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A minimal “push–pull” bistability model explains 
oscillations between quiescent and proliferative 
cell states

ABSTRACT A minimal model for oscillating between quiescent and growth/proliferation 
states, dependent on the availability of a central metabolic resource, is presented. From the 
yeast metabolic cycles, metabolic oscillations in oxygen consumption are represented as tran-
sitions between quiescent and growth states. We consider metabolic resource availability, 
growth rates, and switching rates (between states) to model a relaxation oscillator explaining 
transitions between these states. This frustrated bistability model reveals a required com-
munication between the metabolic resource that determines oscillations and the quiescent 
and growth state cells. Cells in each state reflect memory, or hysteresis of their current state, 
and “push–pull” cells from the other state. Finally, a parsimonious argument is made for a 
specific central metabolite as the controller of switching between quiescence and growth 
states. We discuss how an oscillator built around the availability of such a metabolic resource 
is sufficient to generally regulate oscillations between growth and quiescence through com-
mitted transitions.

INTRODUCTION
While all cells can exist in a variety of states, two opposite ends of 
the spectrum are the “growth” state (leading to mitotic division and 
proliferation) and a nonproliferative “quiescent” state. The quies-
cent state, operationally defined here as a reversibly nondividing 
state, is the predominant state of all living cells (Lewis and Gattie, 
1991; Gray et al., 2004). Understanding how cells reversibly transi-
tion from a quiescent state to a growth state coupled with cell divi-
sion and proliferation (henceforth called “growth” in this article) is 
therefore a fundamental biological question. Current explanations 
for how cells commit to growth and cell division account for 

metabolic regulation, biomolecule synthesis, and regulated pro-
gression through the cell cycle, presenting multiple, integrated 
mechanisms of information transfer within a cell that lead to the 
eventual growth outcome.

However, when a population of genetically identical cells are 
present in a uniform environment, how can individual cells within 
such a population decide to switch between a quiescent (effective 
“G0”) state and a growth/proliferation state? Indeed, such hetero-
geneity of cell states within populations is widely observed and ac-
knowledged. Numerous examples exist in nearly all systems stud-
ied, from simple eukaryotes like the budding yeast to complex 
mammalian systems (Cooper, 1998, 2003; Coller et al., 2006; 
Daignan-Fornier and Sagot, 2011a,b; Klosinska et al., 2011; De 
Virgilio, 2012; Dhawan and Laxman, 2015), with multiple molecular 
events correlating with transitions between growth and quiescence. 
For any population transitioning into either of these states, experi-
mentalists have asked the following: 1) What hallmarks allow dis-
crimination between actively proliferating and G0 cells? 2) How do 
cells transit back and forth between these two states? And 3) How 
are different signals processed and integrated into an appropriate 
cellular response? The regulation of the final cellular outcome occurs 
at multiple levels, including differential gene expression programs 
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and signaling responses to growth factors, which can be different 
depending on the type of cell or organism studied. At its very core, 
however, this transition between quiescent and growth states is a 
metabolic problem; cells must be in a metabolic state capable of 
committing to growth/proliferation and must sense this state, which 
the pushes cells toward growth. Indeed, several lines of evidence 
now reiterate a primary metabolic determinant for cells committing 
to a growth state (exiting quiescence) or remaining in a quiescent 
state (Futcher, 2006; Daignan-Fornier and Sagot, 2011b; Laporte 
et al., 2011; Cai and Tu, 2012; De Virgilio, 2012; Lee and Finkel, 
2013; Dhawan and Laxman, 2015; Kalucka et al., 2015; Kaplon et al., 
2015). While multiple factors can regulate the transition between 
quiescence and growth, all such studies suggest that without this 
core metabolic transformation, switching states is impossible. Given 
this absolute metabolic requirement to switch to growth, if there is 
an isogenic (“identical”) population of cells present in a uniform en-
vironment, how can there be a two-state outcome where some cells 
undergo growth/proliferation, while the rest remain quiescent?

Surprisingly, there are few rigorous theoretical, mathematical 
models that attempt to provide a conceptual framework sufficient 
to explain this and suggest experimentally testable predictions. 
This is in contrast to the extensive, elegant, and often prescient 
models that have been built to explain progress through the classi-
cal cell division cycle (CDC) by incorporating existing experimental 
data of phase-specific cell-cycle activators and inhibitors (Tyson and 
Novák, 2001, 2015; Tyson et al., 2003; Ferrell et al., 2009). Such 
modeling of the CDC has a long history (examples include 
Goldbeter [1991], Norel and Agur [1991], Tyson [1991], Tyson and 
Novák [2015], Novak and Tyson [1993], Ferrell et al. [2009]), and 
these types of theoretical studies have revealed biological possi-
bilities that were experimentally determined only much later (such 
as in Cross et al. [2002], Pomerening et al. [2003], Wei et al. [2003], 
Mirchenko and Uhlmann [2010]). Given this, there is considerable 
value in building coarse-grained but rigorous theoretical models to 
understand switching between quiescence and growth states. In 
such a model, the switching between quiescence and growth states 
could be treated as a biological oscillation (Tyson et al., 2003; 
Novák and Tyson, 2008; Tsai et al., 2008; Ferrell et al., 2009), while 
considering a dependence on a metabolic “resource” as a driver of 
the oscillator. For building such a model, we therefore require ex-
tensive experimental data from biological systems where metabolic 
oscillations are demonstrably closely coupled with exiting quies-
cence/entering the CDC. Such data are readily available from the 
budding yeast, Saccharomyces cerevisiae. Yeast have been the in-
strumental cellular model in revealing processes that define both 
the CDC (Hartwell, 1974) and the quiescence cycle (Gray et al., 
2004; Daignan-Fornier and Sagot, 2011a,b; De Virgilio, 2012; Dha-
wan and Laxman, 2015). The classical CDC involves progression 
through the G1, S, and G2/M phases. In contrast, during a quies-
cence (or effective “G0”) cycle, cells remain nondividing but can 
exit quiescence and enter the G1 phase of the cell cycle to subse-
quently complete the CDC.

Experimentally dissecting specific processes driving entry into, 
and exit from, quiescence (into the CDC) is challenging in asynchro-
nous, heterogeneous cultures of cells. However, synchronized yeast 
populations in well-mixed cultures (as manifest by oscillations in oxy-
gen consumption) have long been observed and studied using 
batch and chemostat conditions limited for a carbon source (glucose 
or ethanol), which are subsequently fed continuously with limited 
concentrations of glucose or ethanol (Chance et al., 1964; Hommes, 
1964; Hess and Boiteux, 1971; Satroutdinov et al., 1992; Keulers 
et al., 1996; Jules et al., 2005; Lloyd and Murray, 2005). Gene 

expression studies from such glucose-limited yeast metabolic cycles 
or oscillations (we will utilize the term YMC henceforth in this article 
for consistency) showed that a majority of the genome is expressed 
highly periodically, further revealing a molecular organization of 
growth and quiescent states (Klevecz et al., 2004; Tu et al., 2005; 
Futcher, 2006; Mellor, 2016). In general, both the shorter (Klevecz 
et al., 2004; Murray et al., 2007) and the longer (Tu et al., 2005) 
oxygen consumption oscillations in yeast showed this general pat-
tern. Notably, genes associated with biosynthesis and growth (com-
prehensively further described in Brauer et al. [2008]) typically peak 
during a high-oxygen-consumption phase in the YMC (Tu et al., 
2005; Rowicka et al., 2007; Slavov and Botstein, 2011, 2013), while 
genes that mark autophagy, vacuolar function, and a “quiescence” 
state peak during a steady, low-oxygen-consumption phase. Strik-
ingly, in these continuous YMC cultures, cell division is tightly gated 
to a temporal window. Cells divide synchronously only once during 
each metabolic cycle (Küenzi and Fiechter, 1969; Tu et al., 2005; 
Robertson et al., 2008; Laxman et al., 2010) and remain in a nondi-
viding state during the rest of the cycle. The nondividing population 
in the low-oxygen-consumption phase exhibits typical hallmarks of 
quiescent cells (Tu et al., 2005, 2007; Shi et al., 2010; Shi and Tu, 
2013; Cai et al., 2011; Dhawan and Laxman, 2015). Furthermore, in 
each YMC, during the tight temporal window when cells do divide, 
the culture has two, visibly distinct subpopulations: dividing and 
nondividing (Tu et al., 2005; Robertson et al., 2008; Laxman et al., 
2010). These data have suggested a close coupling between the 
metabolic and the cell division cycles. Importantly, the YMC itself is 
metabolite/nutrient regulated and controlled by the amount of avail-
able glucose. The distinct phases of the YMC correspondingly show 
a separation of metabolic processes (Tu et al., 2005, 2007; Murray 
et al., 2007; Machné and Murray, 2012), and several lines of evi-
dence suggest that key metabolite amounts are critical for entering 
or exiting a proliferative or a nonproliferative state (Murray et al., 
2003, 2007; Tu et al., 2007; Shi et al., 2010; Cai et al., 2011; Machné 
and Murray, 2012; Mellor, 2016). These studies collectively indicate 
the following: 1) a separation of two states (proliferative and effec-
tively G0) in cell populations, dependent on metabolic states, and 
2) a loose metabolic framework within which it may be possible to 
study transitions between quiescence and growth transitions. Thus, 
these studies provide extensive experimental data using which a 
theoretical, mathematical model can be built to sufficiently explain 
oscillations between a “quiescent” state and a “growth” state.

