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Glioblastoma epigenome profiling identifies SOX10
as a master regulator of molecular tumour subtype
Yonghe Wu 1,2,13, Michael Fletcher 1,13, Zuguang Gu2,3,13, Qi Wang3, Barbara Costa4, Anna Bertoni1,

Ka-Hou Man1, Magdalena Schlotter1, Jörg Felsberg5,6, Jasmin Mangei1, Martje Barbus1, Ann-Christin Gaupel1,

Wei Wang1, Tobias Weiss7, Roland Eils 2,3, Michael Weller7, Haikun Liu 8, Guido Reifenberger5,6,

Andrey Korshunov9,10, Peter Angel 4, Peter Lichter 1,2,6, Carl Herrmann 11,14✉ &

Bernhard Radlwimmer 12,14✉

Glioblastoma frequently exhibits therapy-associated subtype transitions to mesenchymal

phenotypes with adverse prognosis. Here, we perform multi-omic profiling of 60 glio-

blastoma primary tumours and use orthogonal analysis of chromatin and RNA-derived gene

regulatory networks to identify 38 subtype master regulators, whose cell population-specific

activities we further map in published single-cell RNA sequencing data. These analyses

identify the oligodendrocyte precursor marker and chromatin modifier SOX10 as a master

regulator in RTK I-subtype tumours. In vitro functional studies demonstrate that SOX10 loss

causes a subtype switch analogous to the proneural–mesenchymal transition observed in

patients at the transcriptomic, epigenetic and phenotypic levels. SOX10 repression in an

in vivo syngeneic graft glioblastoma mouse model results in increased tumour invasion,

immune cell infiltration and significantly reduced survival, reminiscent of progressive human

glioblastoma. These results identify SOX10 as a bona fide master regulator of the RTK I

subtype, with both tumour cell-intrinsic and microenvironmental effects.
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G lioblastoma is a highly malignant brain cancer with a
particularly poor prognosis despite aggressive treatment
comprising surgical resection and radiochemotherapy

with temozolomide1. Recent large-scale genomics studies2–5

have identified four mRNA expression/DNA-methylation sub-
types of glioblastoma and their hallmark genetic lesions: (1) IDH,
characterised by glioma CpG island methylation phenotype
(G-CIMP) hypermethylation due to mutations in the isocitrate
dehydrogenase (IDH) 1 or 2 genes3,6,7; (2) MES (mesenchymal),
associated with NF1 aberrations and increased tumour infiltra-
tion by tumour-associated macrophages/microglia5; (3) RTK I
(receptor tyrosine kinase I), in which tumours commonly have
PDGFRA gene amplifications; and (4) RTK II, exhibiting the
classical EGFR gene amplification8. The MES, RTK I and RTK II
subtypes correspond to the mesenchymal, proneural and classical
RNA expression subtypes4, which were recently refined based on
the analysis of exclusively IDH wildtype glioblastoma5. Transi-
tions between these subtypes have been observed during the
treatment of patients9,10 and may lead to worse prognosis5,9. It
remains unclear whether these transitions are due to tumour cell
plasticity or expansion of pre-existing resistant subpopulations.

Cancer Master Regulators (MRs) are proteins that define and
regulate tumour cellular states11. It has been proposed that the
systematic identification and characterisation of cancer MRs will
provide a better understanding of basic cancer biology and
potential therapeutic vulnerabilities12. While recent large-scale
studies of transcriptomes and promoter-biased epigenomes have
provided valuable insights into glioblastoma heterogeneity and
cellular state transitions2,5,9,13–18, a comprehensive, genome-wide
survey of the epigenetic landscape of primary glioblastoma sub-
types using multidimensional data from the same patient tumour
samples is, as yet, not available. Consequently, glioblastoma
subtype MRs and their interactions with and effects on GB epi-
genetics remain largely unknown.

Here, we present an integrated epigenetic analysis of the four
subtypes of adult glioblastoma. We performed methylome, tran-
scriptome and epigenome profiling on a cohort of 60 untreated
patient tumours and show that enhancers vary across subtypes.
We identified 10 consensus subtype MRs based on our analysis of
these matched tumour epigenetic and gene expression data.
Repression of the RTK I MR SOX10 in human glioblastoma cell
lines caused a subtype transition to a mesenchymal cellular state
via the remodelling of active enhancers. We further show, using a
recently described immunocompetent syngeneic mouse model
that SOX10 loss leads to a dramatic decrease in survival, increased
tumour invasion and immune cell infiltration. These results show
that GB subtype transitions can have striking effects on clinically
relevant tumour phenotypes and, as such, require further
investigation.

Results
Primary glioblastoma epigenome profiling. We selected 60
adult glioblastoma primary tumours and 4 normal brain samples
(Supplementary Data 1, 2) for DNA methylome (methylation
microarrays and whole genome bisulphite sequencing (WGBS))
and transcriptome (strand-specific, rRNA-depleted, total RNA
sequencing (ssRNA-seq); mean 2 × 108 reads) profiling (see
Supplementary Data 3–5 for quality control data). The key
resources used in this study are listed in Supplementary Table 1.
Tumours were subtyped using a methylation microarray classifier
(Supplementary Fig. 1a and Supplementary Data 6)3; the four
subtypes (IDH: 12; MES: 19; RTK I: 12; RTK II: 17) and both
major genotypes, IDH wildtype, present in about 90% of primary
tumours (MES, RTK I, RTK II; 48), and IDH mutated (IDH; 12)
were well represented. Subtyping based on WGBS data could

clearly identify the IDH and RTK II groups, while MES and RTK
I were less distinct. Consistent with this, methylation at gene-
based features was generally variable across subtypes; however,
the MES and RTK I subgroups could not be differentiated based
on TSS or CGI methylation (Supplementary Fig. 1b, c) suggesting
that these regions feature comparable methylation, and non-CGI
and intergenic regions appear to be similar in the MES and RTK
II subtypes (Supplementary Fig. 1c). For a subset of 20 tumours,
we also profiled the H3K27ac, H3K4me1, H3K4me3, H3K36me3,
H3K27me3 and H3K9me3 histone modifications by chromatin
immunoprecipitation and sequencing (ChIP-seq) (Fig. 1a). The
mutation status of IDH1 and IDH2 was determined by pyr-
osequencing. All IDH samples had IDH1 R132H mutations and
G-CIMP6 (Supplementary Fig. 1), while remaining tumours were
IDH wildtype (IDHwt). These CIMP-, IDHwt subtypes (MES,
RTK I and RTK II) exhibited the classic glioblastoma copy
number alterations (CNAs) consisting of gain of chromosome 7,
loss of chromosome 10 and focal CDKN2A/B deletion. Amplifi-
cations of EGFR and gain of chromosomes 19 and 20 were
strongly prevalent in RTK II, and PDGFRA, CDK4 and MDM2 or
MDM4 amplifications were more frequent in RTK I tumours
(Fig. 1b).

We next examined methylation differences between glioblastoma
subtypes and normal brain. Large regions of the genome were
hypomethylated in tumours relative to control, non-neoplastic
normal brain tissue (Fig. 1c). Relative to the other tumour subtypes,
RTK I tumours showed global hypomethylation. Similarly, IDH
tumours were globally hypermethylated, showing that the G-CIMP
phenotype extends beyond CpG islands and manifests across all
genomic features. Tumour hypomethylation relative to normal
tissue was most pronounced in intergenic regions, while CpG
islands were relatively hypermethylated (Fig. 1d). Overall, these
results agree with the current understanding of methylation changes
in cancers.

We then used the 18-state Roadmap Epigenome ChromHMM
model19 with our tumour histone mark ChIP-seq data to
annotate each sample’s genome. We defined consensus subtype
ChromHMM states and calculated their mean subtype methyla-
tion (Fig. 1e). We found that active TSS states (E01–E04) have
relatively low methylation, while transcription (E05-E06), repres-
sive (E12–13, E16–E17) and non-functional (E18) states have
relatively higher methylation. Generally, the IDH subtype is the
most hypermethylated, while RTK I is the most hypomethylated.
Interestingly, the bivalent TSS and enhancer states (E14–E15)
showed the broadest ranges, with a striking degree of tumour-
specific hypermethylation, suggesting that differences in the
methylation of tumour subtype and normal tissue may be more
prevalent in genomic loci of defined function. These effects are
frequently subtype-specific, as illustrated by myelin transcription
factor 1 (MYT1), a regulator of oligodendrocyte differentiation.
MYT1 is overexpressed in IDH and RTK I glioblastoma relative
to normal brain, and shows corresponding hypomethylation and
active chromatin states in the gene promoter and in known
enhancer regions (Fig. 1f, g).

Active enhancers are highly variable across glioblastoma sub-
types. We next took advantage of our unbiased WGBS data to call
methylation features, i.e. differential methylation valleys (DMVs),
partially methylated domains (PMDs) and lowly methylated
regions (LMRs), which are enriched in promoter, heterochromatin
and enhancer states, respectively20–22. We found that more than
60% of PMDs and DMVs were shared across all subtypes, and
fewer than 17% were present in only one subtype each. Conversely,
37% of LMRs were specific for one subtype, suggesting that vari-
able DNA methylation at LMRs is a substantial contributor to
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differences between subtypes (Fig. 2a). Consistent with this
hypothesis, Uniform Manifold Approximation and Projection
(UMAP) of LMR WGBS data clearly separated the subtypes, no
matter whether all samples or only IDHwt samples were analysed
(Fig. 2b, c).

To learn more about the function of PMDs, LMRs and DMVs
in glioblastoma, we used our ChromHMM model to annotate

these features for each subtype (Fig. 2d). As expected, DMVs were
strongly enriched in TSS states (E01–E03, E14) and PMDs
contained mostly quiescent and repressive states (E16–E18).
Chromatin states found in LMRs were more diverse, with the
largest proportion (23%) being enhancer states (E07–E11 and
E15). In the LMRs that are found only in one subtype, the
enrichment of enhancer states was even more pronounced with
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36%, indicating the importance of enhancers for defining subtype
identities.

Focusing on active enhancers (E9–E10), we noted that 64% of
tumour active-enhancer regions were unique to tumours and not
shared in normal brain19. Of these, 59% tumour-specific active
enhancers were unique to a single subtype, while only about 6%
were shared by all subtypes. These results suggest that GB
subtypes and their differing gene expression programmes are, at
least in part, the result of subtype-specific enhancer activity.

