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Abstract

BOLD fMRI is sensitive to blood-oxygenation changes correlated with brain function; how-
ever, itis limited by relatively weak signal and significant noise confounds. Many prepro-
cessing algorithms have been developed to control noise and improve signal detection in
fMRI. Although the chosen set of preprocessing and analysis steps (the “pipeline”) signifi-
cantly affects signal detection, pipelines are rarely quantitatively validated in the neuroimag-
ing literature, due to complex preprocessing interactions. This paper outlines and validates
an adaptive resampling framework for evaluating and optimizing preprocessing choices by
optimizing data-driven metrics of task prediction and spatial reproducibility. Compared to
standard “fixed” preprocessing pipelines, this optimization approach significantly improves
independent validation measures of within-subject test-retest, and between-subject activa-
tion overlap, and behavioural prediction accuracy. We demonstrate that preprocessing
choices function as implicit model regularizers, and that improvements due to pipeline opti-
mization generalize across a range of simple to complex experimental tasks and analysis
models. Results are shown for brief scanning sessions (<3 minutes each), demonstrating
that with pipeline optimization, it is possible to obtain reliable results and brain-behaviour
correlations in relatively small datasets.

Introduction

Blood-Oxygenation Level Dependent functional Magnetic Resonance Imaging (BOLD fMRI)
is a versatile imaging modality, which is widely used in experimental neuroscience and emerg-
ing clinical applications. However, the BOLD changes linked to neuronal brain function are
relatively small, and significant noise confounds are often present. The principal noise sources
in fMRI are subject-dependent, including the effects of head movement and physiological pro-
cesses, such as respiration and cardiac pulsation. The signal changes caused by such confounds
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are highly variable between subjects, and even across scanning sessions for a single subject,
with complex spatial and temporal structure. This limits our ability to reliably detect neuronal-
linked BOLD signals with adequate power, especially for complex task paradigms and studies
of clinical, aging and child populations [1-4]. Consequently, there is much debate concerning
the reproducibility, validity and power of published fMRI measurements [5-10]. The resulting
low power and low reliability of fMRI also limits our ability to measure brain-behaviour rela-
tionships, which is a key goal of many fMRI studies.

To control noise and improve signal detection, a variety of image preprocessing algorithms
have been developed, from generalized techniques (e.g. spatial smoothing of brain voxels) to
artifact-specific correction (e.g. motion correction algorithms). Over the past two decades, it
has been established that the chosen set of preprocessing steps and analysis model (the “pipe-
line”) significantly impacts fMRI results [11-22]. Nonetheless, most fMRI literature has not
emphasized the quantitative validation of preprocessing choices, implicitly assuming that anal-
ysis results are insensitive to them, or that the widely-used, open-source preprocessing pack-
ages produce near-optimal results. This has led to inconsistent, often under- and un-reported
pipeline methodologies [23-25], and sub-optimal signal detection in fMRI experiments, all of
which contribute potential bias and unwanted methodological noise in the quest to character-
ize brain function and brain-behaviour relationships.

Some of the issues with sub-optimal signal detection may be improved by making well-
motivated choices in how fMRI data are preprocessed [21,22]. For example: there are signifi-
cant differences in the robustness of different motion correction algorithms [17]; the impact of
residual motion correction techniques depends largely on the choice of experimental design
and task contrast [26,27]; physiological noise corrections may significantly reduce differences
between analysis models [11]; and the order in which preprocessing steps are performed has a
significant impact on their efficacy [28,29].

Nonetheless, choosing the optimal sequence of preprocessing steps is a daunting task; while
it is important to make sensible pipeline choices, many algorithms have been published, and it
quickly becomes non-trivial to account for the many possible interactions between experimen-
tal task design, preprocessing and analysis algorithms. Some advocate a conservative approach,
using a fixed, standardized pipeline to control all anticipated noise confounds [9,30]. This strat-
egy limits pipeline flexibility and reduces power, but provides strong control against false-posi-
tive activations. Overly-flexible preprocessing selection is a significant issue if unconstrained,
or if pipelines are chosen to maximize the significance of findings, leading to highly biased
results [31].

As an alternative, we show that flexible, adaptive pipeline optimization is a powerful tool for
improving signal detection in fMRI, if we select preprocessing steps that optimize the statistical
analysis criteria of prediction accuracy (P) and spatial reproducibility (R). In this paper, we
propose an automated, adaptive framework, which optimizes the preprocessing of individual
subject task runs, by identifying the pipeline that maximizes (P,R) metrics. It is based on the
NPAIRS resampling framework of [32], and constitutes a significant extension of previous
work on pipeline optimization [13-14,20-22]. This framework is an alternative to standard
preprocessing methods in fMRI literature, which are usually based on subjective visual assess-
ments of data quality; these are time-consuming to evaluate and may lead to biased, non-repli-
cable results.

This paper establishes the framework used to preprocess individual scanning runs, along
with independent validation measures to evaluate the effects of pipeline optimization, which
are summarized in Fig 1. Preprocessing steps are selected to independently maximize (P, R)
metrics and the resulting statistical parametric maps (SPMs) for individual task runs within
scanning sessions (Fig 1a; separate light and dark blue data sets, and their SPMs). We validate
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Fig 1. The pipeline optimization and validation procedure of this paper. This schematically represents
the approach to pipeline optimization, and independent validation measures used to test the quality of
optimized results. (a) for all subjects and each of the three tasks, we have raw data from two scanning
sessions (i.e. test and retest) in red. For each task run and session, we identify the optimal pipeline based on
measures of prediction and reproducibility (P, R), and output optimally preprocessed data (blue) and an
analysis SPM. (b-d) cross-validation measures, computed on SPMs of independently-optimized datasets. (b)
activation overlap between SPMs of the two scanning sessions, within each subject. (c) activation overlap
between subject SPMs, within a single scanning session. (d) correlation between SPM activity and
independent behavioural measures (b;; = subject i, session j), measured via Partial Least Squares analysis.
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doi:10.1371/journal.pone.0131520.g001

this approach by measuring the reliability of SPM activation patterns from these indepen-
dently-optimized task runs, including within-subject, between-session comparisons (i.e. test-
retest reliability; Fig 1b), and between-subject, within-session comparisons (i.e. group-level
reliability; Fig 1¢). In addition, we measure the correlation between the SPM activation patterns
and behavioural metrics measured and tested completely independently of our pipeline optimi-
zation procedures (i.e. brain-behaviour relationships; Fig 1d). Because we are comparing inde-
pendently-optimized runs, these measures avoid issues of circularity when quantifying model
performance [31]. We demonstrate that our pipeline optimization framework significantly
improves all three independent validation measures, across multiple tasks and analysis models.

Materials and Methods

In this section, we first describe the different task datasets used to evaluate pipeline optimiza-
tion (Experimental Data). We then establish the set of preprocessing and analysis options
included in the pipeline framework (Preprocessing Pipeline Steps; Analysis Models). Afterwards,
we define metrics of prediction and reproducibility, which are used to quantify pipeline perfor-
mance (Optimization Metrics), and the different approaches to pipeline selection that are com-
pared in this paper (Pipeline Optimization Approaches). Afterwards, we measure the effects of
pipeline optimization on performance metrics and spatial brain patterns (The Effects of Pipeline
Optimization), along with independent validation measures of spatial reliability (Validation 1:
Spatial Reliability of Independent Sessions) and brain-behaviour correlations (Validation 2:

PLOS ONE | DOI:10.1371/journal.pone.0131520 July 10,2015 3/25



@’PLOS ‘ ONE

Adaptive Pipeline Optimization in Task fMRI

Estimating Brain-Behaviour Correlations). The fMRI pipeline results and behavioural measures
are deposited at figshare.com (doi: 10.6084/m9.figshare.1299085).

Experimental Data

We performed pipeline analyses on data from a cognitive task battery, designed for clinical
implementation in the assessment of stroke and vascular-cognitive impairment. We collected
data from 27 young, healthy volunteers (15 female, ages 21-33 yrs, median 25 yrs), and we
acquired retest session data from 20 out of 27 volunteers (12 female, ages 22-33 yrs, median 25
yrs) at a median 6 months after the initial testing session (range 2-23 months). Participants
were confirmed right-handed with the Edinburgh Handedness Inventory [33], and screened
for cognitive and neurological deficits, by self-report and the Mini-Mental Status Examination
[34]. All participants gave written informed consent for their participation and the experiment
was conducted in the Rotman Research Institute, Baycrest Hospital, with the approval of the
Baycrest Research Ethics Board.