Here, we use existing data from these YMCs to build a robust, 
general model for oscillations between a quiescent and a growth 
state. Importantly, the model necessitates the requirement of a tri-
partite communication—among the metabolic resource, the quies-
cent cells, and the cells exiting quiescence and entering growth—
for the cells to sustain oscillation between these two states. The 
model oscillations depend on an underlying bistability, suggesting 
that cells in either state exhibit hysteresis, or memory, of their states. 
Finally, using this model, we show how two central metabolites, 
thought to be critical for entry into a growth state, satisfy the re-
quired criteria for the currency that controls oscillations between 
these two cell states. Collectively, we provide a coarse-grained, suf-
ficiency model to explain general principles of how cells can oscil-
late between a quiescent and growth state, depending on amounts 
and utilization of an internal metabolic currency.

RESULTS
Apparent bistable states during yeast metabolic cycles
Yeast cells grown to a high cell density (in batch culture mode) in a 
chemostat, and when subsequently fed limited amounts of glucose 
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medium, spontaneously undergo robust oscillations in oxygen con-
sumption (YMCs) (Figure 1A and Klevecz et al. [2004], Tu et al. 
[2005], Murray et al. [2007], Silverman et al. [2010], and Burnetti 
et al. [2016]), with the period of each oscillation ranging from ∼2.5 
to 5 h (Figure 1A). For these oscillations to occur, the batch culture 
typically needs to first be starved for a few hours (Figure 1A), during 
which time all glucose is depleted and all cells enter a nondividing 
state (although the extended starvation is not an absolute require-
ment, as observed historically in breweries). After starvation, when 
cells are continuously provided limited glucose in the medium, the 
oscillations in oxygen consumption spontaneously start and 
continue indefinitely (Figure 1A). Comprehensive gene expression 
analysis across these longer-period oscillations (1.5–4.5 h cycles) has 
revealed highly periodic transcript expression (Tu et al., 2005; 
Rowicka et al., 2007), and proteins encoded by these transcripts can 
be binned into three general classes (Figure 1, B and C). These rep-
resent “growth genes” during the high-oxygen-consumption phase, 
followed by the rapid decrease in oxygen consumption coupled 
with “cell division” (Figure 1, B and C) (Kudlicki et al., 2007; Rowicka 
et al., 2007). The cells exhibiting the “growth” signature during the 
high-oxygen-consumption phase all go on to enter and complete 
the CDC (Laxman et al., 2010). Finally, the YMC enters a state of 
stable oxygen consumption, where the gene expression profile re-
vealed a “quiescent”-like state (Figure 1, B and C). Mitotic cell divi-
sion is tightly gated only to a narrow window (Figure 1, B and C). 
Interestingly, in this phase, only a fixed fraction of the cells (∼35%) 
(and not all cells) divide during each cycle (Figure 1D). During the 
stable oxygen consumption phase, there are almost no budding 
cells observed (Figure 1D). Note: given that this is a controlled che-
mostat system, the overall cell number/density is constant through-
out these oscillations (Klevecz et al., 2004; Tu et al., 2005), which 
becomes important for our mathematical model.

Defining the two states and apparent bistability
If these data are more grossly binned into groups, then there appear 
to be approximately two effective equilibrium states in this system. 
If binned based on the gene/metabolic patterns, then there is the 
oxidative phase (high oxygen consumption) closely coupled to 
growth, immediately followed by the reductive mitotic phase, which 
depends on (and follows directly from), the oxidative phase. Indeed, 
experimental data suggest that these two steps, the growth and 
proliferation steps, are irreversibly coupled (Laxman et al., 2010). 
This can therefore be conceived as one bin, representing a “growth” 
state. The extended, low-oxygen-consumption phase where there is 
a long, steady build-up of resources, can be viewed as a second bin. 
Both these states or bins appear to be somewhat stable, contained 
systems, with what appears to be a transition or inflection point 
leading to a committed switch to the other state. Thus, there ap-
pears to be an apparent cellular state bistability occurring during 
these oscillations in oxygen consumption. The stable, low-oxygen-
consumption phase can therefore be practically envisioned as rep-
resenting the nondividing, “quiescent” state (Q), while the rapid 
increase in oxygen consumption followed by the reduction in oxy-
gen consumption phase represents the “growth” state (G) (Figure 
1E). Considering this, our objective was to build a mathematical 
model that conceptualized the oscillations in oxygen consumption 
as oscillations between these two (Q and G) states.

For this, we first needed to define what plausible, broad scenar-
ios this YMC system might fit into. We therefore considered the cur-
rently accepted explanations for commonly observed cellular het-
erogeneity within clonal populations. Many microbial cells at high 
cell densities put out “quorum/alarmone” molecules that affect the 

entire population and lead to collective behavior along with hetero-
geneity (Miller and Bassler, 2001; Schauder et al., 2001; Whitehead 
et al., 2001; Zhu et al., 2003; Chen et al., 2004; Farewell et al., 2005; 
Srivatsan and Wang, 2008). Other possibilities emerge from meta-
bolic resource sharing, seen widely in systems ranging from micro-
bial populations to cancer cells (Veening et al., 2008; Cairns et al., 
2011; Campbell et al., 2015, 2016). This extends to regulation at the 
levels of metabolic specialization and stochastic gene expression 
resulting in phenotypic heterogeneity (Avery, 2006; Ibanez et al., 
2013; Holland et al., 2014; Ackermann, 2015; Sumner and Avery, 
2017). From within this range of possibilities, we envisaged three 
general scenarios that could result in the type of oscillations (Q ↔ 
G) seen in the YMC and could make biological sense (Figure 1F): 
1) there could be the production and secretion of a resource by a 
subpopulation of cells (“feeders”), which is taken up by other cells 
that will go on to divide; 2) there could be the secretion and accu-
mulation of a metabolite that is sensed and taken up by only some 
cells (but is not consumed); and 3) there is a build-up of a metabo-
lite, which is consumed by the cells at some threshold concentration 
(Figure 1F). Starting from these scenarios, we built simple models to 
test which one could create an oscillatory system between the two 
states, which can come from an apparent bistability in the system.

A “push–pull” model, requiring communication among 
the Q state, the G state, and the resource, produces 
oscillatory behavior
Model framework for a two-state yeast population. To model 
such a two-state population of cells, the variables to consider would 
be the following: 1) the number of cells in the quiescent state and in 
the growth state and 2) some indicator of resource availability 
(dependent on the accumulation and consumption of the resource) 
that could modulate the switching rate between the Q and G states 
and the growth rate.

