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Abstract 
The analysis of perinatal studies is complicated by twins and other multiple births even when 
they are not the exposure, outcome, or a confounder of interest. Common approaches to handling 
multiples in studies of infant outcomes include restriction to singletons, counting outcomes at the 
pregnancy-level (i.e., by counting if at least one twin experienced a binary outcome), or infant-
level analysis including all infants and, typically, accounting for clustering of outcomes by using 
generalised estimating equations or mixed effects models. Several healthcare administration 
databases only support restriction to singletons or pregnancy-level approaches. For example, in 
MarketScan insurance claims data, diagnoses in twins are often assigned to a single infant 
identifier, thereby preventing ascertainment of infant-level outcomes among multiples. Different 
approaches correspond to different causal questions, produce different estimands, and often rely 
on different assumptions. We demonstrate the differences that can arise from these different 
approaches using Monte Carlo simulations, algebraic formulas, and an applied example. 
Furthermore, we provide guidance on the handling of multiples in perinatal studies when using 
healthcare administration data.  
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Introduction 
In the field of perinatal epidemiology, we inevitably encounter the question, “how should we 
handle twins?” The presence of multiples (i.e., twins and higher order multiples) can play many 
roles in research studies including as an exposure (e.g., what is the effect of multiple birth on 
postpartum hemorrhage?), an outcome (e.g., what is the effect of fertility treatment on multiple 
births?), or as a covariate. In the latter case, multiple gestation may be a confounder, mediator, 
collider, or effect modifier. In addition, multiples play an important role in statistical analysis 
even when they are independent of the causal pathway and not part of a causal question. 
Specifically, multiples create a clustered data structure because their outcomes are likely to be 
correlated. Thus, they require special consideration in both study design and statistical analysis. 
For maternal treatments and infant outcomes, which are the focus of this study, common 
analytical approaches to handle multiples include 1) restriction to singletons, 2) counting binary 
outcomes at the pregnancy-level (by presence of at least one infant-level outcome), and 3) infant-
level analyses including all infants and typically accounting for the effect of clustering of 
outcomes within multiples by using generalised estimating equations (GEE) or mixed effects 
models.1,2 Estimates can differ across these approaches.  
Due to data recording and reporting practices, perinatal studies using healthcare administration 
data are often limited to either restriction to singletons or pregnancy-level analyses. For example, 
in the MarketScan Commercial Claims and Encounters (MarketScan CCAE) United States (US) 
insurance claims data, diagnoses among twins are often recorded to a single infant enrolment 
identifier, especially for siblings of the same sex, or may be recorded in the maternal records, 
especially for in utero diagnoses (see eAppendix for a detailed description of multiples data in 
MarketScan CCAE). In this circumstance, it is often only possible to determine that at least one 
infant experienced an outcome.  
While the role of multiple births has been previously considered, particularly in trials as a source 
of clustering,3–10 there has been limited attention paid to the difference between estimands and 
assumptions needed when restricting to singletons or counting outcomes at the pregnancy-level. 
Our aim is to illustrate differences between approaches, through Monte Carlo simulations, 
algebraic formulas, and an empirical applied example, and to provide guidance for perinatal 
studies using healthcare administration data. 