BOLD fMRI data were acquired on a 3T MR scanner (MAGNETOM Tim Trio, VBI5A
software; Siemens AG, Erlangen, Germany), with a 12-channel head coil. A T1-contrast ana-
tomical scan was obtained (oblique-axial 3D MPRAGE, 2.63/2000/1100 ms TE/TR/TI, 9° FA,
256 X 192 matrix, 160 slices per volume, voxel dimensions 1x1x1 mm?), followed by BOLD
fMRI (2D GE-EPI, 30/2000 ms TE/TR, 70° FA, 64x64 matrix, 30 slices per volume, voxel
dimensions 3.125x3.125x5 mm?). During scanning, we also measured cardiac and breathing
rates via photoplethysmograph and pneumatic belt, respectively.

For both test and retest sessions, participants received a 15 minute orientation in an MRI
simulator, and performed two runs of each task in the scanner, separated by approximately 10
minutes of other behavioural tests. The tasks in the battery included an initial encoding task
(ENC), followed by a block-design adaptation of the Trail-Making Test (TMT), a block-design,
forced-choice recognition tasks (REC) of the encoded line drawings, and a rapid event-related
Sustained Attention to Response Task (SART). The tasks were relatively brief (<3 minutes
each), and involved a range of different cognitive contrasts, to explore the effects of pipeline
optimization under different experimental designs. We focused on pipeline optimization
within relatively brief runs (i.e. within each of the two task runs per testing session), to demon-
strate that we can obtain reliable measures in small, complex task datasets if preprocessing is
optimized. All tasks were performed in the fMRI scanner using an fMRI-compatible response
tablet [35], and presented to subjects in a fixed ordering of ENC, TMT, REC, SART to ensure a
constant delay between encoding and recognition tasks. The encoding of line drawn objects
involved overt naming and will be addressed in future work.

Recognition (REC). Alternating scanning task and control blocks of 24 s were presented 4
times, for a total task scanning time per subject of 192 s. During the task blocks, participants
were presented with a previously encoded figure side-by-side with two other figures (semantic
and perceptual foils) on a projection screen every 3 s, and were asked to touch the location of
the original figure on the tablet. Figures were line drawn objects from the Boston Naming test
[36]. During control blocks, participants touched a fixation cross presented at random intervals
of 1-3 s. We analyzed the contrast between recall and control tasks, as a robust block-design
contrast.

Trail-Making Test (TMT). The task was similar to the widely used clinical version [37],
consisting of stimulus types: TaskA, in which numbers 1-14 are pseudo-randomly displayed
on a viewing screen, and TaskB, in which numbers 1-7 and letters A-G are displayed. Subjects
used the tablet to draw a line connecting items in sequence (1-2-3-4-...) or (1-A-2-B-. . .), con-
necting as many as possible for a 20s block interval, while maintaining accuracy. A Control
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stimulus was presented after each block, in which participants traced a line from the center of
the screen to a dot (randomly placed at a fixed radius from the center of the screen) repeated
10 times. For a single run, each participant performed a 4-block, 40-scan epoch of TaskA-Con-
trol-TaskB-Control twice. We analyzed the contrast between Task B and Task A conditions, as
a relatively subtle block-design contrast of brain states.

Sustained Attention to Response Task (SART). This task was presented as a fast event-
related GO-NOGO design [38]. The set of integers 1-9 were presented in random order on the
screen, followed by a masking image. Stimuli were presented for 250 ms, while the mask was
shown for a randomized inter-stimulus interval, of mean 1250 + 210 ms. Participants were
asked to respond to all integers except 3’ (the NOGO stimulus) using the MRI-compatible
writing tablet, by touching the stylus to the tablet surface. A single run consisted of 100 pre-
sented digits, with 75 GO stimuli and 25 NOGO stimuli, in randomized order, with 76 scans
per run. We estimated the main haemodynamic response associated with GO stimulus in a
9-TR time window, as a representative event-related design.

Preprocessing Pipeline Steps

The proposed fMRI pipeline is an automated framework, which is used to measure the effects
of different preprocessing choices on signal detection in fMRI data. This framework can test
any combination of pre-existing or new preprocessing algorithms, and determine the set of
preprocessing choices that optimizes signal detection based on our prediction and reproduc-
ibility metrics. Here, we establish a 13-step pipeline, with a focus on optimizing a comprehen-
sive set of 9 steps. All of these pipeline steps are either widely used in the fMRI literature, or
have a significant impact on task performance, based on prior studies. The pipeline steps are
listed in Table 1, in the order in which they were applied, along with the options tested for each
step. For the purposes of this report we did not attempt to test the much more computationally
intensive possibilities of different orderings of the steps.

When processing an fMRI dataset, the pipeline consists of the following sequence of 13
steps. The 9 steps in bold are tested during pipeline optimization, while other steps are fixed,
and applied to all datasets. Preprocessing steps (2-6) are based on utilities in the widely-used

Table 1. List of pipeline steps, and choices tested for each step. Steps that are varied during each sub-
ject’s pipeline optimization are in bold, and other steps are held fixed. We tested pipeline optimization for
fixed analysis models: Gaussian Naive Bayes (GNB; univariate) and Canonical Variates Analysis (CVA; mul-
tivariate). CVA analysis is performed using 1 to k Principal Components (PCs), where we vary k=1to 10.

PIPELINE STEPS CHOICES

1. Estimate minimum-displacement brain volume ON

2. Rigid-body motion correction OFF / ON

3. Censoring of outlier brain volumes OFF / ON

4. Physiological correction; external physiological measures (RETROICOR) OFF / ON

5. Slice-timing correction OFF / ON

6. Spatial smoothing 6mm FWHM
7. Subject-specific non-neuronal tissue mask ON

8. Temporal detrending orders 0to 5
9. Motion parameter regression OFF / ON
10. Global signal regression using Principal Component Analysis (PCA) OFF / ON
11. Including task design as a regressor OFF / ON
12. Physiological correction; multivariate data-driven model (PHYCAA+) OFF / ON
13. Analysis model: univariate (GNB) or multivariate (CVA)* GNB or CVA

doi:10.1371/journal.pone.0131520.1001
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AFNI package (Analysis of Functional Neuroimaging; afni.nimh.nih.gov/afni); all other steps
were developed in-house, and developed in Matlab (MATLAB and Statistics Toolbox Release
2012b, The MathWorks, Inc., Natick, MA).

1.

Estimate minimum-displacement brain volume: identify the volume with minimum head
displacement in the scanning run, which had minimum Euclidean distance from the median

coordinates in Principal Component (PCA) space of the 4D data set. This is used as a refer-
ence for Motion Correction (step 2) to minimize the average distance that motion alignment
displaces each brain volume, as the accuracy of Motion Correction decreases with distance
from the reference volume [39].

Motion correction [OFF/ON]: use the AFNI 3dvolreg algorithm to transform each image to
the volume with minimum estimated displacement, to correct for rigid-body head motion.
This step is tested in the pipeline, as its effects vary by dataset: it reduces motion artifact, par-
ticularly younger and older groups, and clinical datasets [1,4,40], but may produce biased
results in cases of large BOLD response and relatively small head movements [41].

Censoring of outlier brain volumes [OFF/ON]: remove outlier timepoints that are caused
by abrupt head motion, and replace them by interpolating from adjacent volumes (algo-
rithm is fully described in S1 Text; code available at: www.nitrc.org/projects/spikecor_fmri).

The censoring step is a robust alternative to typical “scrubbing” algorithms [42-43], which
is fully automated, and does not create discontinuities in the data [44]. There have been no
major studies of censoring in fMRI task data, and thus its impact and importance as a pre-
processing step is largely unknown.

Physiological correction; external physiological measures [ON/OFF]: apply RETROI-
COR [45], using AFNT’s 3dretroicor software. This parametric model uses external measures

of respiration and heartbeat. A 2"%-order Fourier series was used to fit voxel time-courses,
relative to the phase of cardiac and respiratory cycles. This step is optimized, as its impact
on signal detection has been shown to vary as a function of subject and dataset [21-22].