Thus, using this framework, we build the following equations that 
can describe the dynamics of a two-state population of yeast cells in 
a well-mixed system:

“Change in Q population over time”:

dQ dt G Q Q/ GQ QG= ν − ν − φ  (1)

“Change in G population over time”:

dG dt G G Q G/ GQ QG= γ − ν + ν − φ  (2)

where Q(t) is the number of cells in the quiescent state at time t, G(t) 
the number of cells in growing/dividing state, each ν represents a 
switching rate, φ(t) is the chemostat outflux rate (which could vary with 
time), and γ is the growth rate of cells in the growing/dividing state. If 
we further assume that the chemostat is working in a mode that main-
tains the total population (or density) of cells at some constant level, 
that is, the outflux from the chemostat balances the growth of cells at 
all times, then this means φ(t) = γG/(G + Q). In this case, the popula-
tion dynamics can be described by a single equation:

dq dt q q q q/ 1 1GQ QG( ) ( )= ν − − ν − γ −
 (3)

where q ≡ Q/(G + Q) is the fraction of cells in the quiescent state.
Next, we assume that the cells contain some “resource” that 

they require for growth, without making any further assumptions 
about the resource. Let a(t) denote the concentration per cell of this 
resource at time t, and let σ denote the rate at which additional 
amounts of this resource enter each cell from the surroundings 
(where the resource is replenished due to the influx of fresh medium 
into the chemostat). a is depleted both by dilution due to the 
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FIGURE 1: Apparent two-state bistability during yeast metabolic cycles. (A) Representative YMC, indicating stable 
oscillations in oxygen consumption (based on dissolved oxygen dO2) in yeast cultures, reflecting the yeast metabolic 
cycle. Note that the stable oscillations are driven by restricted feeding. (B) More detailed illustration of each oscillation 
cycle, also indicating the phases of the YMC. (C) Functional outputs based on gene expression studies (from Tu et al., 
2005), which clearly define the oxygen consumption phases of the YMC into a general “growth/proliferation” phase and 
a “quiescence” phase. (D) Observed cell division during the YMC. Cell division is tightly gated to a narrow window of 
the YMC. Note that only a fraction of cells, and not all cells, divide during this window of each cycle. (E) Reducing the 
oxygen consumption (dO2) oscillation into a two-state (Q state and G state) system. The apparent bistability is also 
illustrated. (F) Plausible biological scenarios that could result in an oscillation between Q and G states, based on 
observed phenomena. These scenarios are considered for building the model.
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outflux (at a rate γ[1−q] as explained above) and by consumption by 
growing cells (this rate is also proportional to γ[1−q], which is the net 
rate of production of new cells). The dynamics of this resource can 
thus be described by the following equation:

“Change in resource over time”:

da dt q a q a/ 1 1( ) ( )= σ − µγ − − γ −
 (4)

where μ is a proportionality constant that sets just how much re-
source is consumed by a growing cell compared with the amount 
that is depleted by dilution.

In writing Eqs. 3 and 4, we have assumed that all cells have the 
same amount of this internal resource a. A less-restrictive assump-
tion that still gives the same equation is to assume that a represents 
the average concentration of the resource across the population of 
cells, but that the distribution of resource levels is similar for Q and 
G cells. Further, the same equations also model the case where the 
resource is not an intracellular one but an extracellular one: σ then is 
just reinterpreted as the rate at which the resource is added to the 
extracellular medium either by an external feed or by secretion of 
the resource by the cells themselves (e.g., by making σ dependent 
on q).

By choosing which of the parameters in the above equations are 
zero or nonzero, and how they depend on q and/or a, this frame-
work can be used to model a variety of scenarios, which subsume 
the broad, biological scenarios illustrated in Figure 1E. These math-
ematically distinct scenarios are described below (and illustrated in 
Figure 2, A and B):

1. A subpopulation of feeder cells (in the Q state) secrete a re-
source that is sensed by other cells that can grow and divide (G 
state); resource accumulation σ increases with q.

Such a scenario can be modeled with the G cells either consum-
ing the resource (μ ≠ 0) or only sensing but not consuming the re-
source (μ = 0) in the processes of growing/dividing. The growth rate 
in the G state may be a constant or may depend on the level of the 
resource (e.g., γ proportional to a). There are three subscenarios for 
how cells may switch between the two states:

a. There is no switching between Q and G states (νQG and νGQ 
both zero).

b. There is random switching between Q and G states (νQG and/
or νGQ are nonzero constants).

c. Switching between Q and G states is dependent on cell den-
sity and/or the resource level (νQG and νGQ both functions of 
q and/or a).

2. All cells produce and secrete a resource that is sensed only by a 
subpopulation of (G) cells that can grow and divide, that is, σ is a 
constant. As in scenario 1, the G cells may or may not consume 
the resource, the growth rate in the G state may or may not de-
pend on the level of the resource, and there are three subsce-
narios for how cells may switch between the two states: no 
switching, random switching, or density-/resource-dependent 
switching.

3. There is a build-up of a resource, which is directly supplied from 
outside into the chemostat medium (σ is a constant). This metabo-
lite is sensed or consumed by the G cells when they grow/divide. 
Again, the growth rate in the G state may or may not depend on 
the level of the resource and switching may work in one of three 
ways: none, random, or density-/resource-dependent switching.

While scenarios 2 and 3 may appear mechanistically very differ-
ent, they are in fact mathematically no different from each other; 

both result in a constant production of the resource (Figure 2B). 
Hence, we need not distinguish between these two. Testing all the 
scenarios above, using Eqs. 3 and 4, we show in the next section 
that oscillations are not possible in the absence of switching, or 
even with random switching, when there is no substantial time delay 
between resource utilization and division events (as assumed in writ-
ing Eqs. 3 and 4). Thus, scenarios 1c, 2c, and 3c are the only possi-
bilities left that give oscillations (Figure 2C). This means that the 
switching between Q and G states is a stochastic event, but with a 
probability that depends on the resource level and/or the density of 
cells in the Q or G state, implying some form of communication 
between the resource, the cells in the Q state, and the cells in the G 
state.

Some necessary conditions for oscillations. Within the framework 
of our model, we can show that a density-dependent switching rate 
is necessary to get oscillations.

1) No oscillations in the absence of switching.

When both νQG and νGQ are zero, then Eq. 3 becomes

dq dt q/ 1( )= −γ −
 (5)

As long as γ is always positive, irrespective of its dependence 
on a, this has only one stable steady-state solution, q = 0, because 
the rate of change of q is always negative. And this is globally sta-
ble, that is, every initial value of q (except q = 1) will flow to q = 0. 
The q = 1 state is an unstable steady state, that is, any fluctuations 
away from it, however small, will result in the system moving to q = 
0. Thus, there can be no oscillations in the absence of switching.

2) No oscillations with constant parameters.

When all the parameters in Eqs. 3 and 4 are constants, indepen-
dent of q and a, then no oscillations are possible because Eq. 3 
becomes independent of Eq. 4, and therefore, being a one-dimen-
sional ordinary differential equation without explicit time depen-
dence, cannot show oscillations (an oscillation in q requires that 
dq/dt take both positive and negative values for the same value of 
q, for at least within some range of q, and this is not possible for a 
one-dimensional ordinary differential equation). 

3) No oscillations for random (density-independent) switching.

A less-restrictive assumption is that νGQ and νQG are constants 
(which includes zero—we have already examined the case where 
both are zero above), but γ and σ may be functions of q and/or a. In 
the scenarios we examine, γ may be an increasing function of a (all 
scenarios), while σ may be an increasing function of q (scenario 1). In 
this situation, the dependence of each variable on the other is 
“monotonic” (dq/dt is a decreasing function of a, while da/dt is an 
increasing function of q). Equations with such monotonic depen-
dencies have been studied mathematically in detail (Pigolotti et al., 
2007; Tiana et al., 2007), which show explicitly that when such a 
coupled set of equations has only two variables (here q and a), then 
sustained oscillations are not possible. Intuitively, there is not 
enough time delay in such a small two-leg feedback loop to desta-
bilize the overall negative feedback that pulls the variables into a 
single stable steady-state value.