Methods 
Approaches to handle multiple births 
We compare three approaches to handle multiple births in perinatal studies with an infant 
outcome: restriction to singletons, counting outcomes at the pregnancy-level, and infant-level 
analysis including all infants. 
One approach that can universally be applied and is commonly implemented in perinatal studies 
is restriction to singletons. This approach eliminates any issue of clustering of outcomes and 
problems with assigning outcomes to an infant. However, when multiple gestation is a post-
treatment mediator (Figure 1a and 1b), collider (Figure 1c), or interacts with treatment then the 
estimated effect can differ from the average infant-level effect including all infants because we 
condition on multiple births through restriction. If pre-conception treatment is associated with 
increased risk of multiple gestation (e.g. fertility treatments), and there are uncontrolled common 
causes of multiple gestation and outcome, multiple gestation will be a collider and conditioning 
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on it can introduce selection bias even when the effect of treatment on the outcome is null 
(Figure 1c).11 Alternatively, if multiple gestation is a mediator (Figure 1a and 1b), restricting to 
singleton births (a proxy for single gestation), will largely eliminate the effect of treatment 
mediated by multiple gestation, which may be of clinical and public health interest as part of the 
total effect of treatment on the outcome.12,13 For a post-conception treatment, multiple gestation 
may be a confounder (Figure 1d - e.g., multiples may confound the effect of caesarean section on 
NICU admission), which could be controlled by restricting to single gestation pregnancies, 
stratifying by number of fetuses, or otherwise adjusting for multiple gestation. 
A second approach that can be applied for binary outcomes in the absence of infant-level  
outcome data is to count outcomes at the pregnancy-level by recording whether at least one 
infant experienced an outcome. In this approach, the risk of an outcome for a twin pregnancy 
will typically be higher (up to 2x) than the infant-level risk among all infants, purely because 
there are more opportunities for the outcome to occur. The magnitude of increased risk depends 
on the degree to which the outcomes of the twins within each pregnancy are correlated (see 
eAppendix for algebraic comparison). This introduces an edge in the directed acyclic graph 
between multiple gestation and the outcome. Thus, given a treatment-multiples association, 
multiple gestation may become a mediator14, if treatment is pre-conception, or a confounder, if 
treatment is post-conception. Either situation may result in an association between treatment and 
outcome at the pregnancy-level, even if there is no association at the infant-level.  
We focus in this article on analyses restricted to pregnancies ending in live birth. These analyses, 
which condition on conceiving and surviving until birth, introduce some assumptions for causal 
inference, in particular absence of selection bias.11,15 Analyses including women who do not 
conceive or give birth are inherently at the maternal or pregnancy-level (e.g., among prospective 
mothers planning pregnancy what is the risk with one intervention versus another of both 
conceiving, having a live birth, and having at least one infant with a malformation?). For 
preconception treatments and live-birth outcomes, this risk will be affected by the effect of 
treatment on conception, multiples, and pregnancy loss, in addition to to any direct effect on the 
outcome. 
Infant-level analyses including all infants are commonly applied in studies using prospective data 
collection but are more challenging to apply when using healthcare administration data. When 
infant-level analyses are feasible, one difficulty is that multiple births introduce clustering of 
outcomes. This clustering violates independence assumptions that are typically made and can 
therefore lead to inaccurate variance estimates. GEE or mixed effect models can be used to 
obtain more efficient estimators and more accurate quantification of uncertainty in clustered 
data.1,2,16 Both approaches have been used in pregnancy studies.3–6 It is important to note that 
these two approaches often estimate different effects, with mixed effect models, unlike GEE, 
typically estimating effects conditional on cluster-level random effects.17 However, approaches 
to marginalise over these cluster-level random effects are available.18 Furthermore, with GEE, 
different assumptions regarding the assumed correlation structure lead to different estimands if 
cluster-size is informative for the outcome.19  
Perinatal studies are atypical for clustered studies in that treatment and covariates, which are 
both measured at the cluster-level (i.e., the pregnancy), can subsequently affect cluster-size. The 
distribution of maternal covariates at the infant-level when including multiples can differ from 
the distribution of covariates at the pregnancy-level if covariates are associated with multiple 
pregnancy (see eFigure 1 for illustrative tree diagram). When analysing preconception treatments 
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and calculating marginal treatment effects, we will typically want to achieve balance in the 
covariate distribution at the pregnancy-level (e.g. by inverse probability of treatment weighting) 
as we would in a randomised controlled trial.20 Balance at the pregnancy-level will not 
necessarily imply balance on the covariate distribution at the infant-level when treatment affects 
multiples even in randomised trials, given that treatment may affect the covariate distribution in 
infants through an effect on twinning. 

Monte Carlo simulations 
We used Monte Carlo simulations to compare differences between these three approaches (i.e., 
restriction to singletons, pregnancy-level approach, infant level-approach) under a range of data-
generating mechanisms. Binary random variables were simulated from Bernoulli distributions 
for a binary pregnancy-level treatment A, a binary infant outcome Y, and a binary pregnancy-
level indicator of multiple gestation M. Multiple gestation was simulated to be a post-treatment 
covariate and potential mediator as in our applied example (Figure 1b). For simplicity of 
exposition, we consider that all multiple gestations are twin pregnancies and ignore pregnancy 
losses. In practice, multiple gestation will be a non-zero count, but the frequency of higher order 
pregnancies (>2) is rare.21 Treatment and multiple gestation were simulated at the pregnancy-
level. Following this, each row of data with multiple gestation was duplicated and infant 
outcomes were simulated. For the second twin, the outcome was simulated using the method of 
Qaqish et al. to generate a variable with identical mean, but such that the intraclass correlation 
among twins between the first infant, Y1, and the second infant, Y2, is equal to α.22 