Slice-timing correction [OFF/ON]: correct for timing offsets between axial slices due to
EPI acquisition, by using AFNT’s 3dTshift with Fourier interpolation to resample the voxel

time-courses. For event-related data that require estimation of the temporal haemodynamic
response (e.g. SART), this step is fixed ON. For block designs, this step is tested during pipe-
line optimization; while Sladky et al. [46] showed that slice-timing correction improves
detection power in block designs, we have observed subject-dependent effects of including
this step [47], which may be due to interactions with critically-sampled physiological noise
not removed by a previous RETROICOR step. Our results show a significant impact on pre-
diction and reproducibility metrics of slice timing with block designs for some subjects.

Spatial smoothing: the brain volumes are spatially smoothed with a 3D isotropic Gaussian
kernel, using the AFNI 3dmerge algorithm. For current results, we use a fixed scale of
FWHM = 6mm; this parameter may be varied in future studies. For example, the size and
“focalness” of activations vary by task [48], and the smoothing scale may be chosen to opti-
mize the detection of these brain regions [14]. Interactions with spatial smoothing scale are
testable in our framework, but beyond the scope of the current paper, which is focused on
the optimization of temporal preprocessing choices.

Subject-specific non-neuronal tissue mask: generate a data-driven mask of non-neuronal
tissues (vasculature, sinuses and ventricles) that should be excluded prior to analysis. Other-
wise, these voxels produce false-positive activations, and biased estimates of spatial
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10.

11.

12.

13.

reproducibility. This step uses the PHYCAA+ algorithm [49] to estimate subject-specific
masks, to account for inter-subject differences in vasculature.

Temporal detrending [order 0 to 5]: regress out low-frequency fluctuations from fMRI
data, by fitting a Legendre polynomial of order N in a General Linear Model (GLM, which
also includes steps 9 to 11). The algorithm tests detrending with an N™-order polynomial,

for n = 0 to 5. Detrending provides non-specific noise correction, including head motion,
scanner drift, and physiological noise [50]. Different detrending models are tested, as the
optimal order varies as a function of subject and task design [12,21-22].

Motion parameter regression [OFF/ON]: perform PCA on the motion parameter esti-
mates (output from 3dvolreg in step 2), and identify the 1-k PCs that account for >85% of
motion variance. These components are regressed from the data in a GLM model, which
includes steps 8, 10-11. This step is tested in the pipeline, as its effects vary by dataset: it
controls residual motion artifact [4,41,50], but it may also reduce experimental power, par-
ticularly in cases of large BOLD response and low head motion [21, 26-27].

Global signal regression using PCA [OFF/ON]: perform PCA on the fMRI data and
regress out PC#1 time-series, which tends to be highly correlated with global signal effects,
as part of a GLM including steps 8-9, 11. This approach minimizes the distortion of signal
independent of global effects, unlike simple regression of mean BOLD signal [51]. The
exact mechanism underlying global modulation remains unclear, but it may constitute
physiological noise [52], neuronal response [53], or a mixture of both. The magnitude of
global signal expression appears to be subject-dependent [54,55], indicating the impor-
tance of adaptively estimating it across subjects.

Including task design as a regressor [OFF/ON]: convolve the task paradigm with AFNTI’s
standard ‘SPMG1’ HRF function (afni.nimh.nih.gov/pub/dist/doc/program_help/3dDe-
convolve.html). This regressor is included in the GLM model with steps 8-10. When these
nuisance regressors are correlated with the task paradigm, step 11 protects against over-
estimation of noise variance, and over-regression of task-related signal. This step is tested

in the pipeline: although it controls against over-regression of task-related signal, the most
robust BOLD response may be only weakly correlated with the task paradigm [56], and
this step may over-constrain subsequent analyses.

Physiological correction; multivariate data-driven model [OFF/ON]: use the multivari-
ate data-driven PHYCAA+ model [49] (code available at: www.nitrc.org/projects/phycaa_
plus) to identify physiological noise components in the data, which are regressed out from

the fMRI data. It has been previously demonstrated that this step significantly improves
the prediction and reproducibility of fMRI task analyses.

Analysis: for each combination of pipeline steps, the preprocessed data are analyzed in the
NPAIRS split-half framework [32] previously described in [22]. We test pipeline optimiza-
tion for two predictive analysis models: univariate (Gaussian Naive Bayes) and multivari-
ate (Canonical Variates Analysis), discussed in the next section. For multivariate analyses,
we perform PCA subspace estimation [dimensionalities k = 1 to 10], by transforming
each data split into a reduced principal component subspace, of PCs 1-k. This may be
thought of as a PCA denoising step, in the preprocessing for our multivariate model. We
then analyze each split, producing metrics of (P) Prediction accuracy and (R) spatial
Reproducibility of the activation maps, for the pipeline data.
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Steps 8-10 are regressed as nuisance covariates in a General Linear Model (GLM), and Step
11 includes the task paradigm in the same GLM design matrix, to protect against over-regres-
sion of task-related BOLD signal. From this list of choices, we can test a large number of differ-
ent preprocessing pipelines by turning each of the 9 optional steps off and on. The total
number of tested pipelines per subject is 2°x6 = 1,536 (Gaussian Naive Bayes analysis) and
2%x6x10 = 15,360 (Canonical Variates Analysis).

Analysis Models

The analysis models that have been developed for fMRI task data can be broadly categorized as
either univariate or multivariate. Univariate models assume brain voxels are independent ran-
dom mixtures of signal and noise. This is a simplification, as brain regions have significant
functional correlations [57-59]; nonetheless, it provides a well-posed model of brain activity
that is easy to interpret. Multivariate models account for covariance between brain regions,
identifying regions that fluctuate coherently in response to stimuli; they are effective when indi-
vidual voxels are noisy, but co-vary strongly. In this paper, we perform pipeline optimization
for representative univariate and multivariate analysis models. Both are predictive models that
use a training dataset to construct a model of brain activity, and use this model to predict the
experimental condition of independent test data.

Univariate analysis. We employed a Gaussian Naive Bayes model (GNB; a predictive
GLM) in order to perform classification on independent test data. It is one of the most widely
used predictive models in fMRI literature [60], and measures the joint posterior probability of
all brain voxels in test data, along with a sensitivity map of activated voxels [61,62]. For REC
and TMT, we classify test data from two task conditions (2-class prediction). For SART, we
estimate an HRF in a 9-TR time window (9-class prediction, where each time-lag is a class).
See Optimization Metrics for further prediction details, along with the appendix of [49].

Multivariate analysis. We employed Canonical Variates Analysis (CVA), which has been
used in numerous studies [4,13-15,20-22,62], and estimates a multivariate Gaussian model for
fMRI task conditions. CVA is highly flexible, able to analyze block and event-related data, and
generalizes to an arbitrary number of task conditions. For 2-condition REC and TMT tasks, it
is equivalent to a linear discriminant, and obtains one brain eigenimage. For SART data, ana-
lyzed in a 9-TR time window, we optimize the first eigenimage, which reflects the primary
HREF. As with GNB, we perform 2-class prediction for REC and TMT, and 9-class prediction
for SART.

Optimization Metrics

Our goal is to identify the optimal preprocessing pipelines, which maximize the detection of
neuronal-linked BOLD response and minimize noise confounds. A major challenge is to quan-
tify the impact of preprocessing choices on analysis results in fMRI, in the absence of a “ground
truth”. The BOLD amplitude and regions of brain activation vary across subjects and sessions;
therefore, there is no single generalized BOLD response to a stimulus. Moreover, we may not
know the expected pattern of brain activation for novel task paradigms. Simulations, though
instructive, provide limited information on pipeline effects. It remains an ongoing challenge to
simulate the complexity of brain networks, and current models do not contain the same infor-
mation content that is present in real data [63]. Two alternative metrics are used to measure
pipeline effects in experimental data: the prediction accuracy of the analysis models, and the
spatial reproducibility of brain maps, computed in the split-half NPAIRS framework [32];
these metrics are briefly summarized, but refer to [13-15,21-22,32] for further details.
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The split-half approach is used to independently optimize every task run, i.e. it is applied
separately to each of the 6 task runs (2 runs per task type) in each testing session. For a single
continuous task run, this preprocessed dataset is split (in time) into two halves, which are pre-
processed and analyzed independently. We use the independent analysis results to compute
Prediction (P), where a classifier (analysis) model is built on training data in a single split-half,
and we measure its ability to correctly predict the experimental condition of scans from an
independent test dataset, i.e. the other split-half. This is given by the average posterior probabil-
ity P that test scans are correctly assigned to the true experimental condition. As a probability
measure, P takes values in the range [0,1] where P = 1 indicates perfect prediction. Prediction
quantifies how well our analysis model generalizes to new fMRI data.