Core regulatory circuitry analysis identifies subtype Master
Regulators. Enhancer activity is mediated by transcription factor
proteins, including MRs. We therefore set out to identify the
subtype MRs that are active in this heterogeneous enhancer
landscape. Superenhancers (SEs) are a class of genomic loci that
regulate cell identity genes, including MRs23. We performed
subtype SE calling on our H3K27ac glioblastoma profiles
(Fig. 3a). Some SEs exhibited subtype-specific enrichment; for
example, RTK II tumours have an intronic SE in EGFR that is
associated with higher H3K27ac signal and EGFR expression in
this subtype. SEs with higher subtype H3K27ac signal correlated
with target gene up-regulation in that subtype, suggesting that
SEs regulate genes that are important for subtype identity in
glioblastoma (Fig. 3b). This interpretation receives additional
support from our observation that subtype LMRs are present in
65% of subtype SEs, on average.

We annotated each subtype’s SE’s target genes with mSigDB
genesets and found significant enrichment for known glioblas-
toma subtype signatures4,5 (Fig. 3c). Furthermore, genes
upregulated in neural crest stem cells were enriched in IDH,
MES and RTK I, while these genes were mostly downregulated in
RTK II. Oligodendrocyte markers were enriched in RTK I, while
astrocyte markers were enriched in RTK II, agreeing with recent
reports that glioblastomas co-opt SE landscapes used in normal
CNS development15.

Core regulatory circuit (CRC) analysis identified a set of 56
candidate MRs across the four subtypes. We extended this
analysis to the full cohort using a gene expression-based approach
(Fig. 3d). To do so, we inferred a glioblastoma gene regulatory
network using the TCGA gene expression microarray cohort
(n= 525)2. We then used VIPER analysis24 to infer the activity of
the 38 candidate CRC MRs that appear in this network. MRs were
assigned to a subtype based on the average maximum VIPER NES
(IDH: 9; MES: 16; RTK I: 4; RTK II: 9; Fig. 3e and Supplementary
Data 7), including the previously reported MES MRs CEBPA and
STAT313.

Master Regulator activity in cell types. Glioblastoma consist of
mixtures of cells of different tumour subtypes, as well as normal

cell populations such as tumour-associated macrophages, which
are especially prevalent in MES5,16,18,25,26. We addressed this
potential confounding of MR predictions made using our bulk
tissue data, by extending our analysis to published single-cell
RNA-seq profiles of IDHwt glioblastoma25.

Following cell quality control and filtering, we performed a
pseudotime analysis27. Cells formed a 5-state trajectory, consisting
of four terminal branches and one intermediate state (Fig. 4a). It is
important to note that we did not distinguish between tumour and
normal cells in this pseudotime analysis, and therefore tumour
and normal cells with similar gene expression programmes will
group together. Therefore, we annotated each state by scoring each
cell for a set of normal brain cell signatures28 and assigning cells a
glioblastoma subtype based on VIPER-calculated MR activity
(Fig. 4b). Based on these results and examination of individual
marker genes, each terminal branch was assigned the following
identity: state 1 represents RTK I tumour cells and normal
oligodendrocytes; state 3 are RTK II tumour cells and normal
astrocytes; state 4 is a mixture of normal cell types; and state 5
consists of MES tumour cells and macrophages.

We next visualised relative MR activity scores on the
pseudotime trajectory, to confirm that the subtype predicted in
our CRC analysis is consistent at this single-cell level (Fig. 4c).
While some MRs exhibited ubiquitous activity (SREBF1), we
observed that subtype MRs generally have higher activity in the
cells of that state (CEBPA in MES, SOX10 in RTK I, NR3C1 in
RTK II), as predicted.

We clustered cells based on MR activity within each state
(Fig. 4d), and observed that four MES MRs (CEBPA, FLI1,
MAFB, MITF) separate two subpopulations within state 5.
Interestingly, even within the cells with high activity of these
four factors, further MR heterogeneity is observable (e.g. RXRA).
This suggested us that MR activity might discriminate cell types.

Therefore, we further examined the 2112 cells in state 5. A t-SNE
projection of the cells’ MES MR (n= 13) VIPER activity matrix
splits this state into two sub-clusters. Visualisation of microglial/
macrophage marker gene expression (AIF1, PTPRC; Fig. 4e)
identified the major population as these infiltrating immune cells,
as expected. This suggests that the remaining population are MES
glioblastoma cells. We found that the MRs CEBPA, FLI1, MAFB,
MITF showed higher activities in this immune population, whereas
STAT3, which was previously reported to induce mesenchymal
transformation in NSCs13, appears to be active in both populations
(Fig. 4f). Therefore, our analysis of scRNA-seq data were consistent
with the analyses of bulk tissue data, in that it identified three
tumour branches to which the respective subtype MRs could be
assigned. Furthermore, for the MES subtype, which is known to be
enriched with infiltrating immune cells, we were able to use scRNA-
seq data to compare MR activity in tumour cells and tumour-
associated macrophages.

Fig. 1 A comprehensive dataset of glioblastoma subtype epigenomics. a Study design. Based on extensive molecular profiling of 60 glioblastoma
tumours, epigenetic glioblastoma subtypes were characterised, subtype Master Regulators were derived based on epigenome and transcriptome data, and
functionally validated in glioblastoma cell lines and a syngeneic mouse model. b Characteristics of the 60 glioblastomas used in this study, including age,
gender, methylation subtype, IDH1 and IDH2 mutation status and copy number aberrations. c Genome-wide differences in DNA methylation between
glioblastoma subtypes and control brain tissue. Mean methylation (WGBS beta-values) for 100 kbp genome bins were determined for each subtype, and
the difference to the control brain average. d Mean subtype DNA methylation (WGBS beta) at genomic features. e Mean subtype DNA methylation
(WGBS beta) for each state of the 18-state ChromHMM model. f MYT1 RNA-seq expression (log2 TPM+ 1) in subtypes, visualised as Tukey boxplots.
Boxes correspond to the 25th, 50th/median and 75th percentiles; whiskers denote 1.5× the IQR from the median. Points mark outliers beyond 1.5× IQR.
NBr, n= 4; IDH, n= 12; MES, n= 19; RTK I, n= 12; RTK II, n= 17 samples. g Integrative view of the glioblastoma epigenomic landscape. For MYT1, an
oligodendrocyte marker gene, per-subtype methylation (top, beta-values) and ChromHMM annotation (bottom) are displayed. Control non-neoplastic,
control brain ChromHMM annotations from the Roadmap Epigenome are included as a reference. DNA hypomethylation (top) in the IDH and RTK I
subtypes correlates with active TSS (E01–04, box 2) and enhancer (E07–E011, boxes 1 and 3) ChromHMM states (bottom).
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Loss of SOX10 results in an RTK I-to-MES transition. To
independently validate our CRC analysis, we analysed gene
expression-based GB regulatory networks using the Reconstruc-
tion of Transcriptional Networks and Analysis of Master Reg-
ulators (RTN) package29. Along with the previously used TCGA
network (Fig. 3d; Supplementary Data 8), we used a network
inferred using an additional 569 microarray samples (Supple-
mentary Data 9) to cross-validate our predictions. We defined
glioblastoma subtype RNA expression signatures (Supplementary
Fig. 2 and Supplementary Data 10), and used these to identify
117 subtype MRs that were statistically (two-sided t-test) sig-
nificantly active in the same subtype, with the same direction of

activity, in both networks (Supplementary Fig. 3 and Supple-
mentary Data 7, 11).

Overlap of these RNA-based predictions with chromatin-
based CRC MRs (Fig. 3d) gave a consensus list of 10 MRs
(Fig. 5a), from which we selected SOX10 for functional
validation. SOX10 is an oligodendroglial lineage transcription
factor30, and regulates a distinct epigenetic state that is linked to
chromatin remodelling and therapy resistance in melanoma,
which, like glioblastoma, originates from the neural-crest31,32.
This evidence of its involvement in clinically relevant state
transitions makes SOX10 a particularly interesting candidate to
study epigenetic control and remodelling of subtype gene
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regulation in glioblastoma. In addition, SOX10 has been shown
to affect cell fate decisions in neural lineage development in
mice, and was described to antagonise the function of the
transcription factor NFIA in driving astrocytic differentiation in
normal development and later, overexpression in mouse tumour
models33,34.

SOX10 is over-expressed in RTK I tumours (Fig. 5b), correlating
with genic hypomethylation and increased H3K27ac signal
(Fig. 5c). We screened glioblastoma cell lines and selected two
lines exhibiting high SOX10 expression and promoter hypo-
methylation, characteristic of RTK I patient samples for use as
in vitro models: ZH487, a primary glioblastoma cell line that we
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established from an RTK I patient sample, and the conventional
primary glioblastoma cell line LN229. Furthermore, SOX10 ChIP-
seq identified a large number of binding sites that are shared by
the two cell lines, showing that these are appropriate models of
SOX10 activity (Supplementary Fig. 4).

Suppression of SOX10 expression (Supplementary Fig. 5a)
leads to extensive changes in RNA expression that we analysed by
gene set enrichment analysis using our subtype-specific gene
signatures, from which we selected only the tumour-specific genes
(Supplementary Data 12) using a published gene list5. This
analysis showed that SOX10 suppression resulted in RTK I-to-
MES transition in the LN229 and ZH487 cell lines. We confirmed
this finding applying the proneural (PN), mesenchymal (MES)
and classical subtype gene signatures that selectively account for
tumour cell-intrinsic effects (Fig. 5d and Supplementary Fig. 5b).
Consistent with this finding, VIPER-inferred activity levels of the
RTK I (n= 3, excluding SOX10) and MES (n= 15) MRs
correlated with the control and SOX10 KD conditions (Supple-
mentary Fig. 5c). The observed RTK I-MES transcriptomic
transition was accompanied by increased cell invasion in trans-
well invasion assay and organotypic ex vivo brain slice assays35

(Supplementary Fig. 5d, e), suggesting that an RTK I-to-MES
transition had indeed occurred.

SOX10 repression remodels the glioblastoma enhancer land-
scape. SOX10 has been implicated as a chromatin modifier36–38,
suggesting us that the effects of SOX10 loss in this RTK I-to-MES
transition may be mediated via chromatin changes. This was
supported by ATAC-seq analyses showing that chromatin
accessibility significantly (two-sided t-test) decreased at RTK I
MR loci including SOX10, SOX8 and ERBB3, and increased at
MES MR loci such as RUNX213, FOSL2 and SERPINE1 following
SOX10 suppression (Supplementary Data 13, 14). Consistently,
SOX10 binding sites identified in ChIP-seq data were pre-
ferentially located in genomic regions with increased accessibility
in the control rather than in SOX10 KD cells (89% vs. 49%)
(Fig. 5e and Supplementary Fig. 6a). Differential motif enrich-
ment analysis of these ATAC-seq regions found enrichment of
SOX motifs (SOX9, SOX10, SOX3, SOX4, SOX15, SOX2, SOX17)
in control, and predicted MES MR motifs (Fosl1/2, Jun-AP1,
RUNX, TEAD) in SOX10 KD cells (Fig. 5f and Supplementary
Fig. 6b).