Hysteretic oscillator based on the two-state model. Apart from 
there being broadly two states, a second crucial observation from 
the experiments is that there is a distinct separation of timescales. 
The transitions from a situation where almost 100% of cells are in the 
Q state to one where 30–40% are in the G state, and vice versa, are 
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FIGURE 2: A “push–pull” model for oscillations arising from an underlying bistability between Q and G states. (A) A 
range of biologically plausible scenarios from Figure 1F, now broken down into precise categories, where parameters 
affecting the rates of proliferation (γ), switching between Q and G states (ν), as well as consumption (μ) and supply (σ) of 
the resource are included. The variations in these parameters are used to build and test our model. (B) Schematic 
illustration of Figure 1A, indicating feedback loops and parameters considered, to test for possible oscillations between 
Q and G states. For clarity, potential feedback loops caused by the parameters being dependent on the resource a are 
not shown, but are included in our models. (C) A hysteretic oscillator, based on switching between Q and G states, a 
required communication between Q, G, and the resource, and the oscillation of the amounts of resource itself that 
controls the Q↔G transitions (see Materials and Methods for the parameter values that that produce this dynamics). 
Left, the thin black curve shows the path traced by the oscillation in the q–a plane, the thick dashed line is the curve 
along which production of resource exactly balances consumption/dilution, and the solid black dots trace the high and 
low branches of the steady-state q levels when the resource level is held constant (the gray rectangle indicates the 
region of bistability). Right, blue and green curves show, respectively, the fraction of quiescent cells and the resource 
level as a function of time.
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very rapid, whereas between these two transitions the dynamics 
proceeds on much slower timescales. A simple way to obtain such a 
two-timescale oscillator from this two-state model uses the strategy 
of “frustrated bistability” previously suggested by Krishna et al. 
(2009). It requires three ingredients: 1) a negative feedback loop 
between q and a, 2) bistability in q in the absence of the feedback, 
and 3) the assumption that changes in q happen on a relatively fast 
timescale compared with changes in a. While the first can be 
achieved in several ways, the two simplest, biologically plausible, 
scenarios are where growing cells consume a resource a and 1) the 
growth rate γ is proportional to the resource a or 2) one or both 
switching rates depend on a such that the net switching rate from G 
to Q decreases with a. However, the third requirement of separation 
of timescales means that the switching rates must be at least sev-
eral-fold higher than γ and σ. This means that the term γq(1-q) in 
Eq. 3 is practically negligible and hence the dependence of γ on a, 
or lack of it, would have little effect. We therefore concentrate on 
case 2), where the switching rates depend on a to implement the 
negative feedback and for simplicity keep γ independent of a.

Bistability in q in the absence of the feedback implies that when 
a is kept fixed, for some range of a values, Eq. 3 should allow two 
stable steady-state levels of q, one lower and one higher. This is 
shown in Figure 2C, left, where one can see the high and low 
“branches” traced by the solid black circles—every point on these 
branches is a stable steady state q can attain for the corresponding 
a value, using a version of Eq. 3 derived from scenario 3 in Figure 2B 
(see Materials and Methods for the full equation). When the re-
source a is sufficiently small, then there is only one high steady-state 
level possible for q. Similarly, when a is sufficiently large, there is 
only one low steady state possible. However, for intermediate val-
ues of a, the system exhibits bistability and both low and high 
steady-state levels coexist. In this bistable region, which steady-
state level q attains depends on where it started (i.e., its “initial con-
dition”). Importantly, in these oscillations, the system exhibits a 
“memory” (or a “hysteresis”)—the steady-state level that q eventu-
ally settles into depends on the history of the system.

When there exists such bistability, then one can get oscillations 
from the system described by Eqs. 3 and 4, provided the switching 
rates are a fewfold faster than the rates of consumption and accu-
mulation of the resource (Krishna et al., 2009) as follows: when q is 
high, a increases due to lack of consumption, so the system creeps 
along the high branch in Figure 2C, left (see the trajectory traced by 
the thin black line), until it hits the edge of the bistable region. At 
that point, cells start switching to the G state, which happens rela-
tively rapidly due to the separation of timescales. Thus, the trajec-
tory “falls off” the edge down to the low branch. On the low branch, 
with more G cells, the now increased consumption of the resource 
causes a to start decreasing, leading to the system creeping down 
along the low branch. When the system reaches the left edge of the 
bistability, the trajectory jumps up to the high branch as cells rapidly 
switch to the Q state. For a range of parameter values, this settles 
into a stable oscillation, as shown in Figure 2C, right, which shows 
how q and a vary with time as one follows the black trajectory in 
Figure 2C, left.

For this kind of oscillation, as we have demonstrated in the previ-
ous section, νQG and/or νGQ must necessarily be functions of q, not 
constants independent of q. This can be interpreted as a form of 
“quorum/cell number sensing”—implying some form of cell–cell 
communication (or a cell density–dependent phenomenon). More 
specifically, we find that choosing either νQG to be a decreasing step 
function of q (as in Figure 2C) or νGQ to be an increasing step func-
tion of q (see Supplemental Figure S1) is sufficient to produce frus-

trated bistability. Other shapes that we have not explored may also 
produce bistability and hence oscillations. However, our purpose 
here is not to find the “best-fit” model but rather to demonstrate 
the basic ingredients that are sufficient to produce hysteretic oscilla-
tions that are similar to the experimental observations. The require-
ment for νQG to be a decreasing step function of q, or νGQ to be an 
increasing step function of q, is basically a requirement for a “push–
pull” mechanism—the more the Q cells, the more other Q cells get 
pulled to remain in that state, and the more G cells get pushed to 
switch away from their state and vice versa. Irrespective of the pre-
cise molecular means by which this is achieved, cell–cell communi-
cation is a necessary ingredient for implementing such a push–pull 
mechanism.

Possible variations in the shape of the oscillations. From our 
gross model explained in Figure 2, we obtain predictable oscilla-
tions with a specific pattern. The model oscillations exhibit a fast 
drop in q when exiting the predominantly quiescent phase, fol-
lowed by a slow(er) drop and then a rapid rise back to a high q level. 
Experimentally, however, a few variations within the general oscilla-
tion patterns are known to occur, depending on the strain back-
ground (Burnetti et al., 2016). In the CEN.PK strain (our major refer-
ence system, from which the gene and metabolite oscillation data 
sets were obtained [Tu et al., 2005, 2007; Mohler et al., 2008]) dO2 
levels (which we equate with q) show a fast drop, a slow further 
drop, and then a rapid rise (Figure 3A, scenario i). However, as com-
prehensively described in Burnetti et al. (2016), three other varia-
tions have been extensively documented. Following a fast drop in 
dO2 levels, some strains then show a slower drop followed by a 
more extended low dO2 phase (bump) and a fast rise in dO2 (Figure 
3A, scenario ii). Other strains show an overall fast drop in dO2, an 
extended low dO2 phase and bump, and a fast rise (Figure 3A, sce-
nario iii) or a fast drop in dO2 (increased oxygen consumption), fol-
lowed by a slower, extended rise in dO2 (Figure 3A, scenario iv).

Can our model explain this small diversity of shapes seen during 
the overall drop and rise in oxygen concentrations? In the model, 
the shape observed depends on the shapes of the two branches of 
q steady states (solid black circles in Figure 2C, left). Because the 
lower branch starts at a q value of around 0.5 and then increases as 
a increases, there is a slow drop in q after the fast drop. To produce 
the experimental dO2 oscillations in other yeast strains (as shown in 
Figure 3A), the lower branch must have a different shape. For ex-
ample, for strains that show a slow increase after the first rapid de-
crease of q, the low q branch must decrease as a increases. Similarly, 
the other waveforms would involve other shapes of the lower or 
higher branches. In Figure 3C, we show that simple changes in the 
dependence of the switching rate νQG on a produce different wave-
forms for the oscillations. Here we have shown how to get different 
shapes of the low-q phase of the oscillation by manipulating the 
lower branch of the bistability—changes to the high-q phase could 
similarly be easily made by manipulating the upper branch. The 
main point is that the shape of the waveform is primarily determined 
by the shape of the bistability branches, which in turn are deter-
mined by how νQG and νGQ depend on q and a. Thus, our model 
predicts that these switching rates are what must vary between 
strains that show different oscillation waveforms.