We also compute Reproducibility (R), which measures how stable the activation patterns
are across independent data split-halves. We obtain R by the Pearson correlation between pair-
wise voxel values of the two brain maps. This metric can take values in the range [-1,1], with
R =1 indicating a perfectly reproducible brain map. The global Signal-to-Noise Ratio (¢SNR)

of BOLD response can be computed based from reproducibility [62], by the equation gSNR =

v/2R/(1 — R) Wealso use the two split-half brain maps to estimate a reproducible Z-scored
Statistical Parametric Map (SPM), for which [32] provides further details.

For every individual run, we apply each of the 1,536 (or 15,360) preprocessing combina-
tions, analyze each pipeline, and obtain (P, R) measures. We then select the pipelines that opti-
mize (P, R) values. Although prediction and reproducibility are important goals for any
neuroscientific experiment, it is rarely possible to simultaneously optimize both metrics. This
is due to P and R representing important trade-offs in model parameterization, making it gen-
erally undesirable to strictly optimize one metric [56]. Models that optimize R have more stable
brain patterns, but are often less sensitive to stimulus-coupled brain response (i.e. they exhibit
weak prediction). For example, an analysis model that ignores data input and generates a fixed
brain pattern will be perfectly reproducible (R = 1), but with no ability to predict brain state.
Conversely, models with optimized P are highly predictive of stimulus condition, but tend to
extract non-reproducible brain patterns. For example, a model that only selects a small number
of the highly task-coupled brain voxels may be highly predictive of class structure (P ~ 1), but
will have low reproducibility, as the selected voxels vary between splits due to random signal/
noise variations. Standard analysis models and experimental data rarely produce such extreme
results. However, the choice of optimization criteria significantly alters results, potentially iden-
tifying different or partial brain networks with varying signal strengths and spatial extents
[15,56,62]. This paper therefore focuses on pipeline optimization by minimizing Euclidean dis-
tance D(P, R), relative to perfect model performance (P = 1, R = 1). The joint optimization of
(P, R) provides a compromise between the two model parameterizations, which can be used to
select an optimal pipeline [13,20].

Pipeline Optimization Approaches

This paper compares three different approaches to pipeline selection, which are described sche-
matically in Fig 2. S1 and S2 Tables list the fraction of subjects optimized with each preprocess-
ing step, as a function of optimization pipeline. For the current results, all steps are optimized
except pipeline steps (1, 6, 7), which are fixed ON. Step 1 (selection of minimum displacement
volume) is fixed, so that we can compare the same MOTCOR procedure across all pipelines;
Step 6 (spatial smoothing) is fixed in order to compare pipelines activations at a consistent spa-
tial scale; Step 7 (masking non-neuronal brain voxels) is required to compare a consistent set of
brain voxels across all pipelines. Note that because of Steps 1 and 7, the CONS pipeline will be
more optimized than is standard literature practice.
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subj.1 | subj.2 || subj.N-1 | subj.n subj. N-1 | subj. N subj.1 | subj.2 |-**| subj.N-1 | subj.n

S

Analysis Analysis ON OFF

Analysis

Fig 2. Different approaches to optimizing preprocessing pipelines. This toy example depicts N subjects,
with 4 preprocessing pipeline steps; each step may be either applied to data (ON) or not applied (OFF). A
standard conservative approach (CONS) applies all commonly-used noise correction steps to fMRI data. A
fixed optimal pipeline (FIX) applies the single set of pipeline steps that optimizes average prediction and
reproducibility (P,R) across subjects. Individual optimization (IND) selects the combination of pipeline
choices, specific to each subject and session, which maximizes prediction and reproducibility (P, R). To see
the preprocessing choices for optimized pipelines in our current results, refer to S1 and S2 Tables.

doi:10.1371/journal.pone.0131520.9002

Conservative pipeline (CONS). This applies the full set of preprocessing steps that are
widely used in fMRI preprocessing (steps 2-5, 8, 9): motion correction, outlier censoring, RET-
ROICOR, slice-timing correction, motion parameter regression, and linear detrending (chosen
by AFNI's heuristic criterion; afni.nimh.nih.gov/pub/dist/doc/program_help/3dDeconvolve.
html). This gives strong control over potential fMRI noise sources, and provides an example of
a standard literature preprocessing pipeline, which we compare against our adaptive optimiza-
tion methods. For this pipeline, we apply the same set to all subjects and experimental tasks.

Fixed optimization (FIX). For each task, we select a single, fixed set of pipeline choices
across subjects, that give smallest average D(P, R). We use a non-parametric procedure estab-
lished in [21-22] to identify the optimal fixed pipelines: for M pipelines and S subjects, (1)
rank the pipelines 1-M for each subject, with lower rank indicating better pipeline perfor-
mance; (2) compute the median ranking of each pipeline, across subjects; (3) select the pipeline
with lowest median ranking, as our optimal FIX choice. We can perform further statistical test-
ing to determine whether fixed pipeline choice has a consistent, significant impact on D(P, R);
Churchill et al. [22] provide in-depth discussion of fixed pipeline testing. The FIX pipeline is
the single fixed set of preprocessing choices with highest median (P, R) across subjects. All
other fixed pipelines will have comparable or lower median (P, R) and gSNR values.

Individual pipeline optimization (IND). For each subject, session, run and task, we iden-
tify the pipeline combination that maximizes R (IND-R), maximizes P (IND-P) or minimizes
D(P, R) (IND-D). For IND optimization, we require an additional step to account for task-cou-
pled motion, which generates artifact that is task-correlated and reproducible, and thus not
controlled by optimizing (P, R) metrics. We used the quantitative procedure established in [22]
to reject pipelines corrupted with motion artifact when optimizing; the procedure is described
in S2 Text.

The Effects of Pipeline Optimization

We computed the mean (P, gSNR) values, within each individual task run and analysis model
of the first test session. In each case, the mean is computed across all (27 subjects) x (2 runs per
task) = 54 datasets, along with the + 1 Standard Deviation ellipse, enclosing ~68% of data
points. We also measured the average correlation between all optimised pipeline/analysis
model SPMs, for each experimental task. For each of the 54 datasets, we compute the 6x6
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correlation matrix between brain maps of each pipeline and analysis model combination. We
then computed the average of all of these correlation matrices.

Finally, for each pipeline optimization approach, we produced a Z-scored plot of the first
PC eigenimage, computed over all 54 SPMs. This is shown for representative TMT data and
the CVA analysis model (see S3 Text for the estimation procedure). The Z-scored eigenimages
depict the brain pattern that expresses the greatest variance across all subject SPMs, for the full
set of (27 subjects) x (2 runs per session) = 54 datasets. The Z-scores in these maps quantify sta-
tistical reproducibility of the eigenimage values.

Validation 1: Spatial Reliability of Independent Sessions

We used activation overlap to test whether datasets with independently optimized IND pipe-
lines show greater reliability of brain regions compared to CONS. Because IND pipeline opti-
mization is performed entirely within individual scanning runs (i.e. no information is shared
between subjects, between repeated task runs within a session, or between test-retest sessions),
we can independently compare SPMs between scanning sessions and between subjects, without
any issues of circularity in model validation.