ChromHMM annotation of ATAC-seq peaks revealed chromatin-
accessibility changes to preferentially affect enhancer, but not TSS,
states (Fig. 5g), indicating the importance of enhancers for subtype
identity and agreeing with our analysis of subtype LMRs (Fig. 2).
To verify that SOX10 binds to active enhancers in RTK I cells,
we analysed the occupancy of Bromodomain containing 4

(BRD4) protein, a marker of active enhancers39. Mapping of BRD4
binding to the ATAC-seq regions showed redistribution of BRD4
following SOX10-mediated changes in chromatin accessibility,
confirming the remodelling of the active enhancer landscape (Fig. 5e).
JQ1 inhibition of BRD4 binding was sufficient to block up-regulation
of the MES MR RUNX2 following SOX10 KD, suggesting that the
RTK I-to-MES transition is dependent on enhancer dynamics
(Supplementary Fig. 6d–f). Co-immunoprecipitation (Co-IP) con-
firmed that SOX10 and BRD4 physically interact (Fig. 5h), and
SOX10 binding sites showed strong BRD4 binding and histone
modifications typical of active enhancers (Fig. 5i and Supplementary
Fig. 6c), suggesting that SOX10 recruits this co-factor to RTK I active
enhancers. Consistent with this hypothesis, we observed loss of BRD4
binding and chromatin accessibility at regulatory regions of RTK1
genes following SOX10 repression (Fig. 5j, k).

In summary, these results suggest that SOX10 maintains the
RTK I cellular state via direct regulation of RTK I genes. Loss of
SOX10 results in chromatin accessibility changes, enhancer
remodelling and the release of BRD4 from RTK I enhancers. At
this point it remains unclear, which factors are recruiting BRD4
to MES enhancers, leading to the manifestation of the MES
cellular state.

SOX10 repression results in mesenchymal phenotype in vivo.
The mesenchymal subtype of glioblastoma has been associated
with increased tumour cell invasion and immune cell infiltration
in patients5,9. We therefore turned to a recently established
immunocompetent syngeneic graft mouse model of glioblastoma
with the genetic background of neural stem-cell specific Pten/
Tp53 double knockout40,41 to investigate the role of SOX10 in
these phenotypes. Repression of SOX10 resulted in faster in vivo
tumour growth and a highly significant decrease in median sur-
vival time of engrafted mice (NT: 104 days, n= 10; SOX10 KD:
63 days, n= 9; P < 0.001, Fig. 6a–c).

H&E staining of whole-brain sections showed that control
tumours exhibit a fairly defined area of the tumour bulk and a
marginal zone of tumour cells invading the surrounding tissue
while in the case of SOX10 KD cells tumour boundaries appear
more disrupted (Fig. 6d). This impression was supported by
staining of GFP, which is expressed only in the tumour cells,
showing better-defined tumour margins in control than in
knockdown tumours (Fig. 6e). These findings suggest possible
increased invasion of the surrounding normal tissue by tumour
cells after SOX10 repression, consistent with our in vitro trans-
well invasion and organotypic ex vivo brain slice assays
(Supplementary Fig. 5d–f).

RNA profiling of microenvironment-related genes revealed
increased expression of markers for TAMs and resident microglia

Fig. 3 Core regulatory circuitry analysis identifies primary glioblastoma subtype Master Regulators. a Superenhancer (SE) identification using
glioblastoma subtypes’ H3K27ac profiles. Left: Hockey stick plots showing enhancers (x-axis) ranked by their H3K27ac intensity (SES-normalised values,
y-axis) are shown for the four subtypes. Selected SEs are labelled with their target genes. Centre: Exemplary subtype SEs, with mean subtype H3K27ac
profiles for CALCRL (IDH), TGFBI (MES), GPR17 (RTK I) and EGFR (RTK II). Subtype SEs are depicted as coloured bars below each H3K27ac profile. Right:
RNA-seq gene expression (log2 TPM+ 1) for the indicated genes, by subtype, visualised as Tukey boxplots. IDH, n= 12; MES, n= 19; RTK I, n= 12; RTK II,
n= 17 samples. Boxes correspond to the 25th, 50th/median and 75th percentiles; whiskers denote 1.5× the IQR from the median. Points mark outliers
beyond 1.5× IQR. b Tukey boxplots showing the gene expression log FC (limma) for target genes of each subtype SEs (defined by ANOVA on H3K27ac
signal, minimum log fold change 1, Benjamini–Hochberg adjusted P-value= 0.1), comparing expression in that subtype to the average of the other 3. Mean
log FC is indicated by the white diamond; n indicates the number of target genes; Boxes correspond to the 25th, 50th/median and 75th percentiles;
whiskers denote 1.5× the IQR from the median. Points mark outliers beyond 1.5× IQR. ***Two-tailed t-test, P-value <2.2 × 10−16. c Selected gene signature
enrichment results for the target genes of each subtype’s SEs. The size of each circle corresponds to the ratio of SE target genes in that gene signature,
while the colour represents the adjusted P-value. d Overview of subtype Master Regulator (MR) identification. Firstly, 56 MRs were predicted with
CRCmapper on the tumour H3K27ac profiles (n= 20). We extended this MR activity inference to the full tumour cohort (n= 60 samples) using VIPER to
predict these 56 MRs’ activity within a gene regulatory network inferred in the TCGA cohort (n= 525 samples). In total, 38 subtype MRs were identified.
e Heatmap showing the mean subtype activity for each MR (n= 38).
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(Aif1, Itgam, Cd68 and Cx3cl1), and macrophage M1/M2
polarisation (Cd80 vs. Cd163) in knockdown tumours (Fig. 6f).
In addition, immunohistochemistry staining identified increased
numbers of Aif1 (Iba1) positive cells in SOX10 KD compared to
control tumours (Fig. 6g). At the tumour margins, Aif1-positive
cells showed a microglia-like morphology while they appeared

more roundish in the tumour bulk (Fig. 6g, top vs. bottom row).
In agreement with the RNA expression data, quantification of
Aif1 staining showed an increase in tumour-associated macro-
phage infiltration in the SOX10 KD tumours (Aif1 positive area:
NT: 4.57%; SOX10 KD: 17.11%; 10 fields of view in 3 tumours in
each condition; P < 0.001) (Fig. 6h). In summary, these results
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show that SOX10 repression causes a phenotypic switch to a
mesenchymal state in vivo, resulting in increased immune-cell
infiltration and significantly decreased survival time.

Finally, we returned to our primary tumour data to find
evidence of SOX10-associated RTK I-to-MES transition in the
RTK I and MES patient samples. Clustering of the 5000 most
variable microarray probes in these 31 tumours identified
2 subtype clusters showing a gradient of methylation (Fig. 7a).
We found that SOX10 expression is higher in RTK I than in MES
tumours, and observed the same trend in proneural and MES5

gene expression (Fig. 7b–d). In agreement with results in vivo,
MES tumours also exhibited higher myeloid marker gene
expression than in RTK I (Fig. 7e). The differential H3K27ac
enrichment of RTK I and MES SEs, the expression of SE-defined
subtype identity genes and MR activity of the RTK I and MES
MRs identified in the CRC analysis also correlated with this
methylation gradient (Fig. 7f–h). In addition, the RTK I and MES
tumour patients of our study cohort showed significantly
different patients’ survival, and low SOX10 expression in MES-
subtype glioblastoma of the TCGA cohort significantly correlated
with adverse prognosis (Fig. 7i, j). These data add further support
to the concept of a gradient of SOX10-dependent molecular and
phenotypic characteristics in human glioblastoma.

Discussion
In this study, using chromatin and transcriptome gene regulatory
network analyses, we show that glioblastoma subtypes have dis-
tinct enhancer landscapes and Master Regulator (MR) reper-
toires. In patient-derived and adherent cell line models, we found
that SOX10 is an RTK I MR, and that its repression results in a
transcriptomic and phenotypic RTK I-to-MES transition via
remodelling of the enhancer landscape. Finally, we demonstrate
that repression of SOX10 in an advanced syngeneic mouse model
has a major effect on in vivo phenotypes, including altered
growth patterns, increased immune cell content and a significant
decrease in survival.

Past methylome studies of glioblastoma have used microarray2,3

or RRBS9 data that sample a relatively small proportion of the
genome. In contrast, our study generated WGBS data from a large
number of glioblastoma primary tumours, which allowed us to
analyse CpG methylation genome-wide, and describe subtype
methylation differences that could not previously be appreciated.
We found that the G-CIMP hypermethylation characteristic of
IDH glioblastoma is not limited to CpG islands, but affects all
genomic features and functional chromatin states. Furthermore,
our analysis highlighted the importance of LMR and enhancer
methylation for differentiating glioblastoma subtypes.

We next identified the MRs that operate within these enhancer
landscapes using complementary analyses of chromatin and tran-
scriptome data generated from primary patient samples, providing
the most comprehensive analysis to date. Previously, smaller

studies had already provided evidence for the importance of
enhancers and bivalent promoters for subtype identity42,43; how-
ever, these studies used RNA transcription-based subtype classifi-
cation schemes that did not differentiate between IDHwt and IDH-
mutated proneural-subtype tumours, or included the meanwhile
abandoned concept of a “Neural” subtype of glioblastoma2,4. These
classification schemes are only partially consistent with current
concepts of glioblastoma subtyping1–3,5–7,44,45 and their findings,
therefore, difficult to relate to ours.

We validated our subtype MR predictions using published
scRNA-seq data from IDHwt tumours25. Using this approach, we
could separate cell states corresponding to normal cells and the
three IDHwt glioblastoma subtypes. Recent single-cell studies of
glioblastoma have proposed a variety of cell state models5,16,18,25,26.
However, xenotransplantation studies have demonstrated that even
a single glioblastoma cell can regenerate the cellular heterogeneity of
the parent tumour16. Our analysis implicates enhancers and sub-
type MRs as key contributors to this cell state plasticity.

Our complementary analyses identified 10 high-confidence,
consensus subtype MRs. We selected the RTK I MR candidate
SOX10 for functional characterisation. SOX10 is a member of the
developmentally important SRY-related HMG-box containing
(SOX) family of TFs46. In the CNS, SOX10 is an oligodendrocytic
marker gene, and its activity is an example of tumour cells co-
opting a developmental pathway to escape the terminal cell dif-
ferentiation state34,47. In melanocytes, SOX10 binds promoters
and distal elements48 and can recruit chromatin-modifying co-
factors such as SMARCA438 and Chd736.