Predicting oscillatory outcomes based on resource availability. We 
have used scenario 3c (from Figure 2) to produce oscillations 
in Figures 2 and 3. We reiterate that mathematically scenarios 2 and 
3 are the same, so scenario 2c can produce exactly the same 
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FIGURE 3: Diverse waveforms in the oscillations: experimentally observed and model predictions. (A) Experimentally 
observed patterns of oscillations in dissolved oxygen/ oxygen consumption, which is dependent on yeast strain 
backgrounds and chemostat growth conditions. (B) Altering the communication loops among Q, G, and a to change the 
overall oscillation waveform. Here γ (growth rate) is constant and νQG is a decreasing step function of q. To obtain 
different waveforms, we vary the way the step function parameters νm depends on a. (C) Predicted oscillation 
patterns from the model (altered as described in B). The illustrated panels cover the range of waveforms observed 
experimentally in A. (i) Same as Figure 2C; νm decreases with a. (ii) νm first increases then decreases with a. (iii) νm first 
decreases and then increases with a. (iv) νm increases with a. Additionally, in all four cases, K increases with a and other 
parameters have been chosen so that the time period of oscillations is close to 4 h (see Materials and Methods for the 
full equations, with parameter values, for each case).
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oscillations. Further, we also find that scenario 1c (where the re-
source is not supplied externally, but produced/secreted by only the 
Q cells) is also capable of producing similar oscillations, based on 
highly constrained choices for how the production rate of the re-
source (σ) depends on q and a (see Supplemental Figure S2). Thus, 
while scenarios 3c and 2c are identical, all three scenarios, 1c, 2c, 3c, 
with appropriate choices for how the switching rates, and produc-
tion and consumption depend on the resource and fraction of qui-
escent cells, are sufficient to explain the YMC oscillations. Scenario 
2c and 3c are largely indistinguishable, and both appear biologically 
most plausible. Given our experimental understanding of the YMC 
(and the need for a consumable resource, glucose, to control the 
oscillations), we think scenario 3c is most likely (and we will explore 
this further in a subsequent section).

Breakdown of the oscillations
In Figures 2 and 3, we have chosen the particular “default” values 
of each of the model parameters such that the oscillation period 
became ∼4 h to match the experimental observations in Figure 1. 
Of course, varying these parameter values changes the time pe-
riod, and for large-enough variation the oscillation may also disap-
pear. Our model predicts how the oscillation shape and period will 
vary, and when oscillations will break down, in response to experi-
mentally tunable parameters. For instance, Figure 4A shows how 
the oscillations change as the resource production rate, σ, is varied 
around its default value, for the same equations that produced the 
oscillations in Figures 2 and 3. When σ is decreased below the de-
fault value, the oscillation period initially increases, with more time 
being spent in the high-q phase. For low-enough σ, the model ex-
hibits damped oscillations, and then as σ is lowered further, the 
model exhibits the absence of oscillations, with q settling into a 
high steady-state value (see Figure 4A and Supplemental Figure S3 
for more such plots). When σ is increased from its default value, we 

again find that the period initially decreases, with less time being 
spent in the high-q phase. We are able to produce oscillations hav-
ing a time period as low as ∼2.5 h (see Figure 4A[iii]). When σ is in-
creased beyond this, the oscillation period starts increasing again, 
and the low-q phase of the oscillation starts becoming pronounced 
(see Supplemental Figure S3). Eventually, the oscillations disap-
pear, with q settling into a (relatively) low steady-state value. These 
predictions largely mirror known experimental observations, where 
decreasing or increasing feed rate (at these scales) control oscilla-
tions similarly.

The resource production rate σ is a parameter that can be tuned 
relatively easily in a chemostat by controlling the amount of fresh 
glucose or ethanol being supplied per unit time. However, another 
parameter that may be tunable by genetic modifications is γ, the 
growth rate of cells when they are in the G state. Figure 4B shows 
how the oscillations vary as γ is varied. The results are qualitatively 
similar but inverse to what was observed with σ variation—an in-
crease in γ from the default value results in an increasing period, 
damped oscillations, and eventually no oscillations, while a de-
crease first results in a decrease of period and then a distorted 
shape and increasing period (see Supplemental Figure S4 for more 
such plots).

The location of the dashed black lines in Figure 4, left panels, 
helps us to understand this behavior. Each dashed line traces the q 
and a values where resource production exactly balances resource 
consumption/dilution. To the right of the line the production is less 
than the consumption so the resource must decrease and vice versa 
to the left of the line. The closer one is to the dashed line, the slower 
the rate of change of a. As explained in Krishna et al. (2009), oscilla-
tions occur only when this dashed black line passes between the 
upper and lower bistable branches (solid black circles)—because 
then the resource keeps increasing (decreasing) when it reaches the 
end of the high (low) branch making the trajectory “fall off the edge” 

FIGURE 4: Breakdown of oscillations. (A) Varying the rate of production of resource σ. (i) σ = 0.346 h, (ii) σ = 0.400 h 
(default parameters, same as Figure 3), (iii) σ = 0.866 h. (B) Varying the growth rate of cells γ. (i) γ = 0.500 h, (ii) γ = 
1.665 h (default parameters, same as Figure 3), (iii) γ = 2.000 h. Equations used, and other parameter values, are the 
same as those that produced Figures 2C and 3C(i).
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and continue the oscillation. When σ is decreased, the dashed black 
line shifts leftward in the plot, coming closer to the high-q branch 
which causes the oscillating trajectory to spend more and more time 
on the high-q branch (because it is closer to the dashed line and so 
the resource accumulates slower). Eventually, as the dashed line just 
touches the high-q branch, the time period of oscillations increases 
to infinity (logarithmically—see Supplemental Figure S5). For σ val-
ues lower than this critical value, there is no sustained oscillation and 
the system settles into a steady state on the high branch at the point 
where it crosses the dashed line. A similar behavior happens as σ is 
increased and the dashed line comes closer to the lower branch, 
with the only difference being that the oscillating trajectory spends 
more time at lower q values.

A universal feature of the YMC oscillations seen in diverse yeast 
strains is that the time period of the oscillations decreases with an 
increase in the dilution/supply rate in the chemostat. The time pe-
riod appears to be dominated by the time spent in the high-q 
phase, which also increases with dilution/supply rate, whereas the 
time spent in the low-q phase is less and decreases slightly with in-
crease in the dilution/supply rate (described in Burnetti et al., 2016). 
As described above, in our model, we find that as we vary σ or γ, 
there are two regimes. In one the time period is dominated by the 
high-q phase, and the behavior matches the above experimental 
observations (see Supplemental Figure S5). However, there is also 
another regime, where the time period is dominated by the low-q 
phase. Our model therefore predicts that 1) the observed YMC os-
cillations are closer to the lower end of the σ range that produces 
oscillations, so one should be able to increase σ more than decrease 
it before breaking the oscillations, and 2) if one increased σ enough 
while remaining in the oscillatory regime one should observe low-q 
dominated oscillations such as those shown in Supplemental Figure 
S3. These are both testable predictions of our model.

Acetyl-CoA and NADPH satisfy the requirements of the 
consumable resource that controls oscillations between 
the Q and G states
Based on our model, the metabolic resource oscillates with a 
unique pattern, and this drives the oscillation between the Q and G 
states. From the model, some resource builds up within the cell and 
is highest at the point of commitment to the switch to the G state 
(Figure 5A). It is then rapidly consumed/eliminated to fall below a 
certain threshold, resetting the oscillation, after which the cycle of 
building up for consumption resumes. When superimposed to the 
actual YMC phases (and the Q to G switch), this build-up of the re-
source would necessitate its highest amounts at the beginning of 
the phase where cells commit to entering high oxygen consump-
tion (Figure 5A). We note that these features of the resource oscil-
lation are a very robust prediction of our model. Across all the oscil-
lations in Figures 2–5 we see the same behavior, and we would see 
this for any parameter choice that gives oscillations because this 
behavior depends only on our assumption that the resource is con-
sumed by growing/dividing cells and not by quiescent cells. There-
fore, according to our model, for any metabolite to be the resource 
that controls the oscillation between the two states, this molecule 
must fully satisfy the above criteria. Furthermore, for completing 
this switch to the G state, the metabolite must be able to drive all 
the downstream biological events for growth. So do any central 
metabolites satisfy these requirements and could therefore be the 
internal resource that controls these Q-G oscillations?