𝐴	~	𝐵𝑒𝑟(𝜋) 

𝑀	~	𝐵𝑒𝑟+𝑒𝑥𝑝(𝛽! +	𝛽"𝐴)0 

𝑌"	~	𝐵𝑒𝑟+𝑒𝑥𝑝(𝜓! +	𝜓"𝐴 +	𝜓#𝑀)0 

Parameter values were chosen to reflect values observed in perinatal studies. For the different 
scenarios we fixed the number of pregnancies at 10,000, treatment prevalence (p) at 50%, and 
the prevalence of outcome among unexposed singletons (exp	(𝜓!)) at 3%, and the prevalence of 
multiples among unexposed pregnancies (exp(𝛽!)) at 2%, and varied factorially the risk ratio 
between treatment and multiples (exp(𝛽")), the conditional risk ratio between treatment and 
outcome (exp	(𝜓")), the conditional risk ratio between multiple gestation and outcome 
(exp	(𝜓#)), and the intraclass correlation coefficient (ICC) α (see Table 1). 
For restriction to singletons and pregnancy-level analyses, Poisson models were fitted to estimate 
risk ratios with Huber-White heteroskedasticity-robust standard errors.23,24 For the infant-level 
analysis, we applied Poisson GEE with an independence working correlation structure, which 
should more robustly estimate the variance of effect estimates in the presence of clustering.1 For 
each scenario, we generated 1,000 simulated datasets to which we applied analyses. We compare, 
between scenarios, the exponentiated mean of the log risk ratio.  

Applied example 
We empirically illustrated the differences between methods using an example of fertility 
treatment and infant outcomes. Specifically, we evaluated the risk of major congenital 
malformations and neonatal intensive care unit (NICU) admission, comparing 
pregnancies/infants conceived via assisted reproductive technology (ART), relative to two 
comparator groups: 1) pregnancies/infants conceived via intrauterine insemination (IUI), and 2) 
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pregnancies/infants conceived without IUI or ART. The latter example was selected for didactic 
purposes since the intervention (fertility treatment) is strongly associated with multiples. 
However, this comparison is more prone to residual confounding. We have previously compared 
ART to IUI, in a target trial emulation framework, to address clinical questions.25,26 
We conducted the study using MarketScan CCAE, a US database of insurance claims for private 
health insurance beneficiaries.27 In this database, insurance claims for twins of the same sex are 
commonly recorded to the same enrolment identifier. Within MarketScan we identified a cohort 
of pregnancies linked to liveborn infants delivered by women between the ages of 12 and 55 
years from 2011 to 2021. We used validated algorithms to identify pregnancies, estimate 
gestational age, and link mother-infant pairs.28–32 For each pregnancy, we required maternal 
enrolment and prescription eligibility from at least 90 days before the last menstrual period 
(LMP) until 30 days after delivery. The treatment of interest, ART, and comparator treatment, 
IUI, were defined based on the presence of procedure codes recorded between LMP - 30 days 
and LMP + 30 days. Covariates included were potential confounders ascertained from maternal 
claims, which included maternal age, clinical conditions, lifestyle variables, and dispensed 
medications (see eAppendix for details and code lists).  
The outcomes of interest were major congenital malformation and neonatal intensive care unit 
(NICU) admission. Malformations occur in about 3% of infants, with some evidence for 
increased risk among multiples in particular for monozygotic twins.36–41 NICU is a relatively 
common outcome (10-15% of infants are admitted to the NICU33), highly correlated within 
pregnancies34, and is affected by multiple gestation given increased frequency of preterm births 
among twin pregnancies.35 Within-pregnancy correlation is anticipated to be lower for 
malformations than for NICU admission, with concordance among twins with one or more non-
chromosomal malformations of 11.4% observed in a large European study of 5.4 million births.42  
Major congenital malformation, an outcome previously validated in US claims data,43 was 
defined as a structural abnormality of surgical, medical, or cosmetic importance. To identify 
malformations, we required infant enrolment from birth to at least 90 days after delivery, unless 
the infant died sooner. We identified International Classification of Diseases (ICD) 9/10 
diagnosis and procedure codes indicating a birth defect or a corrective surgical procedure in 
infant claims during the 90 days after birth or in maternal claims around the time of delivery.43 
We required at least one code in the infant record to identify a malformation. NICU admission 
was identified using CPT (Current Procedural Terminology) codes in the infant records within 30 
days after delivery.  
Multiple births were identified by either two linked infants or the presence of more than one 
multiple gestation code after first trimester in the absence of a mixed birth code (i.e., combined 
stillbirth and live birth). Given that in MarketScan CCAE claims are commonly recorded among 
twins to a single infant identifier, we were limited in our analyses, and compared restriction to 
singletons to counting at the pregnancy-level. Poisson models with Huber-White standard errors 
were fitted to estimate conditional risk ratios adjusting for covariates.24 Age was modelled with 
linear and quadratic terms. Among singletons, and at the pregnancy-level, outcomes can be 
assumed to be independent, and therefore particular statistical methods to account for clustering 
were unneccesary. 
A subset of twins were linked to two infant identifiers. As a secondary analysis, to approximate 
an infant-level effect we excluded pregnancies classified as multiple births but with only one 
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linked infant identifier and calculated an inverse probability of selection weighted treatment 
effect. Probability of selection was estimated at the pregnancy-level using a logistic regression 
model including treatment and all covariates. Inverse probability of selection weighted Poisson 
GEE was applied with an independence working correlation structure to estimate conditional risk 
ratios adjusted for covariates. 
As a sensitivity analysis, rather than restrict to singleton births, we restricted to pregnancies with 
no record of multiple gestation, excluding pregnancies with a multiple gestation code in the first 
trimester only and mixed births. This is not anticipated to substantially impact findings, given 
that only a small fraction of singleton births are expected to be from multiple gestation 
pregnancies (i.e., due to loss of one twin). 
Data management was performed using SAS Enterprise Guide 8.3 with statistical analyses and 
Monte Carlo simulations conducted using R 4.2.0. Code used for statistical analyses and 
simulations is available at https://github.com/CausalInference/CAUSALab_Papers.  
Results 