We found that SOX10 maintains the RTK I transcriptomic
state via regulation of subtype genes and its loss caused a shift to a
mesenchymal phenotype. This transition is dependent on
enhancer remodelling, as demonstrated by blockade of BRD4
activity using JQ1 inhibition, a phenomenon that was first
described in recurrent glioblastomas10. Interestingly, recent data
suggest that the reverse, MES-to-RTK I transition might be forced
by depletion of the AP1 transcription factor FOSL1 in an NF1-
mutant model49, supportive of a high level of plasticity of subtype
identities. Other work has shown that RTK I-to-MES transition
can be induced by therapy and correlates with resistance devel-
opment50–54. Recent data indicate that MES glioblastoma has the
worst prognosis of all subtypes5,9,18,42. Our in vivo results suggest
that loss of SOX10, leading to changes in myeloid cells, may be
the underlying cause of this decrease in survival, an interpretation
consistent with the correlation of low SOX10 expression and
adverse survival that we observed for human MES-type glio-
blastoma patients.

Notably, loss of SOX10 has also been linked to adverse out-
comes in other neural crest-derived tumours. For example, its loss
in melanoma leads to transcriptome rewiring and drug resis-
tance32. It is striking that neural crest cells undergo an analogous
mesenchymal transition during normal development, suggesting

Fig. 4 Validation of core regulatory circuitry Master Regulator predictions using glioblastoma single-cell RNA-seq. a Pseudotime trajectory inferred
with monocle using QC-filtered single cells from the Darmanis (2017)25 glioblastoma dataset. At top, the cells are coloured by the inferred pseudotime
state. Below, cells are coloured by their source sample in the original study. b Assignment of glioblastoma subtype and normal cell identities to pseudotime
states. Normal brain cell type signature scores (McKenzie et al., 2018)28; median scores are indicated by the white diamond; left), and subtypes assigned
based on the VIPER-inferred activity of CIMP- CRC MRs (n= 25 analysable MRs) in the TCGA gene regulatory network were calculated for each cell.
c Visualisation of relative MR activity (SREBF1, ubiquitous, top left; CEBPA, MES, top right; SOX10, RTK I, bottom left; NR3C1, RTK II, bottom right) on the
pseudotime trajectory. The scaled VIPER NES was calculated for each MR using each cell’s expression profile and the RTN-derived regulons. d Heatmap
visualisation of VIPER NES for the n= 28 CIMP- subtype CRC MRs, split by state. Each column corresponds to a single cell and is annotated with the
source tumour sample. Within each state, samples were clustered by their activity profiles. The dashed white line delineates two subpopulations of cells in
state 5 with differing MR activity. e tSNE projection of the MES tumour and TAM/microglial single cells in pseudotime state 5 (n= 2112) using the MES
CRC MR (n= 13) activity matrix. Each cell is coloured by its relative expression of the macrophage markers AIF1 (left) and PTPRC (right). f As in (e), but
coloured by the scaled MR activity (VIPER NES) of FLI1 (left) and STAT3 (right).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20225-w ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6434 | https://doi.org/10.1038/s41467-020-20225-w |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


that even in highly divergent tissues, hijacking of common
developmental pathways by cancer can occur46,55.

Neural lineage development has been shown to be regulated by
sequentially interacting SOX transcription factors56, including
SOX2, a reported marker of the proneural glioblastoma subtype
and regulator of cell plasticity and astrocytic differentiation57,58.

In our tumour cohort, SOX2 RNA-expression was about 2× lower
in MES compared to other subtypes, but still remained at a very
high level, about 3× higher than in normal brain. Furthermore,
SOX2 showed strong H3K27ac activation in all glioblastoma
subtypes (Fig. 3a), and its RNA expression did not significantly
change in the SOX10 knockdown models. We therefore have no
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evidence on RNA-level to support a subtype-specific role of SOX2
or its relevance in the context of RTK I-to-MES transition
induced by the loss of SOX10.

In extensive studies of murine neural developmental pathways
and their potential role in human gliomagenesis, SOX9-
dependent activation of the transcription factor nuclear factor
I-A (NFIA) was shown to antagonise SOX10 function and result
in astrocytic differentiation of the tumour cells33,34. Although we
identified SOX9 as an RTK II MR (Fig. 5a) and observed con-
sistent upregulation of SOX9 in our SOX10 knockdown models,
loss of SOX10 for unknown reasons did not result in the upre-
gulation of NFIA RNA expression. This possibly provides an
explanation to why we observed RTK I-to-MES rather than RTK
I-to-RTK II transition after SOX10 suppression (Fig. 5d and
Supplementary Fig. 5b).

Our subtype MR analysis identifies many candidates beyond
SOX10 that are known to play roles in CNS development, sug-
gesting a model in which MR activity maintains and interacts
with genetic and epigenetic factors to define a glioblastoma cell
state. Evidence of plasticity, such as genetic, epigenetic and reg-
ulatory features of RTK I-to-MES transition, can be readily
visualised in the multiple layers of data that we generated from
primary tumours. The role of tumour cell-extrinsic components
such as the microenvironment will add further complexity to this
tumour cell-intrinsic plasticity, as suggested by our in vivo
experiments. In this context, elucidating the mechanisms that
promote myeloid-cell invasion and immune suppression will be
of particular clinical relevance for the development of immu-
notherapy approaches. These findings are mirrored by a recent
publication showing that knockdown of SOX10 is sufficient to
convert a cell from melanocyte-like to mesenchymal-like in
melanoma, and demonstrating that microenvironmental cues
likely play a critical role in regulating melanoma cell state59. If, as
is increasingly plausible, subtype plasticity contributes to therapy
failure in glioblastoma, drug combinations simultaneously tar-
geting both tumour cell growth and epigenetic plasticity may
block the escape of cancer cells to a therapy-resistant state and
thus lead to improved patient outcomes.

Methods
Primary tissue samples. Snap-frozen primary glioblastoma tumour samples and
clinical data were collected at the time of primary diagnosis between 1994 and 2011
at the Burdenko Neurosurgery Institute (Moscow, Russia). Informed consent was
obtained from all patients. Use of the material and clinical data for this study was
approved by the ethics board at the Burdenko Neurosurgery Institute (Moscow,
Russia). The patient cohort consisted of 32 males and 28 females with an average

age of 52.5 ± 11 years (mean and standard deviation). Patients with IDH-subtype
tumours tended to be younger than patients with tumours of the MES, RTK I and
RTK II subtypes (42.6 ± 9.5 vs. 55.0 ± 9.9 years; mean and standard deviation).
IDH1/2 mutation status were determined using either pyrosequencing or Sanger
sequencing60,61. Samples of post-mortem normal brain were purchased from
Biocat (Heidelberg, Germany).

Cell lines and cell culture details. The human glioblastoma cell line LN229 (p53
mut, PTEN wt, p16 del; established from a white, 60-year old female in 1979) was
obtained from ATCC (Cat#CRL-2611) and cultured in DMEM supplemented with
10% FCS, Penicillin/Streptomycin and glutamine. ZH487 patient-derived glio-
blastoma cells were established at the University of Zurich Hospital. ZH487 cells
were cultured in Neurobasal medium (Cat#12348017, NBM) supplemented with
2% B27 (Cat#12587010, retinoic acid-free, Invitrogen), EGF (20 ng/ml, AF-100-15,
Peprotech), FGF (20 ng/ml, Cat#100-18B, Peprotech) and glutamine (0.5 mM).
HEK293T cells were used for lentivirus production and maintained as monolayer
cultures in antibiotic-free DMEM supplemented with 10% FCS. All cells were
cultured under 10% CO2 at 37 °C with humidity. Cell line identities were verified
by the Multiplex human Cell line Authentication Test (MCA), and cells were tested
for mycoplasma contamination with the Multiplex cell test (both Multiplexion
GmbH, Friedrichshafen, Germany).

In vivo syngeneic mouse model. Animal experiments performed for this study
comply with all relevant ethical regulations and were approved by the Regier-
ungspräsidium Karlsruhe, Germany (reference no. G-156-15). The primary mouse
glioblastoma cell line with Pten/Tp53 double knockout was established by the lab of
Prof. Peter Angel in the German Cancer Research Center (DKFZ)40,41. mGB1 cells
were characterised as the Proneural/RTK I subtype based on RNA-seq profiling
with high SOX10 expression. mGB1 cells were culture at 37 °C in DMEM/F12
medium supplement with N2 supplement, EGF (20 ng/ml), FGF (20 ng/ml),
Penicillin/Streptomycin and glutamine. SOX10 knockdown was carried out using
lentivirus transduction with the shSOX10 (TRCN0000244290, Supplementary
Table 3). All cells were Puromycin selected and SOX10 knockdown level was RT-
PCR validated before injection; 200k cells (shNT and shSOX10, in 1 µl volume)
were intracranially injected into adult C57/B6 mice (6 weeks female) brain under
anaesthesia with Isoflurane. MRI scanning was performed in the DKFZ MRI core
facility on 57 days post-injection.

Whole genome bisulphite sequencing (WGBS). Primary GB whole-genome
bisulphite library preparation was carried out as described previously20. Briefly,
5 μg of genomic DNA was sheared using a Covaris device. After adaptor ligation,
DNA fragments with insert lengths of 200–250 bp were isolated using an E-Gel
electrophoresis system (Life Technologies) and bisulphite converted overnight
using the EZ DNA Methylation kit (Zymo Research). The fragments were PCR
amplified using the FastStart High Fidelity PCR kit (Roche) for 6–8 cycles. Library
aliquots were then purified and size selected with AMPure beads (New England
BioLabs) and quality controlled with a Bioanalyzer (Agilent). Each library was
sequenced using 2 lanes on an Illumina HiSeq 2000 in the DKFZ Genomics and
Proteomics core facility.