Comprehensive data sets of 50–100 oscillating metabolites in 
the YMC exist (Murray et al., 2007; Tu et al., 2007; Mohler et al., 
2008). From these studies, the oscillations of only two metabolites, 

acetyl-CoA and nicotinamide adenine dinucleotide phosphate 
(NADPH), fully fit the criteria demanded by our model. The acetyl-
CoA and NADPH oscillations as a function of the metabolic cycle, 
and transitions between the Q and G state are shown in Figure 5, A 
and B. The oscillations of acetyl-CoA during the YMC almost per-
fectly superimposes with the oscillation pattern of the hypothetical 
metabolic resource predicted by the model (Figure 5A). We plotted 
phase diagrams of the fraction of quiescent cells vs. the amount of 
resource in the cell (from the model) and also plotted phase dia-
grams from experimental data for the dO2 oscillations plotted 
against acetyl-CoA amounts (Figure 5B). The two phase diagrams 
(from the model and from experiments) strikingly resemble each 
other (Figure 5B). This is despite the fact that the experimental data 
for acetyl-CoA is of low resolution, with only a few sampling/time 
points covered, and also reflects only overall (bulk population) mea-
surements of acetyl-CoA, suggesting that the actual phase diagram 
might be even more similar. Thus the model appears to capture key 
universal features of these yeast oscillations, including the point of 
exit from low oxygen consumption (Q) to high oxygen consumption 
and back (G), and the parameters important in the waveform (i.e., 
the low- and high-oxygen-consumption phases are important, while 
the precise form of the dip and increase in dissolved oxygen may 
not be so). The model also supports an inference that the acetyl-
CoA oscillations are sufficient to explain the bistability between the 
Q and G states and retains the hysteresis component.

Using our model, we next simulated what would happen if the 
resource was increased to just above the threshold level, at a differ-
ent time. In our model, during normal oscillations, the amount of 
resource steadily increases, while the cells are in the Q state. In our 
simulation, we provided a single bolus of the resource, while cells 
were in the Q state (Figure 5C). We observed a predictable, sharp 
exit from the Q state and entry into the G state (Figure 5C), effec-
tively resetting the oscillation, which then continued and restored 
itself to the normal ∼4-h period in the next cycle. We compared this 
to available experimental data, where oscillations have been reset 
by adding a bolus of an external agent, typically glucose, acetate, 
acetaldehyde, or ethanol (Murray et al., 2003; Klevecz et al., 2004; 
Tu et al., 2005; Cai et al., 2011). All these agents show near-identical 
patterns of resetting of oscillations (exit from Q and entry into G), 
and a representative figure (for acetate addition) is shown in Figure 
5C. Here, cells exit the low oxygen consumption phase and enter 
and exit the high oxygen consumption phase, and subsequently 
quickly restore normal (in this case ∼4 h) oscillations. This simulation 
can be done in any part of the oscillation, and whenever most cells 
are in Q, adding a bolus of the resource similarly resets the oscilla-
tion (Supplemental Figure S6). Also notably, adding this resource 
when cells have switched to the G state does not alter the oscilla-
tions much (Supplemental Figure S6), which is also something 
widely established in experiments. Thus, the oscillations predicted 
by the model very closely recapitulates the patterns of oscillations 
observed in experiments, how the central, controlling resource 
might oscillate, and how the oscillations are affected on perturbing 
the resource. This strongly suggests that the threshold amounts of 
the resource are sufficient to set the oscillations and switching be-
tween Q and G states.

Multiple lines of experimental data suggest that these two me-
tabolites, acetyl-CoA and NADPH, are key in controlling exit from 
quiescence and entry into growth (Tu et al., 2007; Cai et al., 2011; 
Cai and Tu, 2012; Machné and Murray, 2012; Shi and Tu, 2013, 
2014; Mellor, 2016). On the basis of our knowledge of the metabolic 
prerequisites for entering growth and known functional endpoints 
or outcomes of these two molecules (Figure 5D), we can now make 
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a strong, parsimony-based argument suggesting that oscillations in 
these two metabolites are sufficient to control oscillations between 
the Q and G state. Particularly, several lines of study suggest that 
the entry into growth (from quiescence) depends on carbon source 
utilization (Shi et al., 2010; Cai et al., 2011; Daignan-Fornier and 

Sagot, 2011b; Laporte et al., 2011). As pointed out earlier, studies 
from the yeast metabolic cycle show that the oscillations depend on 
carbon sources (primarily glucose) (Klevecz et al., 2004; Tu et al., 
2005), and oscillations can be reset (to enter the growth program) 
by adding acetate, acetaldehyde, and so on (Murray et al., 2003; 

FIGURE 5: Acetyl-CoA satisfies the requirements for the metabolic resource controlling the Q and G oscillations. 
(A) Predicted pattern of oscillation of the resource, during the Q and G oscillations, based on the model (top panel, 
same oscillations as Figure 2C), and experimentally observed oscillations of acetyl-CoA and NADPH during the dO2 
oscillations (bottom panel). (B) Predicted phase portrait of the the fraction of quiescent cells vs. the resource per cell 
based on the model (top panel), and experimentally observed oscillations in dO2 and acetyl-CoA. (C) Predicted effect on 
the oscillation waveforms and the Q and G states, when a bolus of the resource is added to cells in the Q state (see 
Materials and Methods for details), vs. experimentally observed data on oxygen consumption when a resource, acetate 
(the trace is similar with for resources like ethanol, acetate, acetaldehyde, glucose) is added to cells in the low oxygen 
consumption phase. Supplemental Figure S6 shows how the response varies as the time of adding the bolus is varied. 
(D) Acetyl-CoA as a central regulator of a switch to the growth (G) state. The schematic illustrates a cascade of 
biological processes leading to growth that acetyl-CoA amounts regulate (coupled with coincident, required NADPH 
utilization). Note that all resources that reset the oscillations, as indicated in C, are utilized after they are converted to 
acetyl-CoA.
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Tu et al., 2005; Cai et al., 2011). Notably, these carbon sources end 
up being converted directly to acetyl-CoA and can only then be 
utilized (Figure 5D). Additionally, a growth program will require not 
just sufficient energy (ATP) to sustain the anabolic processes within it 
but also activate a program boosting anabolic processes that lead to 
cell division, including making enough lipid moieties required for 
cell membranes and other constituents of a new cell. Notably, ace-
tyl-CoA satisfies all these requirements in the following manner 
(Figure 5D): it directly enters the TCA cycle to generate ATP (Nelson 
and Cox, 2017), it can be utilized for the biosynthesis of numerous 
cellular metabolites, including fatty acids, sterols, and amino acids 
(Nelson and Cox, 2017), and it directly regulates cell growth and 
ribosome biogenesis by the acetylation of histones at “growth pro-
moting genes,” especially histones at ribosome subunit, tRNA, and 
ribi genes, and activates their transcription by the SAGA complex 
(Cai et al., 2011). The genes that breakdown storage carbohydrates 
(such as glycogen and trehalose) that produce acetyl-CoA all peak 
before the maximal acetyl-CoA concentration (Tu et al., 2005; 
Kudlicki et al., 2007). Finally, the exit from quiescence requires the 
liquidation of these storage carbohydrates (Shi et al., 2010; Laporte 
et al., 2011; Shi and Tu, 2013) and conversion to acetyl-CoA (and the 
subsequent gene expression program) (Shi and Tu, 2013). Perturba-
tions in the ability to sense and utilize acetyl-CoA (particularly for the 
gene expression program) completely abolish oscillations (Cai et al., 
2011). Physiologically, this anabolic commitment also absolutely re-
quires the process of reduction for anabolic biosynthesis, and this 
reductive capacity is supplied by NADPH (Nelson and Cox, 2017) 
(Figure 5D). NADPH is primarily synthesized from the pentose phos-
phate pathway, which branches from this same central carbon net-
work, and this NADPH will fuel the required reductive biosynthesis 
to make molecules required for anabolism (Figure 5D). Finally, genes 
encoding proteins that increase the synthesis of NADPH are similarly 
coincident with those that lead to the generation of acetyl-CoA, and 
disrupting NADPH production slightly results in a collapse of oscilla-
tions (Tu et al., 2005, 2007). Relatedly, studies from the YMC show 
multiple other metabolite oscillations coupled to or dependent on 
NADPH, although any hierarchical organization was not immediately 
apparent (Murray et al., 2007). Without a necessary coupling of the 
two molecules, the overall process of entry to growth cannot be 
completed. There are substantial data, particularly from the studies 
of various cancers, to show the close coupling of acetyl-CoA and 
NADPH for growth (Vander Heiden et al., 2009), as well as direct evi-
dence of acetyl-CoA promoting NADPH synthesis (Patra and Hay, 
2014; Shan et al., 2014). Summarizing, based on the pattern of oscil-
lation of the resource predicted by our model, acetyl-CoA and 
NADPH (based on production and utilization) satisfy sufficiency re-
quirements to be the molecules that control the Q-G state oscilla-
tions. Our model thus strongly supports an argument for oscillations 
in acetyl-CoA being sufficient to control Q-G state oscillations.