Activation overlap is widely used in the fMRI literature to measure the reliability of signifi-
cantly active brain regions [8]. For each SPM, we identified active voxels at a False-Discovery
Rate (FDR) = 0.05 threshold, to correct for multiple comparisons. We then measured pairwise
overlap using the Jaccard index, (intersection of active voxels)/(union of active voxels). We
measured both within-subject, between-session overlap, and within-session, between-subject
overlap. For all 27 subjects, we have a test session with 2 runs per task. For 20 of these subjects,
we also have a retest session with 2 runs per task, acquired a median of 6 months after the test
session. Overlap measures are computed as follows:

Within-subject, between-session testing. For each task, we measured the pairwise overlap
between (1) run-1 (test) vs. run-1 (retest) sessions, and (2) run-2 (test) vs. run-2 (retest), for all
20 subjects with retest data. We chose to compare test-retest overlap within runs, in order to
avoid possible confounds due to non-stationary learning and habituation effects between run-1
and run-2. After computing all pairwise overlaps, this produced (2 runs) x (20 subjects) = 40
independent measures of overlap, for each task.

Between-subject, within-session testing. Using only data within a single task run and test
session, we measured mean overlap of each subject with all others in the group; this was per-
formed separately for the two task runs in each session, to minimize non-stationary in BOLD
response as a function of run or session. For the first test session, this produced (27 mean over-
lap estimates)x(2 runs) = 54 overlap measures. For the second retest session, this produced (20
mean overlap estimates)x(2 runs) = 40 overlap measures. For each task, this produces 94 mean
inter-subject overlap values total.

We then plotted the distribution of activation overlap values for CONS vs. IND pipelines,
for each experimental task and analysis model, including the mean over all 40 (within-subject)
or 94 (between-subject) overlap measures, and the + 1 Standard Deviation ellipse, enclosing
~68% of data points.

Validation 2: Estimating Brain-Behaviour Correlations

One of the major goals of fMRI is to link brain function with behaviour. Therefore, an impor-
tant test of pipeline optimization is whether it improves the reliability and generalizability of
brain-behaviour correlations across subjects, which is independent of our (P, R) pipeline opti-
mization criteria applied within subject, task and session. It is important to note that this test is
unrelated to the spatial reliability of SPMs discussed in Validation I: Spatial Reliability of
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Independent Sessions. We may obtain a highly reliable SPM pattern across subjects, but if the
magnitude of activation is unrelated to task performance, this produces low brain-behaviour
correlations. Conversely, the SPM patterns may be spatially sparse and generally unreliable
across subjects, but with a subset of brain regions where activation is highly correlated with
task performance. Thus, it is important to understand how pipeline choices affect both of these
validation measures.

To measure brain-behaviour relationships, we performed Partial Least Squares (PLS) analy-
sis of the optimized pipeline SPMs against behavioural metrics. The PLS model is widely used
in fMRI [64]. It estimates the spatial brain map of greatest covariance with a behavioural mea-
sure of interest. Behavioural PLS was performed in a split-half estimation framework [65] (see
S4 Text for algorithm details). This model uses a resampling approach similar to the one in
Optimization Metrics, producing (1) a reproducible Z-scored map of brain regions showing
greatest covariance with behavioural performance, (2) the global Signal-to-Noise Ratio of the
behavioural brain pattern (¢SNRpehay), and (3) an unbiased measure of multivariate brain-
behaviour correlation (ppenay). We compute median gSNRyepay and ppenay values, and average
Z-scored brain map, over 100 resampling iterations. This behavioural PLS analysis is per-
formed separately for both CONS and IND pipeline SPMs.

We use these results to test whether there is a significant, reliable difference between median
(gSNRpehay> Poehay) for IND vs. CONS pipelines, using Bootstrap resampling. We perform sam-
pling with replacement on the 100 split-half estimates, compute the median (gSNRpepays> Poehav)
for both pipelines, and then measure AgSNR = (§gSNRnp—¢SNRcons) and Ap = (pinp— Pcons)-
This is repeated for 1000 iterations, and we measure the fraction of resamples in which AgSNR
>0 and Ap >0 (i.e. 100,000 resamples total). This provides empirical significance estimates on
the difference between IND and CONS pipelines. We performed behavioural PLS analysis with
significance testing, for the three different tasks and two different analysis models.

Behavioural measures. The behavioural metrics analyzed for each task are listed below. In
order to maximize power of the PLS analyses, we examined all (27 test + 20 retest subjects) x (2
sessions per run) = 94 data points for each task.

 Recognition (REC): we analyzed the difference in mean reaction time (RT) for (task—con-

trol), measured in milliseconds. We averaged mean RT's across all task onsets, for a given
task session.

o Trail-Making Test (TMT): we analyzed the difference in average inter-item speed for
(TrailsA—TrailsB), measured in m/s. We measured the time interval between completion of
subsequent items, divided by the total distance traversed by the cursor, and averaged across
all blocks for a given task session.

o Sustained Attention to Response Task (SART): we analyzed the accuracy of task perfor-
mance, measured as the fraction of correct GO-condition responses (button press after view-
ing stimuli) per run.

Multivariate behavioural analysis is highly sensitive to outlier data, an issue that increases in
smaller sample sizes and complex, heterogeneous tasks. For all pipelines, we performed two
outlier tests prior to PLS analysis: one to identify behavioural outliers and one to identify outli-
ers in fMRI data. Behavioural outlier subjects were identified if either (a) mean reaction time
was less than 100 ms, (b) mean accuracy was less than 50%, or (c) mean RT was shorter for the
more difficult task (recall task for REC, and TaskB for TMT; this indicates that learning effects
may predominate in the task). The fMRI outlier estimation process is a multivariate procedure
based on the RV coefficient, defined in S5 Text. Data sets that were outliers in either behaviour
or fMRI data were discarded, and PLS analysis performed on the remaining data points. S3
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Table provides a summary of the discarded outliers for each task; for all tasks and analysis
models, we identified between 9 and 12 outlier runs (out of 94 datasets).

Results

In this section, we first demonstrate the effects of pipeline optimization on performance met-
rics and spatial brain patterns (The Effects of Pipeline Optimization), then we show the impact
of pipeline optimization for independent validation measures of spatial reliability (Validation
1: Spatial Reliability of Independent Sessions) and brain-behaviour correlations (Validation 2:
Estimating Brain-Behaviour Correlations). The results are shown for three different experimen-
tal tasks: the block-design REC task, the more complex block-design TMT task, and the fast
event-related SART task. We also analyzed all f{MRI data using both univariate GNB (a predic-
tive GLM) and multivariate CVA models, to show that pipeline optimization effects generalize
across models.

The Effects of Pipeline Optimization

Fig 3 plots metrics of pipeline performance, gSNR vs. P. The gSNR is a metric of signal detec-
tion that is monotonically related to spatial reproducibility R (refer to METHODS; Optimiza-
tion Metrics). The mean (P, gSNR) values are plotted for the three tasks, and both GNB (top)
and CVA (bottom) analysis models. Results are plotted for CONS, FIX and the three IND pipe-
lines. For all tasks and analysis models, increasing model flexibility improves both P and gSNR
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Global Signal-to-Noise Ratio (gSNR)

Fig 3. Prediction and global Signal-to-Noise Ratio for different preprocessing pipelines. Pipelines
include a standard conservative pipeline (CONS), fixed optimization (FIX), and individual optimization
maximizing prediction (IND-P), reproducibility (IND-R) or both metrics (IND-D). Each point shows average
(9SNR, P) coordinates, for a different experimental task and analysis model, with +1 Standard Deviation
ellipses (enclosing ~68% of data points). Dashed lines indicate chance (random guessing) for prediction.
Tasks include: Recognition (REC), Trail-Making Test (TMT) and Sustained Attention to Response Task
(SART). Analysis models include: univariate Gaussian Naive Bayes (GNB) and multivariate Canonical
Variates Analysis (CVA). To see individual subject (QSNR, P) values, see S1 Fig.

doi:10.1371/journal.pone.0131520.g003
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Fig 4. Spatial brain pattern similarity between preprocessing pipelines. (a) average correlation between
pipeline SPMs, for Recognition (REC), Trail-Making Test (TMT) and Sustained Attention to Response Task
(SART). Pipelines include: conservative (CONS) and optimal fixed (FIX), along with individually optimized
pipelines based on prediction (IND-P), reproducibility (IND-R), and both metrics (IND-D); results are shown
for univariate GNB analysis and multivariate CVA analysis. (b) the first Principal Component of subject SPMs
for a representative TMT task, with GNB and CVA across five different preprocessing pipelines; these are the
most stable spatial patterns across subjects. SPMs are Z-scored using a cross-validation procedure
(Optimization Metrics), and thresholded at False-Discovery Rate FDR = .05 to correct for multiple
comparisons.

doi:10.1371/journal.pone.0131520.9004

metrics, where IND>FIX>CONS. The IND models also demonstrate a trade-off between met-
rics, as IND-P optimization produces (higher P, lower gSNR), IND-R produces (lower P, higher
gSNR), and IND-D is intermediate between these two extremes. See S1 Fig for a plot of individ-
ual subject (P, gSNR) values.