Monte Carlo simulations 
In simulations, we compared the effect of restriction to singletons and counting outcomes at the 
pregnancy-level relative to infant-level analyses including all infants.  
For restriction to singletons, estimates differed from the infant-level analyses including all 
infants when there was mediation by multiple gestation (Figure 2 D-F, J-L). In these scenarios, 
restriction to singletons eliminated the effect mediated by multiple gestation. The difference 
between the treatment effects depended on the strength of mediation, as determined by the 
treatment-multiples association, and was minor when the association between treatment and 
multiple gestation was small. 
For pregnancy-level analyses, estimates differed from infant-level analyses including all infants 
depending on the association between treatment and multiple gestation and the correlation of the 
outcome within a pregnancy. When treatment was associated with increased multiple gestation, 
the pregnancy-level risk ratio exceeded the infant-level estimate when the outcomes were 
independent or moderately correlated (Figure 2 A, B, D, E, G, H, J, K), and was lower than the 
infant-level risk ratio when outcomes were highly correlated and multiple gestation was 
associated with the outcome conditional on treatment (Figure 2 F & L). All approaches led to the 
same estimates when the ICC was 1 and there was no mediation by multiple gestation (Figure 2 
C & I). As is apparent from an algebraic analysis (see eAppendix), the difference between 
approaches in risk of an outcome in a treatment group will depend on the prevalence of 
multiples, the prevalence of the outcome, and the correlation of the outcome within a multiple 
birth. The results of simulations match results from algebraic formulas (see eAppendix for 
spreadsheet implementing formulas).  