Whole genome sequencing (WGS). DNA (500 ng per sample) for whole genome
sequencing were submitted to the DKFZ Genomics and Proteomics core facility

Fig. 5 SOX10 is a Master Regulator of the RTK I subtype. a Consensus Master Regulators. b Correlation of DNA methylation and SOX10 expression within
the SOX10 gene body. Boxes in Tukey plots correspond to the 25th, 50th/median and 75th percentiles; whiskers denote 1.5× the IQR from the median. Points
mark outliers beyond 1.5× IQR.IDH, n= 12; MES, n= 19; RTK I, n= 12; RTK II, n= 17 samples. c Epigenome landscape of SOX10 in glioblastoma. Per-sample
methylation (WGBS beta, top) and subtype mean H3K27ac intensity (SES-normalised, bottom) are shown. d GSEA plots showing enrichment of proneural
and mesenchymal gene signatures in control and SOX10 KD LN229 cells. Upper row: limma subtype signatures of tumour cell-specific gene expression;
lower row: tumour cell-specific signatures of Wang et al. (2017)5. GSEA-calculated statistics for gene set enrichment are shown. P-values (all < 0.001) and
FDR values were computed empirically using a permutation test (n= 1000 permutations) based on the enrichment score. e EnrichedHeatmap visualisation
of genome regions with differential chromosome accessibility in LN229 control and SOX10 KD cells, as identified by ATAC-seq analysis. SES-normalised
signals of SOX10 ChIP-seq, ATAC-seq and BRD4 ChIP-seq are displayed. Signal intensity is shown in the blue–red heatmaps, where each row shows a single
ATAC peak, as indicated by the vertical dashed lines, and 1 kbp further 5′ and 3′. The lineplots at the top of each heatmap display the mean signal intensity
across all the regions in that category (control: green; SOX10 KD: blue). f Volcano plot of de novo motif finding with HOMER from the differentially bound
ATAC-seq peaks in LN229 cells. The significantly enriched motifs are labelled. g ChromHMM annotations of LN229 ATAC-seq peaks. Active TSS (E01–E04)
and Enhancer (E07–E11) states in the NT (left) and SOX10 KD conditions (right) are shown. h Western blot of SOX10 and BRD4 co-immunoprecipitation in
the cell line LN229 (two independent experiments). i Factor co-occupancy at SOX10 peaks in LN229. The SES-normalised signal for peak regions and 1 kbp
up and downstream for SOX10, BRD4, H3K27ac, H3K4me1 and H3K4me3 were separately scaled. j, k Changes in SOX10 and BRD4 binding and ATAC-
measured chromatin accessibility at the RTK I subtype genes SOX10 (j) and ERBB3 (k). SES-normalised ChIP-seq and ATAC-seq signal is shown in the NT
and SOX10 KD conditions in the LN229 (top) and ZH487 (bottom) cell lines. The boxes indicate regulatory regions where SOX10, BRD4 and ATAC-seq
signal change in a co-ordinated manner.
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and the library preparations were carried out using the standard protocol from
Illumina. Each library was sequenced using 1 lane on an Illumina HiSeq X Ten.

RNA sequencing. Primary GB RNA-seq libraries were prepared as described using
methods to preserve strand specificity and deplete rRNA. Sequencing was carried
out on the HiSeq 2000 platform with 1 lane per sample. All samples profiled by
WGBS sequencing, WGS, 450k/Epic methylation microarray and RNA sequencing
were genotyped in silico to exclude sample swaps.

RNA-seq of GB cell lines (LN229 and ZH487, Control vs. shOX10) were
performed using the polyA-selected RNA-seq libraries preparation protocol with
the TruSeq stranded RNAseq Illumina kit by the DKFZ genomics & Proteomics
core facility. Libraries were multiplexed-sequenced using 1 lane on a HiSeq 2000
v4, generating 50 bp single-end reads. RNA-seq libraries preparation of mouse
tumour samples (shNT, n= 3; shSOX10, n= 5) were also used in the above
mentioned PolyA protocol. Libraries were multiplexed-sequenced using 2 lanes on
a HiSeq 2000 v4, generating 50 bp single-end reads.
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ChIP-seq. Then, 10 µg each of H3K27Ac (Cat#AM39133, Active Motif), H3K4me1
(Cat#AM38297, Active Motif), H3K4me3 (Cat#AM39159, Active Motif),
H3K9me3 (Cat#AM39161, Active Motif), H3K27me3 (Cat#07-449, Millipore) and
H3K36me3 (Cat# AM61101, Active Motif) were used for ChIP library preparation
of GB patient samples, which was performed at Active Motif according to pro-
prietary methods. Libraries were multiplexed so that all libraries for each individual
IP were sequenced on 1–4 lanes using the Illumina HiSeq 2000 platform. For the
LN229 histone mark experiments, LN229 cells (LN229-shSOX10 without (Control)
or with doxycycline induction of SOX10 knockdown) were cross-linked with 1%
methanol-free formaldehyde for 10 min. After quenching with glycine, cells were
washed three times with PBS and the cell pellet was treated with 4 U MNase per
1 × 106 cells for 15 min. MNase was stopped with 10× Covaris buffer and the
chromatin was sheared for an additional 15 min with the LE220 Covaris device.
The soluble chromatin was then recovered, quantified, and 2 µg chromatin was
used in each immunoprecipitation (IP) with 2 µl each of each antibody (as above).
Following the IP and washes with Covaris buffer, Li-buffer and TE, chromatin was
digested with proteinase K and purified with AMPure beads. The purified DNA
was cloned into illumina sequencing libraries with the NEBNext Ultra library
preparation kit (NEB) according to standard protocols. For SOX10 and BRD4
ChIP-seq experiments, cells were cross-linked with 1% methanol-free for-
maldehyde for 15 min and quenched with 0.125M glycine. Chromatin was isolated
by adding lysis buffer and Dounce homogenisation. Collected chromatin was
sheared via sonication to an average length of 300–500 bp. Input genomic DNA
was prepared from collected chromatin by treatment with RNase, proteinase K and
de-crosslinking under heat, and then isolated by ethanol precipitation. Pellets were
re-suspended and DNA quantified on a NanoDrop spectrophotometer. Estimated
total chromatin yield was calculated based on this amount; 30 µg of chromatin was
pre-cleared with protein A agarose beads (Invitrogen), and DNA precipitated using
4 µg of antibody against SOX10 or BRD4. This DNA was isolated from the beads
by washing followed by SDS buffer elution, RNase/proteinase K treatment and de-
crosslinking under heat (65 °C overnight incubation). DNA was then purified using
phenol-chloroform extraction and ethanol precipitation. Sequencing libraries were
prepared and input DNA via standard protocols (enzymatic end-polishing, dA-
addition and adaptor ligation) on an Apollo 342 NGS Library Prep system
(Wafergen Biosystems/Takara). Prepared libraries were then sequenced (50 bp,
single-end) on an Illumina HiSeq 2000.

ATAC-seq. ATAC-seq was performed in biological duplicates, as previously
described62. Briefly, viable frozen cells were incubated with Tn5 in 0.1% Igepal CA-
630 (37 °C, 30’). Transposition was stopped with EDTA and DNA purified using
AMPure beads. After DNA purification, barcodes were added using PCR and DNA
re-purified on AMPure beads. These prepared libraries were then sequenced
(50 bp, single-end) on an Illumina HiSeq 2000.

Gene expression microarray profiling of cell lines. DNase-treated total RNA
(500 ng) was prepared for gene expression profiling on Affymetrix HG-U133-Plus2
and Illumina HumanHT-12 v4 Expression BeadChip microarrays at the DKFZ
Genomics & Proteomics Core Facility. The GSEA results from Fig. 5d and Sup-
plementary Fig. 5b were generated with the microarray data from the Affymetrix
Human U133Plus 2.0 platform. For LN229 cells, the control group included the
non-treated control and non-targeting sgRNA control, and for the SOX10
knockdown group, three guild RNA targeting SOX10 were used. For ZH487 cells,
non-treated control and shNT was used as control with biological replicates and
three shSOX10 shRNA were used to achieve SOX10 repression also with biological
replicates.

Methylation microarray data processing and CNV calling. Here, 450k and EPIC
DNA methylation array data were processed and analysed as previously descri-
bed44 using the minfi (1.24.0)63 and conumee (1.3.0)64 Bioconductor packages. In
brief, > 500 ng of DNA from snap-frozen samples was used as input material. minfi
was used to extract raw signal intensities from IDAT files, and both colour channels

corrected for background and dye-bias. Beta values were calculated using an offset
of 100. CNVs were called using the standard conumee procedure, using two sets of
50 control samples with balanced CN profiles. Copy number aberrations were
called from the conumee-processed values using the following numerical thresh-
olds: for x <−1, as a deletion; −1 < x <−0.2 as a loss; −0.2 < x < 0.2 as no copy
number change; 0.2 < x < 1 as a gain; x > 1 as an amplification.

Subtype classification of patient samples using methylation microarrays.
From the previous GB classification,3 8000 probes (Supplementary Data 6) were
used to cluster the methylation microarray data. We used only probes that appear
on both 450k and EPIC microarrays (n= 7386). The methylation beta value matrix
was used to calculate the sample pairwise Euclidean distance. This distance matrix
was then used to hierarchically cluster samples using the ‘ward.D’ method.

Clustering of MES and RTK I patient sample methylation microarrays. The
MES (n= 19) and RTK I (n= 12) glioblastomas were clustered together (Fig. 7) to
identify substructure in these subtypes. The 5000 most variable probes (by SD)
were selected and the samples and probes hierarchically clustered using the
Euclidean distance and the ‘ward.D’ method.

RNA-seq processing and expression quantification. Reads were aligned to the
appropriate reference genome (hg19/mm10) with the Gencode reference tran-
scriptome (v19/M2) using STAR (v2.3.0e). Read counts for each gene were
quantified as the total number of reads mapping to exons using htseq-count (0.6.0)
for human or featureCounts (Subread v1.5.3) for mouse samples. Gene expression
values for each sample were quantified using the transcripts per million (TPM)
metric.

Tumour RNAseq and limma subtype gene signature analysis. Raw read counts
per gene were pre-filtered, retaining those genes with > 10 reads in > 6 samples for
further analysis. Normalisation factors for the counts were calculated using the
calcNormFactors function in ‘edgeR’ (3.20.1). voomWithQualityWeights from
‘limma’ (3.34.4) was used to transform the raw counts. limma differential
expression analysis was used to compare the gene expression of each GBM subtype
versus the other 3 (example contrast: IDH / ((MES+ RTK I+ RTK II)/3)). Genes
were defined as significant for a subtype if they passed a BH adjusted P-value
threshold of 0.001. Signatures from isolated mouse normal brain cell populations63

were used to compare subtypes to normal cell populations, and to GB subtype
signatures. The enrichment of each gene set was tested in our samples using the
‘ssgsea’ method of the ‘GSVA’ R package (1.26.0), using TPM expression values.
ESTIMATE65 (1.0.13) was used with default settings to determine immune and
stromal cell content. Genes specifically up-regulated in a subtype (log FC > 0, adj.
P-value < 0.05) were functionally annotated with Gene Ontology terms (“org.Hs.eg.
db”, 3.5.0) using the enrichGO function from the R package “clusterProfiler”
(3.6.0). MR activity in network A was inferred using the ‘R’ package VIPER (1.14.0;
see below for further details).

WGBS processing. For each sample, reads were mapped to the human genome
(hg19) with bwa-mem (0.7.8) with a customised WGBS pipeline20. CpGs over-
lapping variable sites with a minor allele frequency higher than 0.25 were removed.
Low coverage CpGs with 2 or fewer reads in more than 50% of the cohort were also
removed from the analysis. The mean methylation of the two cytosines in a CpG
dinucleotide (one C on forward strand and the other on reverse strand) was
calculated by weighting their CpG coverage, i.e. m= (m1*c1+m2*c2)/(c1+ c2),
where m1 and m2 are the number of methylated CpGs of the two neighbouring
cytosines and c1 and c2 are the corresponding CpG coverage. Similarly the mean
coverage for the CpG dinucleotide is calculated by weighting the coverage itself:
c= (c1*c1+ c2*c2)/(c1+ c2). Finally, the bsseq R package (1.10.0) was applied to
smooth the methylation data and impute the missing methylation values with
default parameters.

