki.rsna.org/index.php/QIBA_posters_from_RSNA_2019_Annual_Meeting
https://qibawiki.rsna.org/index.php/QIBA_posters_from_RSNA_2019_Annual_Meeting
http://qibawiki.rsna.org/index.php/Profiles
www.investigativeradiology.com


Investigative Radiology • Volume 55, Number 9, September 2020 Standardization of Quantitative Imaging
171. Stiller W. Basics of iterative reconstruction methods in computed tomography: a
vendor-independent overview. Eur J Radiol. 2018;109:147–154.

172. Ohno Y, Koyama H, Seki S, et al. Radiation dose reduction techniques for chest
CT: principles and clinical results. Eur J Radiol. 2019;111:93–103.

173. Kubo T. Vendor free basics of radiation dose reduction techniques for CT. Eur J
Radiol. 2019;110:14–21.

174. Kubo T, Lin PJ, Stiller W, et al. Radiation dose reduction in chest CT: a review.
AJR Am J Roentgenol. 2008;190:335–343.

175. Kubo T, Ohno Y, Kauczor HU, et al. Radiation dose reduction in chest CT—
review of available options. Eur J Radiol. 2014;83:1953–1961.

176. Kubo T, Ohno Y, Seo JB, et al. Securing safe and informative thoracic CT
examinations—progress of radiation dose reduction techniques. Eur J Radiol.
2017;86:313–319.

177. Coxson HO, Mayo J, Lam S, et al. New and current clinical imaging techniques
to study chronic obstructive pulmonary disease. Am J Respir Crit Care Med.
2009;180:588–597.

178. Park EA, Goo JM, Park SJ, et al. Chronic obstructive pulmonary disease: quan-
titative and visual ventilation pattern analysis at xenon ventilation CT performed
by using a dual-energy technique. Radiology. 2010;256:985–997.

179. Remy-JardinM, Faivre JB, Pontana F, et al. Thoracic applications of dual energy.
Semin Respir Crit Care Med. 2014;35:64–73.

180. Ohno Y, Yoshikawa T, Takenaka D, et al. Xenon-enhanced CTusing subtraction
CT: basic and preliminary clinical studies for comparison of its efficacy with that
of dual-energy CT and ventilation SPECT/CT to assess regional ventilation and
pulmonary functional loss in smokers. Eur J Radiol. 2017;86:41–51.

181. Mishima M, Oku Y, Kawakami K, et al. Quantitative assessment of the spatial
distribution of low attenuation areas on x-ray CTusing texture analysis in patients
with chronic pulmonary emphysema. Front Med Biol Eng. 1997;8:19–34.

182. NakanoY,Muller NL, King GG, et al. Quantitative assessment of airway remod-
eling using high-resolution CT. Chest. 2002;122:271S–275S.

183. Hasegawa M, Nasuhara Y, Onodera Y, et al. Airflow limitation and airway di-
mensions in chronic obstructive pulmonary disease. Am J Respir Crit Care
Med. 2006;173:1309–1315.

184. Koyama H, Ohno Y, Yamazaki Y, et al. Quantitative bronchial luminal volumet-
ric assessment of pulmonary function loss by thin-section MDCT in pulmonary
emphysema patients. Eur J Radiol. 2012;81:384–388.

185. Koyama H, Ohno Y, Nishio M, et al. Three-dimensional airway lumen volumetry:
comparison with bronchial wall area and parenchymal densitometry in assessment
of airway obstruction in pulmonary emphysema.Br J Radiol. 2012;85:1525–1532.

186. Koyama H, Ohno Y, Nishio M, et al. Iterative reconstruction technique vs filter
back projection: utility for quantitative bronchial assessment on low-dose thin-
section MDCT in patients with/without chronic obstructive pulmonary disease.
Eur Radiol. 2014;24:1860–1867.

187. Chen-MayerHH, FuldMK, Hoppel B, et al. Standardizing CT lung density mea-
sure across scanner manufacturers.Med Phys. 2017;44:974–985.

188. Ohno Y, Fujisawa Y, Fujii K, et al. Effects of acquisition method and reconstruc-
tion algorithm for CT number measurement on standard-dose CT and reduced-
dose CT: a QIBA phantom study. Jpn J Radiol. 2019;37:399–411.