The (P, gSNR) metrics reflect the quality of preprocessed data, but they provide no informa-
tion about the similarity of the underlying spatial patterns of brain activation between pipelines.
This is a critical issue, as neuroscience studies are often concerned with localizing the brain
areas implicated in task performance. Therefore, we evaluated the relative similarity of SPM pat-
terns for different pipeline optimization procedures. Fig 4a plots the average correlation between
brain maps as a function of pipeline choice and analysis model, with results shown for the three
different tasks. For the simple REC task, all pipeline brain maps have relatively high correlations,
but mean correlations are comparatively low between CVA and GNB models. For the more
complex TMT and event-related SART tasks, all correlations are decreased, and mean correla-
tions between pipelines are more comparable to those between analysis models, although analy-
sis model results are different regardless of the pipelines used. Therefore, pipeline choice has a
greater impact on the spatial brain pattern for the more complex TMT task and event-related
SART tasks, but the choice of analysis model is even more important.

For all tasks, the pipeline SPMZs with highest correlation are IND-R and IND-D, and FIX
for all but SART where a more complicated similarity pattern is seen. This indicates that
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flexible pipelines optimized with R have the most consistent patterns, which tend to be quite
similar to those for IND-D. Fig 4b demonstrates how pipeline choice alters the activation pat-
terns. We plot the Z-scored first Principal Component in TMT data (i.e. the brain pattern of
greatest variance across subjects’ SPMs), for each pipeline and analysis model. In these plots,
Z-scores reflect the magnitude of reproducible activation across subjects (details in Optimiza-
tion Metrics). In general, multivariate CVA detects sparser task-positive activations and greater
task-negative activations, compared to univariate GNB. For both models, the CONS pipeline
produces the most conservative extent of brain activations. FIX, IND-D and IND-R patterns
are similar, with greater activation extent and magnitude, particularly in task-negative regions
for CVA. The IND-P pipeline shows extensive task-positive signal, but weaker Z-score magni-
tudes. These results further demonstrate that flexible pipelines optimized with R have the most
consistent patterns, with the greatest extent of reliable activations.

Validation 1: Spatial Reliability of Independent Sessions

For the first validation measure, we assess the spatial reliability of activation patterns, between
independently-optimized fMRI datasets. It is critical that fMRI activations have spatially reliable
locations for repeated measures of a fixed task stimulus, in order to meaningfully interpret the
brain regions recruited by a given task. We measure the overlap of active brain regions for (1)
within-subject, between-session (test-retest run reliability, which is relevant to task learning
studies and clinical assessments of disease progression and treatment), and (2) between-sub-
ject, within-session (which is relevant for group-level studies). We compared IND-D optimiza-
tion against the standard CONS pipeline; IND-D is chosen as a representative pipeline, as it
significantly improves both model prediction (P) and signal detection (gSNR) in all cases rela-
tive to CON and FIX (p<0.01, paired Wilcoxon tests), as shown in Fig 3. See S2 Fig for the
effects of FIX optimization, and individual overlap values for both FIX and IND-D. The FIX
results are omitted from the main text for clarity, as they are intermediate between CONS and
IND; i.e. FIX significantly improves relative to CONS, and IND-D significantly improves rela-
tive to FIX.

For each SPM, we identify significantly active brain voxels at a FDR = 0.05 threshold, to cor-
rect for multiple comparisons. We then measured the overlap of activated regions between
pairs of SPMs, using the Jaccard index. Fig 5 compares the average overlap of brain maps for
CONS vs. IND-D pipelines, for each of the 3 tasks and both GNB and CV A analysis models;
the figure depicts the mean overlap across all subjects, along with +1 the + 1 Standard Devia-
tion ellipse, enclosing ~68% of data points. The IND-D pipeline consistently improves average
within-subject (Fig 5a) and between-subject (Fig 5b) activation overlap. All improvements are
significant (paired Wilcoxon tests, p<0.001 for all). The relative improvement in overlap was
greatest in more complex tasks. For example, mean between-subject overlap in REC increased
by a factor of 1.5x, whereas for TMT it increased by 2.3x, and for SART, increased by a factor
of 3.0x. See S2 Fig for the plot of individual subject pairwise overlap values.

Validation 2: Estimating Brain-Behaviour Correlations

For the second validation, we measured the gSNR and predictive validity of behavioural corre-
lations, for the different pipeline datasets. One of the main goals of fMRI is to link functional
brain measures with behaviour. We therefore tested whether IND pipelines improve brain-
behaviour correlations relative to CONS. To measure the amount of behavioural information
captured in subjects’ SPMs for different pipelines, we performed a PLS analysis of SPMs against
behavioural measures [64,65]. Using this model, we obtained: a Z-scored SPM that is correlated
with behaviour, gSNRpep,y of the pattern, and unbiased correlation of brain-pattern expression
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Fig 5. Change in activation overlap for individual subject optimization. Points represent average
pairwise activation overlap between independently optimized pipelines, comparing standard conservative
preprocessing (CONS) against individually optimized pipelines using the D(P, R) metric (IND-D). Results are
shown for (a) within-subject between-session overlap, and (b) between-subject, within-session overlap.
Overlap is measured by Jaccard index between SPMs at a False Discovery Rate = 0.05 threshold, for each
task and analysis model. The +1 Standard Deviation ellipses are also plotted (enclosing ~68% of data points).
To see individual subject overlap values, see S2 Fig.

doi:10.1371/journal.pone.0131520.g005

with behaviour (ppenay)- As in the previous section, results are shown for both CONS and
IND-D pipelines, for each task and analysis model. See S3 Fig for the effects of FIX optimiza-
tion; they tend to be better than CONS but comparable or lower in performance compared to
IND-D.

Fig 6a plots the median (ppenay> £SNRpenay,) Values for PLS analysis of every task, and both
GNB and CVA analysis models. We plot CONS vs. IND-D pipeline results, which are con-
nected by a line for each task and analysis model. For all tasks and analysis models, the median
ZSNRy,enay is significantly improved (p<0.01, Bootstrap significance estimates); median ppenay
is significantly improved in all cases (p < 0.03) except for TMT+GNB, where there is a non-sig-
nificant change (p = 0.61). Fig 6b plots the Z-scored map of brain regions with the greatest
behavioural correlations, for each task and pipeline for the CVA model. We observe activations
that are consistent between CONS and IND-D pipelines, but IND-D produces larger reproduc-
ible Z-scores and more and larger activation regions for all tasks.

Discussion

Our results demonstrate that a conservative preprocessing pipeline may strongly limit signal
detection in fMRI, although depending on the task it may still achieve significant spatial pat-
tern reliability and behavioural prediction. If pipeline steps are carefully chosen to optimize
prediction and reproducibility, we can significantly improve independent tests of both the
reliability of activation patterns within- and between-subjects, and correlations with indepen-
dent behavioural measures. For this pipeline framework, we chose an extensive set of prepro-
cessing choices, based on widespread literature use or previous pipeline testing [13-14,20-
22,32]. However, the list of preprocessing steps is not meant to be definitive; our primary goal
is to demonstrate the validity of the testing framework. A key feature of this framework is that
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optimization. (a) global Signal-to-Noise Ratio (JSNRyenayv) VS. behavioural correlations (ppenay), for Partial
Least Squares (PLS) analysis of the correlation between SPM activation and behavioural performance.
Results are shown for three tasks: Recognition (REC), Trail-Making Test (TMT) and Sustained Attention to
Response Task (SART). We also plot results for two analysis models: univariate GNB and multivariate CVA.
For each task/analysis model, we plot a line connecting (JSNRpenav; Pbenav) from the standard conservative
pipeline (CONS) to the individually optimized one (IND-D). IND-D optimization significantly improves
9gSNRpenay in all cases (p < 0.01), and significantly improves ppenay in all cases except TMT+GNB (marked
with a ‘**’) at p < 0.03 (see METHDODS: Validation 2: Behavioural Testing). (b) Z-scored SPMs showing brain
regions that are most correlated with behavioural performance in PLS analysis, for all tasks and both
pipelines, for the CVA model.

doi:10.1371/journal.pone.0131520.g006

it can incorporate novel preprocessing steps, and compare them against pre-existing pipeline
options.