Fig. 6 Loss of SOX10 induces a mesenchymal phenotype in vivo. a Representative MRI images of mouse brains bearing control (left) and SOX10 KD
(right) tumours, taken 57 days post cell injection. b Median tumour volumes (µl) measured using MRI 57 days post-injection. NT: 1.85 µl, n= 10 animals;
SOX10 KD: 50.3 µl, n= 9 animals. One-sided t-test, P= 8.65e-5. Boxes in Tukey plots correspond to the 25th, 50th/median and 75th percentiles; whiskers
denote 1.5× the IQR from the median. Points mark outliers beyond 1.5× IQR. c Kaplan-Meier survival analysis. NT: median 104 days, n= 10 animals; SOX10
KD: median 63 days, n= 9 animals. Two-sided log-rank test, P= 4.89e-5. d H&E stainings of NT (left) and SOX10 KD (right) tumours were performed for
two animals per group. Scale bars indicate 200 and 100 µm in gross and detail views, respectively. e Staining of tumour margins in 2 control and 2 SOX10
KD tumours with DAPI and antibodies against GFP, which is expressed only in tumour cells. Scale bars correspond to 100 µm. f RNA expression of myeloid
and microglia marker genes in n= 3 (shNT) and n= 5 (shSOX10) tumours. Boxes in Tukey plots correspond to the 25th, 50th/median and 75th
percentiles; whiskers denote 1.5× the IQR from the median. Points mark outliers beyond 1.5× IQR. g Immunohistochemistry staining of Aif1 (Iba1) at the
tumour margin (top) and in the tumour bulk (bottom). Red boxes indicate the areas shown in close-up. Scale bar: 100 µm; two animals per group; 5 fields
examined in each animal. h Quantification of Aif1 (Iba1) staining. Aif1-positive areas were computed for 10 fields per sample and 3 samples per condition.
Mean ± standard deviation are shown; Two-sided t-test; P= 0.025.
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Fig. 7 Genetic and epigenetic patterns of RTK I-to-MES transition in primary glioblastoma tissues. a Clustering of the 5000 most variable microarray
probes in RTK I and MES tumours (n= 31) from our cohort identified 3 clusters consisting of RTK I tumours, MES tumours with intermediate genotypes
and MES tumours with typical MES genotypes. b SOX10 RNA-seq (log2 TPM+ 1) expression. c Wang PN and MES subtype signature ssGSEA score.
d Relative expression of Wang PN and MES subtype marker genes. e Relative expression of myeloid cell marker genes. f RTK I and MES SEs differential
H3K27ac enrichment (t-statistic) R. g Expression score of each subtype-specific SE’s target genes (MES: n= 422; RTK I: n= 279). h MR activity (VIPER
NES) of the RTK I (n= 4) and MES CRC MRs (n= 12). i Kaplan-Meier survival curves for the RTK I and MES subgroups, considering overall (left panel; P=
0.030) and progression-free survival (right panel; P= 0.060). j Kaplan-Meier survival curves for MES tumours (n= 132) of the TCGA glioblastoma cohort
stratified by average SOX10 expression. Overall survival (left panel; P= 0.036); progression-free survival, (right panel; P= 0.009). Group cut-off: average
expression; statistical significance was determined by two-sided log-rank test.
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Methylation feature (DMVs, LMRs, PMDs) analysis. The segmentation of the
methylation features, partially methylated domains (PMDs), lowly methylated
regions (LMRs) and DNA methylation valleys (DMVs) were performed by a
customised pipeline. Further details can be found in Supplementary Methods.
Briefly, chromosomes were split into blocks based on inter-CpG distance, and the
mean and standard deviations of methylation of each block used to classify seg-
ments into low, intermediate and high methylation separately for each sample.
DMVs and LMRs were then defined based on the characteristics of each block and
its neighbours. PMDs were called using MethylSeekR (1.14.0)66 with 10 kbp
minimum width. Subtype consensus regions (DMVs, LMRs, PMDs) were defined
as segments with a cross-sample coverage of at least 4. Neighbouring LMRs were
merged if the inter-LMR distance was less than 1 kb. Enrichments of other genomic
features (e.g. CGIs, ChromHMM annotations) were computed by calculating the
Jaccard Coefficient for the base-pair length of the two feature sets. This statistic was
compared to a background of 1000 CpG content-matched regions to calculate
z-scores and P-values for the enrichment. Classification of samples based on
methylation patterns (enhancer and LMR methylation) was done using a projec-
tion of the methylation matrix using uniform manifold approximation and pro-
jection (UMAP)67.

Subtype sharing methylation features. For each type of methylation features
(DMVs, LMRs, PMDs), consensus methylation features in each subtype were first
determined by selecting the genomic regions that occurred in more than 50% of
samples in that subtype. The extent of subtype sharing methylation features was
calculated as the fraction of the total width of regions that occur in 1, 2, 3 or
4 subtypes.

Chromatin state enrichment. For one set of methylation features and one set of
genomic regions with a certain chromatin state, the Jaccard coefficient was used as
the measurement of the overlap of two sets of regions, which was calculated as total
base pairs of the intersected regions divided by the total base pairs of union of the
two sets of regions. The significance of the Jaccard coefficient was calculated by
permuting the methylation features restricted in a specific genomic background
where the average CpG content was similar as in the methylation features. The
selection of background regions was applied as follows: The methylation features
were first split into small windows where the window size denoted as w was
calculated as the 25th quantile of all widths of the methylation features. w was
additionally rounded to the thousand digit. The window size is set to 10 kb if it is
larger than 10 kb, and it is set to 1 kb if it is smaller than 1 kb. To the fact that small
windows might cause bias for the calculation of CpG content due to the sparsity of
CpG distribution, windows with a width less than w/4 were removed. For all the
windows after filtering, the CpG content was defined as number of CpG sites per
1 kb window and denoted as p. To find proper background regions in the genome,
the genome was split by windows with width w and CpG content was calculated for
each window. Background windows with CpG content between the 5th percentile
and the 95th percentile of P were finally selected as background regions. The
methylated regions were randomly permuted within the background regions by
using bedtools (v2.27.1) for 1000 times. In each permutation, the Jaccard coefficient
was calculated. Finally, the z-score calculated as (s-μ)/σ was used as the mea-
surement of the enrichment, where s is the Jaccard coefficient for the two sets of
regions, μ and σ are the mean and standard deviation of the Jaccard coefficient in
the random permutations.

ATAC-seq and ChIP-seq processing. ATAC-seq and ChIP-seq datasets were
processed using a custom pipeline implemented in Snakemake (v. 3.13.3). Briefly,
reads were trimmed using the Trimgalore tool (https://github.com/FelixKrueger/
TrimGalore) and aligned using Bowtie268 (v. 2.3.4.3) with standard parameters.
Duplicates and multi-mapping reads were removed using the samtools package
and the XS flag in the bam files. For the ChIP-seq data, input control (tumours:
WGS; LN229: H3 ChIP-seq) and corresponding IP datasets were scaled using the
SES method and converted into a bigwig track using the bamCompare tool of the
deepTools2 suite69. For the ATAC-seq data, genome-wide coverage was calculated.
Peaks were called using the callpeak mode in MACS2 (v. 2.1.1.20160309) (https://
github.com/taoliu/MACS) for broad and narrow peaks. In addition, SICER70 was
used to call peaks using the gap 600 and window 200 parameters. Various QC
parameters (FRiP, PCR bottleneck coefficient, cross-strand correlation) were
determined according to the ENCODE guidelines71. In addition, visual QC was
performed using the signal profile at TSS of annotated genes and the fingerprint
method from the deepTools2 suite.

Chromatin segmentation with ChromHMM. Chromatin segmentation was
defined using the ChromHMM (v. 1.19) tool. ChIP-seq (H3K27ac, H3K27me3,
H3K36me3, H3K4me1, H3K4me3, H3K9me3) and corresponding input data were
binarized using ChromHMM’s “BinarizeBam” command. The Roadmap Epigen-
ome 18-state model19 was used to segment the genome of each sample. For the
tumours, the consensus state for a subtype was defined as the state with the highest
frequency in a given segment, and a minimum frequency of 50%.

Superenhancer analysis. The union of H3K27ac peaks for each subtype’s samples
were used as input regions for the ROSE2 superenhancer analysis pipeline,
stitching together regions within 12.5 kbp of each other. Sample H3K27ac signal
was calculated using ‘bigWigAverageOverBed’ (v2), and enhancers were ranked by
the subtype average enrichment. SEs were defined using the default parameters for
ROSE2. Subtype SEs were defined by combining all four subtype SE lists and then
performing ANOVAs on the H3K27ac signal intensities, with a minimum log fold
change of 1 and a Benjamini–Hochberg adjusted P-value threshold of 0.1. For
comparisons of MES and RTK I SE activity, two statistics were calculated. Firstly,
from the H3K27ac signal intensities, a t-statistic based on the relative distributions
of signal in the two subtypes’ SEs was computed. Secondly, subtype-specific SE lists
for MES (n= 422) and RTK I (n= 279) were defined as those SEs that have no
overlap with any other subtype’s SE. A “subtype-specific SE gene score” was cal-
culated using the mean expression of these targets. The comparison between SEs
and subtype LMRs were done by overlapping SEs and LMRs requiring a 50%
overlap of the LMR to count it as an overlap.

Core regulatory circuit analysis. Core regulatory circuits were determined using a
modified version of the CRCmapper tool72. Instead of assigning the SE to the
closest gene as implemented in the original CRCmapper tool, we computed the
Spearman correlation of the H3K27ac signal on the SE over all samples, with the
gene expression of all genes located within 500 kb around the SE across the same
set of samples, provided the SE and the gene are located in the same topological
associated domain (TAD). We assigned the highest correlated gene (within the
range and within the same TAD as the SE) as the SE target gene. The rest of the
CRCmapper procedure remains as implemented in the original tool: briefly, sets of
autoregulatory TFs are identified by selecting TFs that are target genes of SE (where
the target gene is determined as described above), under the condition that these
SEs contain binding motifs for the corresponding TF. Then, cliques of auto-
regulatory TFs are identified in which the SEs contain binding motifs for all other
TFs in the clique.