189. National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al.
Reduced lung-cancer mortality with low-dose computed tomographic screening.
N Engl J Med. 2011;365:395–409.

190. Saghir Z, Dirksen A, Ashraf H, et al. CT screening for lung cancer brings for-
ward early disease. The randomised Danish lung cancer screening trial: status af-
ter five annual screening rounds with low-dose CT. Thorax. 2012;67:296–301.

191. Nawa T, Nakagawa T, Mizoue T, et al. A decrease in lung cancer mortality fol-
lowing the introduction of low-dose chest CT screening in Hitachi, Japan. Lung
Cancer. 2012;78:225–228.

192. Horeweg N, Scholten ET, de Jong PA, et al. Detection of lung cancer through
low-dose CT screening (NELSON): a prespecified analysis of screening test per-
formance and interval cancers. Lancet Oncol. 2014;15:1342–1350.

193. Infante M, Cavuto S, Lutman FR, et al. Long-term follow-up results of the
DANTE trial, a randomized study of lung cancer screening with spiral computed
tomography. Am J Respir Crit Care Med. 2015;191:1166–1175.

194. XuDM,GietemaH, deKoningH, et al. Nodulemanagement protocol of theNELSON
randomised lung cancer screening trial. Lung Cancer. 2006;54:177–184.

195. Yanagawa M, Tanaka Y, Leung AN, et al. Prognostic importance of volumetric
measurements in stage I lung adenocarcinoma. Radiology. 2014;272:557–567.

196. Li Q, Gavrielides MA, Sahiner B, et al. Statistical analysis of lung nodule
volume measurements with CT in a large-scale phantom study. Med Phys.
2015;42:3932–3947.

197. Ohno Y, Yaguchi A, Okazaki T, et al. Comparative evaluation of newly devel-
oped model-based and commercially available hybrid-type iterative reconstruction
methods and filter back projection method in terms of accuracy of computer-aided
© 2020 The Author(s). Published by Wolters Kluwer Health, Inc.
volumetry (CADv) for low-dose CT protocols in phantom study. Eur J Radiol.
2016;85:1375–1382.

198. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,
they are data. Radiology. 2016;278:563–577.

199. Berenguer R, Pastor-JuanMDR, Canales-Vázquez J, et al. Radiomics of CT fea-
tures may be nonreproducible and redundant: influence of CTacquisition param-
eters. Radiology. 2018;288:407–415.

200. Nordstrom RJ. The quantitative imaging network in precision medicine. Tomog-
raphy. 2016;2:239–241.

201. Mackin D, Fave X, Zhang L, et al. Measuring computed tomography scanner
variability of radiomics features. Invest Radiol. 2015;50:757–765.

202. Shafiq-Ul-HassanM, Latifi K, Zhang G, et al. Voxel size and gray level normal-
ization of CT radiomic features in lung cancer. Sci Rep. 2018;8:10545.

203. Kalpathy-Cramer J, Mamomov A, Zhao B, et al. Radiomics of lung nodules: a
multi-institutional study of robustness and agreement of quantitative imaging
features. Tomography. 2016;2:430–437.

204. Nyflot MJ, Yang F, Byrd D, et al. Quantitative radiomics: impact of stochastic ef-
fects on textural feature analysis implies the need for standards. J Med Imaging
(Bellingham). 2015;2:041002.

205. Zhao B, Tan Y, Tsai WY, et al. Reproducibility of radiomics for deciphering
tumor phenotype with imaging. Sci Rep. 2016;6:23428.

206. Traverso A, Wee L, Dekker A, et al. Repeatability and reproducibility of
radiomic features: a systematic review. Int J Radiat Oncol Biol Phys.
2018;102:1143–1158.

207. Shafiq-Ul-Hassan M, Zhang GG, Latifi K, et al. Intrinsic dependencies of CT
radiomic features on voxel size and number of gray levels. Med Phys. 2017;
44:1050–1062.

208. Zwanenburg A, Leger S, Vallières M, et al. Image biomarker standardisation ini-
tiative. arXiv:1612.07003v11. 2019.

209. Larue RTHM, van Timmeren JE, de Jong EEC, et al. Influence of gray level
discretization on radiomic feature stability for different CT scanners, tube currents
and slice thicknesses: a comprehensive phantom study. Acta Oncol. 2017;
56:1544–1553.