DISCUSSION
In this study, we present a simple frustrated bistability model to ex-
plain how the amounts of an internal metabolic resource can deter-
mine oscillations between a quiescent and growth state. For this, we 
relied on extensive data coming from the YMC and represented the 
oscillations in dissolved oxygen (seen during YMCs) as a reflection 
of growth and quiescent states (Figure 1). Our model incorporates 
factors dependent on growth rate and amounts of the resource, as 
well as switching rates (between the G and Q states). Importantly, 
the model emphasizes a necessary communication between the 
cells in the quiescent state and the growth state, both of which inter-
act with the metabolic resource during such transitions (Figure 2). 

Quiescent cells “push” cells in the growth state into quiescence and 
“pull” other quiescent cells to remain quiescent, with the feedback 
requirements imposed by the resource being distinct and opposite 
for the Q and G states. Given this communication requirement be-
tween the Q and G states, our model suggests that such oscillations 
will eventually breakdown when the cell numbers are small and cells 
are no longer in contact with each other (something that has been 
experimentally observed [Laxman et al., 2010]). This model also pro-
vides insight into understanding the “growth/division” rate of cells 
once committed to growth. While healthy debates continue on the 
rate of growth in a cell and stages of the cell cycle (Johnston et al., 
1977; Conlon and Raff, 2003; Jorgensen et al., 2004; Brauer et al., 
2008; Goranov et al., 2013). our model shows that it is sufficient for 
oscillations to have a fixed “growth rate” once the metabolic re-
source has crossed its threshold concentration and triggered a com-
mitted growth program, after which the growth and division process 
is no longer dependent on available nutrients. This is also analogous 
to studies of the CDC, which are built around committed, “no re-
turn” steps that proceed at constant, predictable rates once com-
mitted to. In our model, because there is a timescale separation 
between growth and switching rates, making the growth rate de-
pendent on the resource would make some quantitative difference 
to the rate of accumulation/consumption of the resource but would 
leave the Q-G oscillations largely unchanged. Finally, using a parsi-
mony-based argument, we suggest that acetyl-CoA (along with 
NADPH) satisfies all requirements for the resource that drive these 
oscillations between the Q and G states (Figure 5). With acetyl-CoA 
as a resource, our model, which builds oscillations on an underlying 
hysteresis, reproduces universal features observed in these yeast 
metabolic oscillations, and provides a fairly simple sufficiency argu-
ment for how cells transition between Q and G states. We reiterate 
that our model only provides a paradigm to explain how the oscilla-
tions in an internal metabolic resource is sufficient to control oscilla-
tions between quiescent and growth states. This allows for (but does 
not include) other necessary elements in cells (e.g., unique gene 
transcription programs or subsequent metabolic events that typi-
cally must follow) that may also be required to build a more detailed 
model for Q-G oscillations.

The kind of oscillator we have built falls under the class of “relax-
ation oscillators,” which have been used to model a very wide vari-
ety of phenomena, ranging from electronic oscillations to oscillat-
ing chemical reactions (van der Pol, 1926; Strogatz, 1994). These 
are a subset of several possible types of oscillators that arise in bio-
logical systems and are especially relevant for the CDC (Novák and 
Tyson, 2008; Tsai et al., 2008; Ferrell et al., 2009; Ferrell, 2011). Re-
laxation oscillators typically involve the cyclic slow build-up of some 
quantity, like charge in a capacitor, until it reaches a threshold level 
which then triggers a “discharge” event, resulting in a rapid drop of 
the quantity. Thus, relaxation oscillators are often characterised by 
processes happening on two very different timescales, with the 
time period mainly determined by the slow process (Tyson et al., 
2003; Novák and Tyson, 2008; Tsai et al., 2008; Ferrell et al., 2009; 
Ferrell, 2011). This is why, in contrast to linear, harmonic oscillators, 
they can produce nonsmooth oscillations like a square or sawtooth 
waveform. We note that the YMC oscillations show a clear signa-
ture of multiple timescales—in Figure 1 it is evident that the exit 
from quiescence (fast drop in dO2), as well as the reentry into qui-
escence (fast rise in dO2), happen at much faster timescales than 
the other phases of the oscillation. In our relaxation oscillator model 
of the YMC, these differing timescales arise from the fact that the 
switching rates are an order of magnitude larger than the rates of 
production and consumption of the resource and even the growth 
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rate of the cells. The latter processes are therefore what determine 
the time period of the YMC. Within the class of relaxation oscilla-
tors, our models fall into a subclass that depends on an underlying 
bistability, which is “frustrated” (Krishna et al., 2009). The bistability, 
and the resultant hysteresis, are what determine the threshold 
points at which the behavior of the system rapidly switches be-
tween accumulating or consuming the metabolic resource. Interest-
ingly, our model necessitates this strong hysteresis element within 
the Q and G state cells. The phenomenon of hysteresis has been 
extremely well studied (and established), particularly during many 
phases of the classical CDC or proliferation cycle (see Pomerantz 
and McCloskey [1990], Tyson and Novák [2001], Solomon [2003], 
Wei et al. [2003], Angeli et al. [2004], Han et al. [2005], Ferrell et al. 
[2009], Ferrell [2011], Yao et al. [2011], and many more). In contrast, 
a hysteresis phenomenon has not been extensively explored when 
cells transition between a growth state and an effective quiescence 
state. Yet, in such conditions where the transition between the two 
states is substantially determined by a metabolic oscillator, as seen 
in the YMC and several other studies from simple models like yeast, 
the hysteresis phenomenon is clearly revealed by our model. Given 
this, experimental studies can be designed to dissect the nature of 
this hysteresis phenomenon.

General features emerging from the model to understand 
oscillations between quiescence and growth
Although our model is relatively simple, uses data from a fairly ele-
mentary system, and makes minimal assumptions, it does surpris-
ingly well to constrain the possibilities for how transitions between 
quiescence and growth are regulated. The model successfully cap-
tures universally observed waveforms of oscillations, can reset the 
oscillations, can predict how the oscillations of a resource can con-
trol the two states, and can predict breakdown of oscillation fairly 
well, as observed in experiments. From the very large set of me-
tabolites known to oscillate during the YMC (Tu et al., 2007; Mohler 
et al., 2008), our model constrains possibilities to a few, that oscillate 
in a way that can permit such a bistability to exist. From this, and 
consistent with extensive experimental data (discussed earlier and 
in Figure 5), it is possible to make parsimonious arguments for ace-
tyl-CoA (coincident with NADPH) as the metabolic resources con-
trolling transitions from quiescence to growth and vice versa. Our 
model helps differentiate this small set of metabolites from other 
metabolites that are important to maintain oscillations but not initi-
ate them (i.e., they may only allow the cell to continue in one state 
or the other). For example, sulfur metabolism is critical to maintain 
oscillations (Murray et al., 2003, 2007; Tu et al., 2007). It is also es-
sential for the completion of a growth program, post entry into the 
high-oxygen-consuming phase. But this metabolite peaks after ace-
tyl-CoA in the YMC (Tu et al., 2007) and can be viewed as a conse-
quence of initiating a growth program and critical to sustain/com-
plete this growth program but not to initiate the oscillation. 
Substantiating this explanation is the fact that sulfur metabolism is 
highly dependent on the utilization of NADPH for reduction, and 
NADPH (as described earlier) is coincident with acetyl-CoA. A simi-
lar argument can be made for the sustained, high respiration seen in 
the YMC, which produces ATP that will be required to maintain the 
growth program once committed to by the cell. Separately, other 
studies have shown that “quiescent” cells can show metabolic oscil-
lations without entry into the CDC (Slavov et al., 2011). Here, these 
cells appear to show a commitment to the CDC during these oscil-
lations, based on gene expression patterns (Slavov et al., 2011). This 
can also be viewed through our interpretation of the commitment of 
cells to the CDC due to a central resource. Cells will commit to the 

CDC, which, however, may not be completed if a subsequent meta-
bolic resource, normally dependent on the central/controlling re-
source (predicted to be acetyl-CoA/NADPH here), becomes limit-
ing. In other words, for a cell, usually if this committing resource is at 
the correct threshold, other resources should not be limiting unless 
artificially constrained in an experimental setup. In Slavov et al. 
(2011), the limiting resource was phosphate, which typically should 
be available and not limiting and be assimilated into nucleotides in 
an NADPH and acetyl-CoA dependent manner. If in a specific in-
stance this resource becomes limiting, then the cells would commit 
to the growth/CDC state but will not be able to complete this and 
will fall back into the Q state.