One major goal of developing this pipeline optimization framework is to reduce issues of
subjective pipeline selection, which may produce highly biased, circular results. Common
approaches of iteratively examining data and then applying preprocessing steps to correct for
perceived noise/artifact can accidentally create results that are biased towards detecting some
“expected” signal. And perhaps more importantly, the criteria used to select pipelines cannot
be replicated in other studies. In the proposed framework, users are provided with pipelines
that optimize the quantitative criterion of Euclidean distance D (P, R). The development of
automated pipeline frameworks in fMRI may also help rectify issues of (a) inconsistent prepro-
cessing descriptions, and (b) space limitations when reporting preprocessing methodology in
fMRI literature. Under a standardized pipeline, the full sequence of preprocessing algorithms
(and versions) can be reported individually, and users simply cite software, with a brief sum-
mary of chosen pipeline steps, e.g. in the form of S1 and S2 Tables, which avoids having to
devote space to a full description of preprocessing steps.

Summary of Findings

As shown in Fig 3, the choice of preprocessing pipeline determines the Prediction and gSNR
(or reproducibility) of results. Constrained CONS and FIX pipelines produce lower P and
gSNR, indicating relatively large model bias and variance, respectively [32,56]. In contrast, flex-
ible IND pipelines produce significantly higher (P, gSNR). There is a trade-off in performance,
depending on optimization criterion: IND-P has lower gSNR, whereas IND-R has lower P.
This effect has been previously observed for multivariate classifiers, where weak regularization
produces (higher P, lower R), and stronger regularization produces (lower P, higher R)
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[13,15,56]. Therefore, adaptive pipeline optimization serves a similar role as multivariate regu-
larization, by constraining analysis models.

Fig 4 indicates that the greatest effect of pipelines on brain patterns depends on whether we
perform flexible pipeline optimization using reproducibility. For univariate GNB, this primar-
ily increases sensitivity to task-positive regions; multivariate CVA shows increased sensitivity
to task-negative regions consistent with the Default-Mode [66,67], which is associated with
spontaneous thought and decreased activity during external tasks. This is expected, as the
DMN produces coherent BOLD fluctuations with high spatial reproducibility but weak correla-
tions with task response. Thus, the GNB model (which is insensitive to inter-voxel correla-
tions) and prediction optimization cannot reliably detect this network. Finally, we note that the
CONS pipeline is least sensitive to both task-positive and -negative networks.

Pipeline optimization improves the overlap of independently-optimized SPMs (Fig 5).
These results demonstrate that, even for relatively complex tasks and short task runs, we signif-
icantly improve test-retest and group reliability. This is particularly relevant in cases where it is
critical to obtain reliable measures and where noise effects predominate, including clinical
studies, and studies of aging and child populations [1-4]. We also demonstrate significant
improvements in validity of behavioural studies (Fig 6), including better predicted behavioural
correlations and greater stability of associated spatial patterns. These validation results strongly
suggest that our optimized pipelines increase the sensitivity to brain regions that are reliably
associated with behavioural performance, and are therefore likely to be associated with task-
linked neuronal signals.

Applications and Limitations

The task data were acquired during scanning sessions with multiple brief runs (<3 minutes
each), for which we demonstrate the ability to detect strong, reliable activations that are com-
parable to standard experimental datasets. The brief design is also relevant for clinical applica-
tions, in which scanning must be brief to ensure patient compliance, and large portions of data
may be discarded due to poor behavioural performance or artifact [1,3]. It is not yet known
whether the benefit of pipeline optimization is comparable for standard experimental datasets
with far more data points. It is possible that the power increase reduces the impact of pipeline
choice. However, preliminary resting-state studies [68] indicate a comparable benefit of pipe-
line optimization across a range of different sample sizes. In addition, increased scanning time
only guarantees increased power if BOLD effects are stationary. If more data is acquired in the
presence of dynamic BOLD changes, this may increase the variance of signal estimates. This
underscores the potential importance of improving signal quality in shorter epoch datasets,
and the impact of epoch length should be further investigated in future research.

From an application standpoint, adaptive pipeline optimization raises potential concerns of
comparability between different groups. But it is not always appreciated that adaptive prepro-
cessing is already in widespread use for fMRI, particularly when comparing groups that differ
systematically in signal/noise parameters. Component models based on ICA are routinely fit to
data from individual subjects, leading to different orders of regression model per subject [69].
Similarly, “scrubbing” protocols that discard or interpolate scan volumes per subject alter the
temporal smoothness of data in different ways, depending on the number of discarded outliers
[42,43]. While such practises are well-established in the fMRI literature, it does not guarantee
that they are appropriate preprocessing strategies, and adaptive methods may lead to spurious
results that are driven by processing algorithms rather than brain function. In general, highly
flexible preprocessing techniques should be examined with caution and carefully validated
using multiple different datasets and metrics to assess for potential biases.
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The principal issue is whether adaptive preprocessing increases model over-fit relative to a
fixed model. As demonstrated in this paper, IND optimization significantly improves generali-
zation, based on multiple validation metrics. Prior simulation studies have also established that
IND is not significantly more biased than FIX pipelines [22], and we have previously shown
that the advantageous or deleterious impact of particular choices (e.g. motion parameter regres-
sion) may depend on the magnitude of structured signal artefacts (e.g. motion amplitude) [21].
That being said, no model is completely free from bias, and all preprocessing choices may have
systematic effects on results. For this reason, we would advocate the reporting of preprocessing
choices, and post-hoc examination of IND and FIX results, to gain a better understanding of
pipeline effects, along with the reporting of independent performance measures such as
between-subject activation overlap and levels of behavioural prediction. In addition, we would
emphasize that it is critical to test all preprocessing steps being applied to one’s fMRI data within
this optimization framework. Otherwise, the “pre-selection” of a subset of pipeline steps may re-
introduce user-dependent biases into the pipeline optimization framework.

A major advantage of the proposed cross-validation model is that it does not require cor-
rection for degrees of freedom (dof) when comparing pipelines. In standard significance test-
ing, model fit can be trivially inflated by increasing dof, but an overly-flexible model will
exhibit poor reproducibility (R) and predictive generalization (P). Thus, the optimization
framework avoids cases where it is more challenging to compare dof between models, e.g. in
standard null-hypothesis testing and theoretic estimators of model fit, such as Bayes Infor-
mation Criterion (BIC) and Akaike Information Criterion (AIC). For example, while dof can
be easily estimated for GLM regressors, it is less clear how spatial smoothing and outlier cen-
soring constrains the data space and subsequent analyses. Since the split-half model obtains
cross-validated estimates of signal and noise, they can be directly used for second level group
analyses, such as the PLS behavioural analyses performed in this paper. Similarly, other post-
hoc analyses on the optimally preprocessed data can be used in a cross-validation framework,
or for measuring reliability of activations. Conversely, single-subject inferential testing
based on p-values would have to keep track of the regression models used for individual
subjects.

The assumptions of our pipeline framework must also be considered in the context of the
data that is being optimized. Our framework identifies the pipeline with the most reproducible
SPM and optimal prediction between within-run data splits. In cases where we expect changes
in the patterns of brain activity over the course of a task run (e.g. a motor learning task), this is
inappropriate, as the model will treat these changes as non-reproducible confounds. However,
as we show, a sequence of short runs may be individually optimized, which is suitable for prob-
ing learning changes over multiple practice sessions. As a rule, optimization should be done at
the largest time-scale on which the hypothesis presumes stationary BOLD signal. This paper
shows such an optimization approach in practise, as we adaptively fit different pipelines for
run 1 and run 2 within a single scanning session, across multiple tasks.