Gene regulatory network inference with RTN. Two cohorts of glioblastoma gene
expression microarray data were collected: A (from TCGA; n= 525 samples
profiled on the Affymetrix HT HG-U133A)2 and B (samples with the pathological
diagnosis “glioblastoma” in the metadata from the following five studies: E-MTAB-
3073, GSE4290, GSE7696, GSE16011 and GSE43378; n= 569 samples profiled on
the Affymetrix HG-U133A Plus2)73–77. The raw data were read into R and nor-
malised using the ‘gcrma’ package (2.50.0). Study-associated batch effects were
removed from cohort B using the ComBat function in ‘sva’ (3.26.0), specifying the
study ID as the ‘batch’ option. ‘RTN’ (2.3.4) was used for the following steps of the
analysis. Firstly, as the expression of any single gene can be measured by multiple
microarray probes, the probe with the highest coefficient of variation in the
expression matrix was kept for analysis. Regulatory relationships (‘edges’) between
n= 1333 TFs (classes ‘a’, ‘b’ and ‘other’ as defined in69) and target genes were
inferred using the ARACNe algorithm78. The direction of TF-target gene regula-
tion (positive or negative) was inferred using Pearson correlation. TF-target edge
P-values were calculated by permuting the Mutual Information matrix 1000 times,
retaining edges with a BH-adjusted P-value < 0.01. The network was bootstrapped
100 times and TF-target edges found in 95% of the bootstrap samples retained.
Finally, indirect TF-target edges were removed using the Data Processing
Inequality (DPI) filter with a tolerance of 0.

Identification of subtype Master Regulators with RTN. The limma subtype gene
expression signatures were used to pre-filter potential subtype MRs using the tna.
mra (BH adjusted P-value < 0.05) function in ‘RTN’. TFs passing the MRA pre-
filtering step were then tested in a 1-tail GSEA using the tna.gsea1 function, using
the limma-voom calculated log fold change as the GSEA phenotype. TFs regulating
fewer than 15 genes were removed. Significant TFs with a BH-adjusted P-value <
0.01 (tested in 10,000 permutations) were retained. Subtype MRs were then
identified using the 2-tailed GSEA test as implemented in the tna.gsea2 function,
using the limma-voom calculated log fold change as the GSEA phenotype and the
TF regulons inferred in the transcriptional network as the gene sets. TFs with a BH
adjusted P-value < 0.01 (calculated using 10,000 permutations) were called as sig-
nificantly active in that subtype. Common network MRs (n= 117) were defined as
those passing this significance threshold within the same subtype, with the same
direction of activity as measured by 2-tail GSEA differential Enrichment Score
(dES), in both networks. The 2-tail GSEA dES in the two networks were calculated
for each subtype signature for each of the consensus MRs. The results were
visualised with the ‘ComplexHeatmap’ package. Finally, the two networks (A and
B) were compared as follows: 2-tail GSEA dESs for each subtype signature were
calculated for all TFs in both transcriptional networks (n= 512). The correlation of
dESs between the two networks was calculated using Spearman’s rank correlation
and visualised using the ‘ggplot2’ package (2.2.1).

Single-cell RNA-seq analysis. The counts matrix from a published dataset
(GSE84465) was analysed using the ‘monocle’ (2.10.1) package in R (v3.5.1).
Briefly, the most variably expressed genes with a minimum mean expression of 0.1
were used to reduce dimensionality in a tSNE (first 4 principal components in 3
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dimensions, regressing out the number of genes detected and the patient of origin),
and cells clustered (ρ= 40, δ= 20). This cell clustering was used to identify genes
detected in at least 10% of cells and differentially expressed between clusters, and
the top 1000 ranked by statistical significance were used as the ordering genes for
pseudotime analysis (again regressing out the number of genes detected and the
source tumour). Normalised expression values (variance-stabilising transformed,
VST) were used in downstream analyses. Normal brain cell population signatures
(astrocytes, endothelia, microglia, neurons, oligodendrocytes) from McKenzie
et al.28 were used to score cells. Briefly, for each gene in a signature, a background
was defined consisting of the 100 genes with the smallest absolute expression
difference. This matched background was subtracted from the expression value for
each signature gene, and the sum of all of these background-corrected signature
gene expression values was defined as the score. The Bioconductor package ‘viper’
(v1.14.0)24 was used to infer single-cell MR activity. The VST-normalised
expression matrix was pre-filtered to remove genes with expression SD in the
bottom quartile. MR regulons from network A were used to calculate the VIPER
NES, and visualised in tSNE and pseudotime plots. MR activity profiles of VIPER
NESs were visualised in heatmaps using ‘ComplexHeatmap’ (1.18.1), using Eucli-
dean distance and the average clustering method. Subtype MR scores were defined
by transforming each MR’s NES into z-scores, and then calculating the mean for all
MRs of that subtype; the predicted subtype for a cell was the subtype with the
maximum mean z-score. Cells in pseudotime State 5 (MES, microglia) were
separated using tSNE (‘Rtsne’ 0.13) on the MES MR activity matrix inferred with
network A. Gene expression (VST-normalised) and MR activity (network A) were
visualised as for the pseudotime analysis. The RTK II MR ZBTB7C was not
included in this analysis since its regulon was too small in RTN network A, which
was used in this context.

Cell line expression microarray data processing and analysis. Raw Affymetrix
microarray data were read into R and normalised using the ‘gcrma’ R package
(2.50.0). Probes without an annotated gene were removed from the analysis, and
the batch effect removed using ComBat from the ‘sva’ package for the
ZH487 samples. Separately for each cell line model, samples were combined into
two groups: control (untreated and non-targeting controls) or knockdown. Stan-
dard ‘limma’ differential expression analysis between the control and knockdown
groups was performed, and genes with an adjusted P-value of < 0.05 were defined
as significantly dysregulated. MR activity was inferred using each sample’s pro-
cessed expression profile as input for VIPER (v1.14.0) analysis with network A.
limma-calculated log FC profiles from LN229 and ZH487 cell lines with and
without SOX10 repression were analysed by ‘GSEA’ (v3.0). Glioblastoma signature
gene sets (Verhaak_glioblastoma: Proneural, Neural, Mesenchymal and Classical)
were downloaded from the GSEA website (http://www.broadinstitute.org/gsea/).
Results were visualised using Volcano plots. The activity of the MES and RTK I
CRC MRs for these samples was calculated using VIPER and the RTN-inferred
TCGA network A (n= 525 samples), taking the average of replicates for each
condition; conditions’ MR activity profiles were clustered using the Euclidean
distance and the ‘ward.D2’ method. Significance analysis of TF activities upon SOX
KD (Fig. S5C) was done using a two-sided t-test to compare WT and SOX10 KD
TF activities for each TF.

ChIP-seq and ATAC-seq analysis. MACS2 peaks calls were used as the input set
of regions for this analysis in R (v3.4.3). For ATAC-seq, a consensus peakset was
defined from the two biological replicates for each condition by taking the merged
peaks generated by the findOverlapsOfPeaks function from the R/Bioconductor
package ChIPpeakAnno (3.12.4). Signal intensity was calculated using ‘bigWigA-
verageOverBed’, using the SES-normalised.bigWig file for the factor of interest and
the bed file of regions of interest, and visualised using the ‘EnrichedHeatmap’
package (1.9.2). Separately for the two cell lines, differential ATAC peaks were
identified using the R/Bioconductor package ‘DiffBind’ (2.6.6) using an FDR
threshold of 0.05. Peaks were functionally annotated based on the largest state
overlap in a comparison to LN229 cell line ChromHMM states. States were col-
lapsed to the following summary states: E01-E04 were defined as TSS; E07-E11
were defined as Enh.

ATAC-seq motif finding. HOMER (v4.9.1) de novo motif finding was used with
the default settings, apart from defining the background to be the union of ATAC
peaks in both conditions (control+ shSOX10) for that cell line.

Visualisation of genomic data. The circlize package (0.4.6)78 was used for the
circular visualisation of genome-wide methylation differences and chromatin states
transitions. The ComplexHeatmap package (1.19.1)79 is used for visualisation of
heatmaps and complex summary plots. The EnrichedHeatmap package (1.9.2)80 is
used for visualisation of epigenetic signals at genomic regions. Genome browser
views were visualised using the WashU Epigenome Browser or Gviz (1.22.3)81. The
epik package (https://github.com/jokergoo/epik) is used for general integrative
visualisation and analysis.

SOX10 knockdown systems. CRISPRi SOX10 knockdown LN229 cells were used
for gene expression microarray experiments; 20 nt sgRNA sequences were designed

using the CRISPR web design tool (http://crispr.mit.edu), targeting a genomic
window of −50 to +200 bp relative to the transcription start site as defined by the
NCBI RefSeq database. sgRNA oligonucleotides were cloned into a 5′ BstXI-BlpI 3′
digested backbone of a pU6-sgRNA EF1Alpha-puro-T2A-BFP expression plasmid
by adding additional sequences to obtain compatible sticky ends (see Supple-
mentary Table 3 for oligonucleotide sequences). Stable dCas9-expressing LN229
cells were transduced with lentivirus containing gRNAs targeting SOX10, or len-
tivirus containing negative guide RNA using an MOI of 2.5. Positive transduced
cells were selected with puromycin (1 µg/ml) for 48 h. SOX10 knockdown was
evaluated 4 days after viral transduction. Inducible SOX10 knockdown cells were
used in RNA-seq, ChIP-seq (SOX10, BRD4 and 6 histone marks) and ATAC-seq
experiments. Inducible SOX10 knockdown cells were established by infecting
LN229 cells with pLKO-Tet-On non-targeting (nt) shRNA and pLKO-Tet-On
SOX10 shRNA (TRCN0000018988) lentiviral particles and puromycin selection
(1 µg/ml) for 7 days. shRNA expression was induced by adding 1 µg/ml doxycy-
cline to the medium for at least 7 days. Cells were cultured in DMEM containing
1 g/l glucose (D5921, Sigma) supplemented with 10% tetracycline-free fetal bovine
serum (Clontech), 1% penicillin and streptomycin (P/S) mix and glutamine
(0.5 mM). SOX10 knockdown in ZH487 cells were carried out with constitutive
shRNA lentivirus infection system (shSOX10-1, 2 and 3) (see Supplementary
Table 3 for shRNA sequences).

RNA isolation, cDNA synthesis and qRT-PCR. Total RNA was isolated using the
RNeasy Micro kit (Qiagen) according to the manufacturer’s protocol; 1000 ng was
reverse transcribed using random hexamer primers and QuantiTect Rev. Tran-
scription Kit (Qiagen) according to manufacturer’s instructions. Each cDNA
sample was analysed in technical triplicate with the Applied Biosystems Prism
7900HT Fast Real-Time PCR System and Absolute SYBR Green ROX Mix
(ABgene). The relative amount of specific mRNA was normalised to levels of ARF1
and DCTN2 mRNA. Expression levels were calculated according to the ΔCt

method. Primer sequences are given in Supplementary Table 2.