Our model provides a foundation to build new models to re-
solve other aspects observed during the YMCs. First, in each cycle 
of the YMC, a fraction of the cells exit quiescence and divide. It is 
not fully clear if the same cell divides in each cycle or if a cell that 
has entered division in one cycle does not in the next, and so on. 
The decision to divide has been viewed as a stochastic but irre-
versible step (Laxman et al., 2010; Burnetti et al., 2016). While our 
model as it stands cannot directly address these questions, the 
dependence of the oscillations on the build-up and utilization of a 
specific resource allows the following argument to be made. First, 
the decision to divide in a cell would be purely made by the 
amount of resource (acetyl-CoA) that has been built up in the cell. 
Once acetyl-CoA reaches a certain threshold, the decision to di-
vide is irreversible. However, the build-up of acetyl-CoA within an 
individual cell itself would be dependent on small differences in 
overall metabolic homeostasis (compared with its neighbor), and 
thus which cell reaches the threshold level first could be purely 
stochastic. Second, we may speculate that if a cell has reached this 
threshold level and then used up its resource during division, it is 
unlikely to be in a position to divide in the next round/next cycle, 
whereas a cell that had not reached the threshold level in the pre-
vious cycle would be best poised to divide instead. Our model 
does not take this into account, but it provides a framework within 
which one could model the entire distribution of cells in different 
Q/G states and with different levels of the resource. Despite the 
overall stochastic aspect of Q-G transitions, such models would be 
able to make testable predictions about the switching process 
even at the level of single cells. It is also apparent that this level of 
synchrony requires high cell density in the system. Separately, 
most studies have noted that on initiating feeding in the chemo-
stat, there is a short period of tiny, nonrobust oscillations. On the 
basis of our model, we would argue that this is a situation where 
the quiescent cells are all now building up just sufficient reserves 
of acetyl-CoA, within this stochastic process, and are starting to 
divide, but the unusual steady-state condition in the chemostat 
will eventually lead to stable oscillations.

Finally, given the existing frameworks to describe Q-G state os-
cillations, our model is necessarily coarse grained and is intended 
only to build a more rigorous conceptual framework within which to 
investigate the process of cells switching between quiescence and 
growth states. For instance, it is straightforward to extend our mod-
els, by adding space and diffusion processes, to account for sce-
narios where nutrients are not well mixed and equally accessible, 
and where there is a high degree of spatial rigidity within cell popu-
lations. It is also easy to alter other assumptions underlying our 
model. For instance, our conclusions regarding acetyl-CoA being 
the driving resource depend on an assumption we made in building 
the model that G cells consume the resource. While this is biologi-
cally plausible, mathematically we could have assumed the oppo-
site, namely that the resource is consumed by cells in the Q state 
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and not by cells in the G state. In that case too our model could give 
similar oscillations—switching rates would still need to be density/
resource dependent, but the form of dependence on resource 
would need to be reversed so that the high and low-q branches 
would be the mirror images, with the low-q branch being the only 
one at low a and the high-q branch being the only one at large val-
ues of a. And hence the waveform of the oscillating resource would 
be flipped compared with Figures 2 and 3—that is, when q is high a 
would be decreasing, while when q is low a would be increasing. If 
one could find a metabolite that exhibited this waveform, then that 
metabolite would be an equally likely possibility as a driver of the 
Q-G transition, except that it would have to act such that it caused 
a switch from Q to G when it crossed a low threshold or caused the 
opposite transition when it crossed a high threshold. From the con-
siderable data available, we have not found a reasonable molecule 
with such a reversed waveform. Moreover, we know of no process 
that consumes a metabolite in the Q state in the way described, so 
for now acetyl-CoA driving the Q-G transition and being consumed 
during growth is the most parsimonious explanation. Nevertheless, 
this shows how our framework could be easily used in alternate 
scenarios.

Currently, existing experimental approaches to study such met-
abolically driven Q-G oscillations are very limited. Crude readouts, 
such as oxygen consumption, have very limited resolution even to 
show the Q and G states, as the bistability begins to break down. 
Gene expression analysis (even when done in single cells) is a late, 
end-point readout that cannot explain this bistability but instead 
occurs after a switch. The key to experimentally studying such bi-
stability, therefore, will be the development of in vivo intracellular 
metabolic sensors with excellent dynamic range and sensitivity, for 
metabolites like acetyl-CoA or NADPH. This will allow the devel-
opment of more precise models to predict commitment steps and 
identify differences within the population of cells that will help un-
derstand reversibility (between states), hysteresis and other appar-
ent phenomena.

MATERIALS AND METHODS
Experimental methods and data sets
Chemostat culture and cell division data sets: All dO2 data were 
obtained from YMCs set up similar to already published data (Tu 
et al., 2005, 2007; Kudlicki et al., 2007; Mohler et al., 2008). In 
these studies, yeast cells were grown in chemostat cultures using 
semidefined medium, and yeast metabolic cycles were set up as 
described earlier (Tu et al., 2005; Tu, 2010). Data for cell division 
across three metabolic cycles was obtained from earlier studies (Tu 
et al., 2005; Laxman et al., 2010). YMC gene expression and me-
tabolite data sets: gene expression data sets were obtained from 
Tu et al. (2005) and Kudlicki et al. (2007), and metabolite oscillation 
data sets were obtained from Tu et al. (2007), Mohler et al. (2008), 
Cai et al. (2011), and Machné and Murray (2012), including acetyl-
CoA oscillation data sets.

Parameter values and their q/a dependencies
Figures 2C, 3C(i), 4, A(ii) and B(ii), and 5, A and B (default choices):

To produce the oscillation shown in these figures, we make the 
following choices (within scenario 3c):

i) h q1.665 h . 0.3996 h , µ 1, 16.65 h ,GQ QG
1 1 1γ σ ν ν ( )= = = = =− − − , 

where h(q) is the Hill function h(q) = νm(1+β(q/K)20)/(1+(q/Κ)20) 
with β = 0.01, K = a2/(0.752 + a2), νm = 16.65 × (1.65–1.25K). We 
use this Hill function with such a high Hill coefficient to approxi-
mate a step function which drops rapidly from νm to βνm at q = K.

Figure 4, other panels:
The other panels of Figure 4 are made using exactly the same 

equations and parameter choices as above, except for varying σ 
and γ as mentioned in the Figure 4 caption.

Figure 3C, other panels:
As above, except that

ii) νm = 16.65 × (1.65–1.25K) × 2.25K h–1 and σ = 0.3596 h–1.

iii) νm = 16.65 × (1.65–1.25K) + 16.65 × 1.85a10/(200 + a10) h−1 and 
σ = 0.3297 h–1.

iv) νm = 16.65 × 2.25K h–1 and σ = 0.3397 h–1.

σ values were varied in order to keep the time period close to 4 h.
Figure 5C, addition of bolus:
Until time t = 11.5 h, the simulation is the same as in Figure 2C. At 

t = 11.5 h, the resource level is abruptly changed to 1.75 (just above 
its peak value in previous cycles, which was 1.73), and then the simu-
lation is continued with the same equations and para meter values.

In all the above cases, the simulations were started, at t = 0 h, 
with initial conditions q = 1 and a = 10–6 (i.e., we start with all cells in 
a quiescent state and starved of the resource). Simulations and 
figures were produced in Matlab. We used the ode45 differential 
equation integrator. The code is provided in the Supplemental 
Material. As extra controls, we checked that the stiff solver ode15s 
also provided the same results for the simulations in Figures 2 and 
5, and a Mathematica notebook that repeats many of the same 
simulations, using the default NDSolve algorithm within Mathemat-
ica, is also provided with the Supplemental Material.
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