Future Research

In this paper we focused principally on the effects of including/excluding a fixed order of pipe-
line steps. One may also consider permuting the order in which preprocessing pipelines are
applied. This has only been examined in limited contexts, partly due to the combinatorial
explosion of possible ways in which pipeline steps may be ordered. For example, the relative
order of motion correction, RETROICOR and slice-timing has been investigated [28]; the
order in which spectral filtering, de-spiking and nuisance regression is performed has also been
tested [29]. In some cases there is a well-motivated ordering of steps, e.g. spectral filtering
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should not precede nuisance regression, as it will introduce artifactual frequencies. In other
cases, it is less clear. For example, should de-spiking precede nuisance regression, or be per-
formed afterwards? This is an area that must be investigated in future work.

Another area of future investigation lies in the optimization of spatial preprocessing
methods such as the choice of smoothing kernels. It is well established that some fixed
spatial smoothing is beneficial at the group level, and that it significantly improves various
performance metrics [15][70]. But while studies have consistently demonstrated the benefit
of individual subject optimization for temporal processing methods (e.g. regression of
nuisance covariates), less is known about individual spatial processing optimization. Ac-
cording to the matched filter theorem [71], the choice of smoothing scale dictates the size
of detected activations, and so it may be desirable to employ a “2-stage” optimization
process, wherein the optimal fixed smoothing kernel is chosen across subjects, and temporal
processing steps are optimized at the individual subject level. However, there is some evi-
dence that smoothing can also be successfully optimized at the individual level [14], and
some studies even advocate adapting smoothing as a function of both dataset and brain
region [72].

Another, more challenging issue is the integration of Quality Control (QC) protocols into
pipeline optimization. QC measures serve a distinct but complementary role relative to pipeline
optimization, in identifying the regularities of data, and identifying datasets where the pre-exist-
ing preprocessing tools cannot adequately correct for artifact. In many ways, it is a more chal-
lenging prospect to develop a comprehensive QC protocol, as it requires that one catalogue all
of the ways in which artifacts can occur, whereas pipeline optimization is primarily driven by a
tixed set of optimization metrics. While this is a recognized issue, there are currently no agreed-
upon guidelines for fMRI QC [23, 25], although suggested protocols have been developed [73]
and packages have been developed for public use (e.g. www.nitrc.org/projects/artifact_detect).
This remains an area of active research, and may require multiple stages. That is, QC prior to
preprocessing optimization and afterwards, in order to verify that pipeline optimization was
successful.

Supporting Information

S1 Fig. Prediction and global Signal-to-Noise Ratio for different preprocessing pipelines.
Pipelines include a standard conservative pipeline (CONS), fixed optimization (FIX), and
individual optimization maximizing prediction (IND-P), reproducibility (IND-R) or both
metrics (IND-D). Large icons show average (gSNR, P) coordinates, for a different experimen-
tal task and analysis model, with +1 Standard Deviation ellipses (enclosing ~68% of data
points). Dashed lines indicate chance (random guessing) for prediction. Scatter points
represent individual subject (gSNR, P) values. Tasks include: Recognition (REC), Trail-
Making Test (TMT) and Sustained Attention to Response Task (SART). Analysis models
include: univariate Gaussian Naive Bayes (GNB) and multivariate Canonical Variates Analy-
sis (CVA).

(PNG)

S2 Fig. Change in activation overlap for optimal fixed and individual subject pipelines.
Large icons represent average pairwise activation overlap between independently optimized
pipelines, comparing standard conservative preprocessing (CONS) against the optimal fixed
pipeline (FIX) and individually optimized pipelines (IND-D), both optimized using the D(P,
R) metric. Scatter points represent individual subject overlap values. Results are shown for A.
within-subject between-session overlap, and B. between-subject, within-session overlap. Over-
lap is measured by Jaccard index between SPMs at a False Discovery Rate = 0.05 threshold, for
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each task and analysis model. The 1 Standard Deviation ellipses are also plotted (enclosing
~68% of data points).
(PNG)

$3 Fig. Change in behavioural correlation and global Signal to Noise Ratio for optimal
fixed and individual subject pipelines. We plot global Signal-to-Noise Ratio (gSNRpenay) Vs.
behavioural correlations (ppenay), for Partial Least Squares (PLS) analysis of the correlation
between SPM activation and behavioural performance. Results are shown for three tasks: Rec-
ognition (REC), Trail-Making Test (TMT) and Sustained Attention to Response Task (SART).
We also plot results for two analysis models: univariate GNB and multivariate CVA. For each
task/analysis model, we plot a line connecting (gSNRpehay Pbehay) from the standard conserva-
tive pipeline (CONS) to (a) the optimal fixed pipeline (FIX), and (b) the individually optimized
pipeline (IND-D). FIX and IND-D data-points are represented by circles; CONS data-points
are represented by triangles.

(PNG)

S1 Table. Fraction of subjects that include each preprocessing step under different pipeline
optimization approaches, for univariate Gaussian Naive Bayes. Darker shading indicates a
greater fraction of subjects. Results are shown for tasks: Recognition (REC), Trail-Making Test
(TMT) and Sustained Attention to Response Task (SART). Pipelines include conservative pre-
processing (CONS), fixed optimal pipelines (FIX), and individual pipelines optimized with pre-
diction (IND-P), reproducibility (IND-R) and both metrics (IND-D). Preprocessing steps
include: motion correction (MC), censoring outliers (CENS), physiological correction with
RETROICOR (RET), slice-timing correction (STC), motion parameter regression (MPR),
including task design regressor (TASK), global signal regression (GSPC1), physiological cor-
rection with PHYCAA+ (PHY+) and temporal detrending (DET). For DET, we plot the
median [minimum, maximum] detrending order for each task and pipeline.

(DOCX)

S2 Table. Fraction of subjects that include each preprocessing step under different pipeline
optimization approaches, for multivariate Canonical Variates Analysis. Darker shading
indicates a greater fraction of subjects. Results are shown for tasks: Recognition (REC), Trail-
Making Test (TMT) and Sustained Attention to Response Task (SART). Pipelines include con-
servative preprocessing (CONS), fixed optimal pipelines (FIX), and individual pipelines opti-
mized with prediction (IND-P), reproducibility (IND-R) and both metrics (IND-D).
Preprocessing steps include: motion correction (MC), censoring outliers (CENS), physiological
correction with RETROICOR (RET), slice-timing correction (STC), motion parameter regres-
sion (MPR), including task design regressor (TASK), global signal regression (GSPC1), physio-
logical correction with PHYCAA+ (PHY+) and temporal detrending (DET). For DET, we plot
the median [minimum, maximum] detrending order for each task and pipeline.

(DOCX)

$3 Table. Summary of significant outlier datasets, for different tasks and pipelines. We list
significant outliers in behavioural metrics, and in fMRI data (see Supplementary Note 4 for fMRI
outlier testing procedure). We also list the number of remaining runs, out of the original 94 runs.
(DOCX)

S1 Text. Censoring Outlier Brain Volumes. This supporting text provides a detailed descrip-
tion of the algorithm used to detect “spikes” created by abrupt head motion during scanning,
which are then removed by interpolating neighbouring voxel values.

(DOCX)
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S2 Text. Finding Pipelines with Task-Coupled Head Motion. In this text, we define the algo-
rithm that is used to identify subject pipelines that produce activation maps with significant

motion artifact, identified via significant weighting of brain edges.
(DOCX)

$3 Text. Reproducible Principal Component Brain Maps. This procedure is used to obtain
reproducible Z-scored brain patterns that explain the greatest variance within a set of subject
activation maps.

(DOCX)

S4 Text. Split-half Behavioural Partial Least Squares. This algorithm is used to identify brain
patterns that have greatest covariance with behaviour, within a set of subject activation maps.
It is estimated in a split-half cross-validation framework in order to obtain reproducible Z-
scored brain patterns and unbiased measures of behavioural correlation.

(DOCX)

S5 Text. Identifying Outlier Subjects before Group Analysis. This procedure is used to detect
subjects with activation patterns that are significant outliers, based on their influence in multi-
variate Principal Component space. This allows us to remove them prior to behavioural analy-
ses, in order to improve the stability of results.

(DOCX)
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