Applied example 
We selected a cohort of 903,273 pregnancies linked to live-born infants, of which 25,634 (2.8%) 
were to women treated with ART, 10,600 (1.2.%) to women treated with IUI, and 867,039 
(96.0%) to women not treated with IUI or ART (Table 2). 
Women treated with ART or IUI were older than women not treated with IUI or ART (92%  aged 
30+ for ART, 87% for IUI, and 70% for neither treatment) and had higher prevalence of diabetes 
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(17.3% for ART, 14.8% for IUI, and 4.0% for neither). Both ART and IUI were associated with 
an increase in multiple births, with a frequency of 15.7% among ART pregnancies and 11.3% 
among IUI pregnancies, relative to 2.1% among pregnancies not treated with either therapy.  
Of the 4,031 ART pregnancies with a multiple birth, less than half (N=1,725, 42.3%) were linked 
to two infant identifiers. Given the recording of claims in Marketscan CCAE from same sex 
twins to a single infant identifier, among these 1,725 pregnancies 1,720 (99.7%) of the twin pairs 
had divergent sex (i.e. one male and one female). Among pregnancies with at least one outcome, 
the concordance rate was 12.1% (23 of 190 pregnancies) for malformation and 71.9% (586 of 
815 pregnancies) for NICU. Furthermore, the ICC was 0.16 (0.12-0.21) for malformations and 
0.72 (0.70-0.75) for NICU. The frequency per infant identifier among multiples linked to two 
identifiers was 6.2% for malformation and 40.6% for NICU admission (Table 3); the 
corresponding frequencies among singletons were 6.1% and 13.2%. The frequency of at least 
one outcome among these multiple birth pregnancies linked to two identifiers was 11.0% (190 of 
1725 pregnancies) for malformation and 47.2% (815/1,725) for NICU. For multiple birth 
pregnancies linked to a single infant identifier, the frequency per identifier was 11.4% for 
malformation and 44.0% for NICU. 
The association between ART and outcomes relative to non-use of ART/IUI differed by 
analytical approach with an adjusted risk ratio for malformation of 1.17 (95% CI 1.10-1.23) 
when restricting to singletons, 1.29 (95% CI 1.23-1.35) when counting at pregnancy-level, and 
1.19 (95% CI 1.12-1.26) when estimating an infant-level effect including multiples using inverse 
probability of selection weights (Figure 3 – see eFigure 2 for crude estimates). For NICU 
admission, the adjusted risk ratios were 1.27 (95% CI 1.22-1.32) when restricting to singletons, 
1.57 (95% CI 1.52-1.61) when counting at the pregnancy-level, and 1.69 (95% CI 1.63-1.76) 
when estimating an infant-level effect including multiples. 
In comparison, there were smaller differences between analytical approaches when ART was 
compared with IUI, a treatment similarly associated with increased multiples (Figure 3). The 
adjusted risk ratio for malformation was 1.05 (95% CI 0.94-1.18) when restricting to singletons, 
1.11 (95% CI 1.00-1.22) when counting at pregnancy-level, and 1.11 (95% CI 0.99-1.25) when 
calculating an infant-level effect including multiples. Similarly, for NICU the estimates were 
similar with a risk ratio of 1.18 (95% CI 1.09-1.27) when restricting to singletons, 1.25 (95% CI 
1.18-1.33) when counting at the pregnancy-level, and 1.23 (95% CI 1.14-1.33) when estimating 
the infant-level effect. In a sensitivity analysis, restriction to pregnancies without any record of 
multiple gestation differed little relative to restriction to singleton births (eTable 1). 
Discussion 
When designing perinatal studies with infant outcomes using healthcare administration data, it is 
valuable to not only ask what question is of interest and which estimand this corresponds to, but 
also which analyses are feasible given the data. With answers to these questions, an informed 
choice of analysis can be made. In simulations and our applied example, estimates from different 
approaches were similar when multiples were rare and either not associated or weakly associated 
with treatment, but differed substantively when treatment and multiples were strongly associated. 
When multiple gestation is a mediator, restriction to singletons eliminates some or all of the 
effect of treatment on outcome mediated by multiple gestation, as was apparent in the Monte 
Carlo simulations and in the applied example. Residual confounding due to infertility may 
explain the remaining association in singletons. When multiple gestation is a mediator, if the 
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question of interest is the etiological effect of treatment separate from multiples, restriction to 
singletons can approximate this effect subject to mediation analysis assumptions.12 However, if 
the total effect is of interest, infant-level analyses including all infants is advisable if feasible. 
For binary outcomes, counting outcomes at the pregnancy-level by presence of at least one 
outcome addresses a different question: What is the risk for a mother of having one or more 
infants with the outcome? As is apparent from the algebraic formulas, simulations, and the 
applied example, estimates from this approach can differ from an infant-level analysis, 
particularly when treatment is associated with multiples. In the applied example comparing ART 
to non-use, for malformations, an outcome with weak intraclass correlation, the adjusted risk 
ratio was elevated in pregnancy-level analysis relative to the association in infant-level analysis 
including multiples (1.29 [95% CI 1.23-1.35] vs. 1.19 [95% CI 1.12-1.126]). For NICU 
admission, an outcome with strong intraclass correlation, the adjusted risk ratio was lower 
relative to the infant-level association including multiples (1.57 [95% CI 1.52-1.61] vs. 1.69 
[95% CI 1.63-1.76]). These empirical findings accord with the results of the Monte Carlo 
simulations. Associations relative to IUI were more similar between approaches, reflecting the 
weaker association between treatment and multiples. However, it is important to note that even if 
relative risk is minimally affected, absolute risks in both treatment groups will typically be 
higher in pregnancy-level analyses. 
Estimates of infant-level risk including multiples will commonly be an estimand of interest, but 
analyses to estimate these are not always feasible when using healthcare administration data. The 
recording of outcomes from multiple infants to a single infant identifier in Marketscan CCAE 
was apparent from examining the relation between multiplicity and outcome in the ART 
treatment group.   
As a secondary analysis in the applied example, we estimated an infant-level effect including 
multiples by excluding multiple births linked to a single infant identifier and reweighting 
multiple births linked to two infant identifiers using inverse probability of selection weights. The 
validity of this approach depends on selection not being informative for the outcome given 
covariates, and that there is no cross-registration of outcomes between infants with two 
identifiers. The similarity between the concordance rate among twins for malformations linked to 
two infant identifiers of 12.1% in this study relative to the concordance rate of 11.4% in a large 
European registry study provides some reassurance on the validity of this infant-level data.42 
Furthermore for NICU admission, the ICC of 0.72 is within the range of estimates from twelve 
randomized trials of 0.56-0.86 (median 0.79).34 One reason why censoring may be informative is 
that same sex multiples are more frequently linked to a single infant identifier in MarketScan 
data and will include all monozygotic twins, who may have a different risk of outcome than 
dizygotic twins. Additional assumptions needed are that triplets or other higher order multiples 
are rare, which is typically the case, and that multiple births are correctly classified. 
When infant-level analyses are feasible, the question of what estimand is of interest remains. 
GEE with an independence correlation structure will estimate an average infant-level effect over 
all infants. While GEE with an independence correlation structure allows us to ask the question 
of what the average risk is per infant among all infants of women exposed to one treatment 
versus another, we can use inverse cluster-weighted GEE to address a slightly different 
question:19 What is the typical risk for a typical pregnancy? In this approach each pregnancy, 
rather than each infant, is weighted equally when calculating average risk.This estimand may be 
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of interest, particularly for understanding and communicating the expected risk for a prospective 
mother. 