ChIP-qPCR. For the LN229 BRD4 ChIP-PCR experiments, 10 million cells per
condition (doxycycline inducible system, control vs. SOX10-KD, DMSO treated vs.
JQ1 (500 nM, 6 h)) were cross-linked with 1% methanol-free formaldehyde for
10 min and quenched with 0.125M glycine. Chromatin was isolated by adding cell
lysis buffer (50 mM HEPES pH 7.9,140 mM NaCl,1 mM EDTA,10% glycerol, 0.5%
NP-40, 0.25%Triton-100) with protease inhibitor cocktail (Roche,
Cat#11836170001). Collected chromatin was sheared via sonication in low SDS
shearing buffer (0.1% SDS; 1 mM EDTA;10 mM Tris, pH 8.1) to an average length
of 300–500 bp with Covaris S2 system under the conditions indicated (Covaris
MicroTube; duty cycle 5%; intensity 4; cycle per burst 200, sonification time 5 min).
Input genomic DNA was prepared from collected chromatin by treatment with
RNase, proteinase K and de-crosslinking under heat, and then purified with the
QIAquick PCR purification kit (Cat#28106, Qiagen). Sonicated chromatin DNA
buffer was diluted by adding 10% Triton X-100 and 5M NaCl (final concentrations
of IP buffer: 0.1% SDS; 1 mM EDTA; 10 mM Tris, pH 8.1; 1% Triton-100; 150 mM
NaCl). The chromatin was pre-cleared with magnetic protein A/G beads (Cat
#CS204457, Millipore), and the samples subjected to immunoprecipitation with
10 µg antibody against BRD4 with overnight incubation in the 4 °C cold room with
rotation. The next day, 20 µl fully resuspended Magnetic Protein A/G Beads was
added to each sample and incubated in the cold room with rotation for 2 h.
Chromatin DNA was purified from the beads by sequential washing with Low Salt
Wash Buffer (0.1% SDS; 1% Triton-100; 2 mM EDTA; 20 mM Hepes-KOH, pH
7.9;150 mM NaCl), High Salt Wash Buffer (0.1%SDS; 1% Trtiton X-100; 2 mM
EDTA; 20 mM Hepes-KOH, pH7.9; 500 mM NaCl), LiCl Wash Buffer (100 mM
Tris-HCl, pH 7.5; 0.5 M LiCl; 1%NP-40; 1%Sodium Deoxycholate) and TE buffer
(10 mM Tris-HCl, pH 8.0; 0.1 mM EDTA). Then the magnetic beads containing
DNA was eluted with the Elution buffer (10 mM Tris-HCl, pH 8.0; 0.1 mM EDTA;
1% SDS) and de-crosslinking with RNase/proteinase K treatment under heat
(65 °C) for 2 h. DNA was then purified with QIAquick PCR purification column.
The purified DNA was ready for qRT-PCR analysis. The ChIP primers used are
listed in Supplementary Table 2. The relative binding of the investigated proteins to
the gene of interest was calculated from qPCR data by calculating the percentage of
recovery from the ChIP to the initial input.

Western blotting. Cells were washed with PBS and were lysed in modified RIPA
lysis buffer (0.5% SDS) supplemented with protease inhibitors cocktails and
phosphatase inhibitor phosSTOP. The cells were sheared and clear supernatant was
collected for protein concentration measurement with the BCA assay. The protein
lysates were diluted to 0.5 µg/µl with NuPAGE™ LDS Sample Buffer and reducing
agent and boiled at 95 °C for 5 min. A total of 5 µg of protein samples were loaded
and resolved on 4–12% Bis-Tris Protein gels according to manufacturer’s
instructions. After SDS-PAGE, the proteins were then transferred onto transfer
buffer pre-wetted PVDF membrane. Membranes were blocked in 5% skimmed
milk or BSA in TBS-T at room temperature for 1 h with gentle shaking. The
membranes were incubated with anti-SOX10 (Cat#sc-17342, Santa Cruz, 1:1000
dilution), anti-BRD4 (Cat#A301-985A100, Bethyl Lab., 1:2000 dilution) or anti-
alpha-Tubulin (Cat#T9026, Sigma, 1:5000 dilution) in 5% skimmed milk TBS-T at
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4 °C overnight with gentle shaking. The membranes were washed with TBS-T for
10 min and repeated three times. Corresponding horseradish peroxidase (HRP)
conjugated secondary antibodies (Anti-mouse IgG, Cell Signalling Technology,
Cat#7076, 1: 5000; anti-rabbit IgG, Cell Signalling Technology Cat#7074, 1:5000;
anti-goat IgG, Santa Cruz sc-2354, 1:5000) were added and incubated for 1 h with
gentle agitation at room temperature. The membranes were washed again with
TBS-T three times for a total of 30 min before addition of ECL reagents or ECL
plus reagents. Signals were subsequently detected by light-sensitive film. Alpha-
tubulin was used as loading control. Uncropped images of the western blots are
provided in Supplementary Fig. 7.

Co-immunoprecipitation. Here, 10 million LN229 cells per condition were har-
vested and washed with PBS. The cells were lysed with Pierce IP lysis buffer
(Cat#87787, Life Technologies) supplemented with protease inhibitor cocktail
(Cat#11836170001, Roche). Samples were incubated on ice for 30 min with
intermittent vertexing. After centrifugation, the supernatant was collected and pre-
cleared with Protein G Dynabeads (Cat#10003D, Life Technologies). Protein
concentration was determined and Input sample was collected (500 µg each); 10 µg
SOX10 antibody (Cat#155279, Abcam) per condition was used to immunopreci-
pitate protein. Protein G beads were added to the lysate and subjected to overnight
incubation, with rotation, in a cold room. The supernatant was removed, isolated
beads were washed with TBST three times and resuspended in 20 µl 2× loading
buffer (Cat#NP0007, Abcam). Samples were incubated at 70 °C for 10 min and the
supernatant was collected via magnetic separation. A further 10 µl 2× loading
buffer was added to the beads, and the beads were incubated at 95 °C for 5 min.
The supernatant was collected and combined with the previous eluate. This
combined eluate was then resolved using SDS-PAGE and the proteins visualised via
Western Blot.

In vitro invasion assay. Here, 200,000 ZH487 cells were seeded into each well of a
6-well plate. Cells were transduced with shRNA targeting SOX10 and NT control,
expanded for 4 days, then collected, counted and seeded (50,000 per well) for 36 h
in the Neurobasal growth medium (without B27/EGF/FGF) in Biocoat™ Matrigel
invasion chambers (8 µm pores, Cat# 354480, BD Bioscience, Bedford, MA).
Invasion was then induced by incubation with full growth medium supplemented
with B27/EGF/FGF in the lower chamber. Non-invading cells were removed and
the remaining cells fixed and stained with haematoxylin. Images were taken with a
light microscope (Zeiss, Germany) at 100× magnification.

Ex vivo brain slice invasion assay. The assay was performed as described35.
Briefly, a 6–8 week old C57Bl/6 N mouse was euthanized, the brain was isolated
and the cerebellum removed with a scalpel. The brain was cut in 350 μm thick
coronal slices with a vibratome (Leica VT1200 S). The slices were cultivated on top
of a filter (Cat#PICM03050, Millipore) in a 6-well plate with a medium composed
of: MEM (Cat# M2279, Sigma), 25% heat-inactivated horse serum (Cat# 26050070,
Life Technologies), 25 mM HEPES (Cat#H0887-100 ml, Sigma), 1 mM L-glutamine
(Cat#G7513, Sigma), 5 mg/ml glucose (Sigma Cat#G8769), 100 U/ml penicillin/
streptomycin (Cat#P4333, Sigma). Control (shNT) and inducible SOX10-KD
LN229 cells were treated with Dox for at least 7 days. LN229, control and SOX10-
KD, glioma cells cultivated in medium (DMEM, Cat# D5671, Sigma; 10% FBS,
Cat#F7524, Sigma; 2 mM L-glutamine) were trypsinized and counted. 1 × 106 cells/
ml PBS were incubated with 5 μl lipophilic dye DiD (1 mg/ml in DMSO,
Cat#60014, Biotium) for 30 min at 37 °C. After two washing steps 500 cells/well for
control LN229 and 1200 cells/well for LN229 SOX10-KD were seeded in a flat-
bottom 96-well plate coated with 50 μl low melt agarose (Cat# M3049.0010,
Genaxxon; 1% in PBS). After 3 days spheroids were collected and manually
implanted in the brain slices using a blunt Hamilton syringe (701 N; 10 μl; 26 s/51/
3) and a binocular microscope. Three days after implantation the brain slices were
fixed with 4% PFA and cleared according to the SeeDB protocol82.

Immunohistochemistry of mouse tumours. For immunohistochemistry experi-
ments, paraffin embedded (4 μm) tumour tissues were first subjected to depar-
affinization and citric acid-based antigen retrieval was performed following
standard protocols. Sections were either stained with hematoxylin and eosin (H&E)
or subjected to immunohistochemistry Iba1 (Cat#019-19741, Wako, 1:2000).
Immunohistochemistry images were obtained with light microscope (Zeiss, Ger-
many) with 20× and 100x objectives. Iba1 staining quantification was performed
with ImageJ (NIH) using random areas from the tumour core region. For
immunofluorescence staining, sections were stained for GFP (Cat#13970, abcam,
1:500 and anti-Chicken IgY (H+ L) secondary antibody, Alexa Fluor 488, Invi-
trogen A-11039, 1:1000) and immunofluorescence images of GFP were captured
using Leica TCS SP8 confocal microscope with 20× objective.

Quantification and statistical analysis. Statistical analysis was performed using R
and Students t-test. Kaplan-Meier analysis was performed to estimate the survival
time of different GBM subgroups and a log rank test was used to test for differences
of more than one survival curve. Details of the statistical tests applied are stated in
the figure legends and the main text. In all Tukey-style boxplots, the box corre-
sponds to the 25th, 50th/median and 75th percentiles and the whiskers denote 1.5×

the IQR from the median. Outliers beyond 1.5× IQR are shown as points. Other
boxplots indicate mean values ± standard deviation.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The processed DNA-methylation array, WGBS, RNA-Seq, ChIP-Seq, ATAC-Seq and
whole genome sequencing data used in this study is available at the gene expression
omnibus (GEO) database under accession code GSE121723). The raw WGBS, RNA-Seq,
ChIP-Seq, ATAC-Seq and whole genome sequencing data data are deposited in the
European Genome-Phenome Archive (EGA) database under accession code
EGAS00001003953. The data is available under restricted access, which can be obtained
by contacting the HIPO data access committee (katja.beck@nct-heidelberg.de). The gene
expression datasets used for the RTN analysis were obtained from E-MTAB-3073
(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3073/), and GSE4290,
GSE7696, GSE16011 and GSE43378 (https://www.ncbi.nlm.nih.gov/geo/query). The
remaining data are available within the Article, Supplementary Information or available
from the authors upon request.

Code availability
Custom analysis scripts are available at https://github.com/dkfz-b060/gb_code.
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