210. Echegaray S, Gevaert O, Shah R, et al. Core samples for radiomics features
that are insensitive to tumor segmentation: method and pilot study using CT
images of hepatocellular carcinoma. J Med Imaging (Bellingham). 2015;
2:041011.

211. Tunali I, Stringfield O, Guvenis A, et al. Radial gradient and radial deviation
radiomic features from pre-surgical CT scans are associated with survival among
lung adenocarcinoma patients. Oncotarget. 2017;8:96013–96026.

212. Parmar C, Rios Velazquez E, Leijenaar R, et al. Robust Radiomics feature
quantification using semiautomatic volumetric segmentation. PLoS One. 2014;
9:e102107.

213. Peerlings J, Woodruff HC, Winfield JM, et al. Stability of radiomics features in
apparent diffusion coefficient maps from a multi-centre test-retest trial. Sci Rep.
2019;9:4800.

214. Baeßler B, Weiss K, Pinto dos Santos D. Robustness and reproducibility of
radiomics in magnetic resonance imaging: a phantom study. Invest Radiol.
2019;54:221–228.

215. Chalkidou A, O'Doherty MJ, Marsden PK. False discovery rates in PET and
CT studies with texture features: a systematic review. PLoS One. 2015;
10:e0124165.

216. Nie K, Al-Hallaq H, Li XA, et al. NCTN assessment on current applications of
Radiomics in oncology. Int J Radiat Oncol Biol Phys. 2019;104:302–315.

217. Sanduleanu S, Woodruff HC, de Jong EEC, et al. Tracking tumor biology with
radiomics: a systematic review utilizing a radiomics quality score. Radiother
Oncol. 2018;127:349–360.

218. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between
medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:
749–762.

219. Weikert T, Cyriac J, Yang S, et al. A practical guide to artificial intelligence-
based image analysis in radiology. Invest Radiol. 2020;55:1–7.

220. Becker AS, Marcon M, Ghafoor S, et al. Deep learning in mammography: diag-
nostic accuracy of a multipurpose image analysis software in the detection of
breast cancer. Invest Radiol. 2017;52:434–440.

221. Weston AD, Korfiatis P, Kline TL, et al. Automated abdominal segmentation of
CT scans for body composition analysis using deep learning. Radiology. 2019;
290:669–679.

222. Lakhani P, Sundaram B. Deep learning at chest radiography: automated classifi-
cation of pulmonary tuberculosis by using convolutional neural networks. Radi-
ology. 2017;284:574–582.

223. Hyun CM, Kim HP, Lee SM, et al. Deep learning for undersampled MRI recon-
struction. Phys Med Biol. 2018;63:135007.
www.investigativeradiology.com 615

www.investigativeradiology.com


Hagiwara et al Investigative Radiology • Volume 55, Number 9, September 2020
224. KidohM, Shinoda K, KitajimaM, et al. Deep learning based noise reduction for
brain MR imaging: tests on phantoms and healthy volunteers.Magn Reson Med
Sci. 2019. [Epub ahead of print].

225. Kuzina A, Egorov E, Burnaev E. Bayesian generative models for knowledge
transfer in MRI semantic segmentation problems. Front Neurosci. 2019;13:844.

226. Kumamaru KK, Fujimoto S, Otsuka Y, et al. Diagnostic accuracy of 3D deep-
learning-based fully automated estimation of patient-level minimum fractional
flow reserve from coronary computed tomography angiography. Eur Heart J
Cardiovasc Imaging. 2019. [Epub ahead of print].
616 www.investigativeradiology.com
227. Liu Y, Chen PC, Krause J, et al. How to read articles that use machine
learning: users' guides to the medical literature. JAMA. 2019;322:
1806–1816.

228. Park SH, Han K.Methodologic guide for evaluating clinical performance and ef-
fect of artificial intelligence technology for medical diagnosis and prediction.
Radiology. 2018;286:800–809.

229. Mårtensson G, Ferreira D, Granberg T, et al. The reliability of a deep learning
model in clinical out-of-distribution MRI data: a multicohort study. arXiv:
1911.00515v1. 2019.
© 2020 The Author(s). Published by Wolters Kluwer Health, Inc.

www.investigativeradiology.com