Conclusion 
In summary, our analyses highlight the importance of understanding both the study question and 
the role of multiples in a study. In healthcare administration data, we are further limited in choice 
of analysis by the data. When multiples are rare in both treatment groups, as may be the case in 
many studies, different approaches to handle multiples are likely to produce similar estimates, 
but when multiples are more common or are associated with treatment, such as for fertility 
treatments, choice of approach is important and can produce differences between estimates. 
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Figure 1: Directed acyclic graphs with treatment A, outcome Y, multiple gestation M, and 
confounder L illustrating the potential role of multiple gestation as a) a mediator, b) a 
mediator with mediator-outcome confounding (e.g., by maternal age), c) a collider, or d) a 
confounder  
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Figure 2: Estimated risk ratios in Monte Carlo simulations with treatment-outcome 
conditional risk ratio (𝑹𝑹𝑨𝒀|𝑴) of 1 (A-F) or 2 (G-L), multiple gestation-outcome 
conditional risk ratio (𝑹𝑹𝑴𝒀|𝑨) of 1 (A-C, G-I) or 2 (D-F, J-L), and intraclass correlation 
coefficient (ICC) of 0 (A, D, G, J), 0.5 (B, E, H, K) or 1 (C, F, I, L)   
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Figure 3: Adjusted risk ratios between assisted reproductive technology (ART) and both 
malformation and neonatal intensive care unit (NICU) admission relative to intrauterine 
insemination (IUI) and ART/IUI non-use 
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Table 1: Parameter values chosen in Monte Carlo simulations 
Parameter Description Values 

𝜋 Prevalence of treatment 0.5 

exp	(𝛽!) Prevalence of multiple 
gestation among untreated 
pregnancies 

0.02 

exp	(𝛽") Risk ratio between treatment 
and multiples 

1 to 10 in 
increments of 0.5 

exp	(𝜓!) Prevalence of outcome 
amongst untreated singletons 

0.03 

exp	(𝜓") Risk ratio between treatment 
and outcome conditional on 
multiple gestation 

1,2 

exp	(𝜓#) Risk ratio between multiples 
and outcome conditional on 
treatment  

1,2 

α Intraclass correlation 
coefficient 

0,0.5,1 
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Table 2: Characteristics of pregnancies to women treated with ART, IUI or neither fertility 
treatment 

Characteristic 
Non-use  

N = 867,039 

ART  

N = 25,634 

IUI  

N = 10,6001 

Age (years)    

    ≤19 1,187 (0.1) 0 (0.0) 0 (0.0) 

    20-29 257,770 (29.7) 1,989 (7.8) 1,430 (13.5) 

    30-39 568,546 (65.6) 18,601 (72.6) 8,375 (79.0) 

    40-49 39,536 (4.6) 5,044 (19.7) 795 (7.5) 

Multiple birth 18,333 (2.1) 4,031 (15.7) 1,198 (11.3) 

Any multiple gestation 22,868 (2.6) 4,916 (19.2) 1,415 (13.3) 

Linked to two infants IDs 6,280 (0.7) 1,725 (6.7) 535 (5.0) 

Tobacco use 15,450 (1.8) 364 (1.4) 130 (1.2) 

Alcohol abuse or dependence 1,359 (0.2) 48 (0.2) 16 (0.2) 

Drug abuse or dependence 4,595 (0.5) 95 (0.4) 40 (0.4) 

Obesitya 97,644 (11.3) 3,457 (13.5) 1,607 (15.2) 

Definite or suspected teratogen 55,725 (6.4) 2,135 (8.3) 632 (6.0) 

Antidepressants 71,426 (8.2) 1,869 (7.3) 788 (7.4) 

Anticonvulsants 10,958 (1.3) 259 (1.0) 124 (1.2) 

Opioids 75,769 (8.7) 5,940 (23.2) 1,000 (9.4) 

Codeine 20,637 (2.4) 2,062 (8.0) 269 (2.5) 

Antibiotics 175,620 (20.3) 17,640 (68.8) 3,284 (31.0) 

Epilepsy 3,716 (0.4) 121 (0.5) 46 (0.4) 

Hypertension 44,382 (5.1) 1,523 (5.9) 539 (5.1) 

Diabetes 34,351 (4.0) 4,429 (17.3) 1,567 (14.8) 

a) Claims-based marker of obesity, which is expected to underestimate true obesity prevalence.   
Definitions: ART, assisted reproductive technology; ID, identifier; IUI, intrauterine insemination.  
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Table 3: Outcome incidence per infant identifier among singletons, multiple births linked 
to a single infant identifier, and multiple births linked to two infant identifiers 

Outcome 
Multiple birth  

(1 linked infant),  
N = 2,307a 

Multiple birth  
(2 linked infants),  

N = 3,450b 

Singleton,  
N = 21,603 

Any malformation 263 (11.4%) 213 (6.2%) 1,320 (6.1%) 

Non-chromosomal malformation 249 (10.8%) 197 (5.7%) 1,278 (5.9%) 

Central nervous system 35 (1.5%) 20 (0.6%) 76 (0.4%) 

Cardiac 76 (3.3%) 49 (1.4%) 307 (1.4%) 

Gastrointestinal 29 (1.3%) 28 (0.8%) 117 (0.5%) 

Genital 33 (1.4%) 32 (0.9%) 248 (1.1%) 

Urinary 38 (1.6%) 34 (1.0%) 185 (0.9%) 

Muscular 37 (1.6%) 35 (1.0%) 205 (0.9%) 

Limb 27 (1.2%) 16 (0.5%) 151 (0.7%) 

NICU admission 1,015 (44.0%) 1,401 (40.6%) 2,857 (13.2%) 
a) From 2,307 pregnancies 

b) From 1,725 pregnancies 

Definitions: NICU, neonatal intensive care unit. 
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