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Abstract

The copy numbers of genes in cancer samples are often highly disrupted and form a natural

amplification/deletion experiment encompassing multiple genes. Matched array compara-

tive genomics and transcriptomics datasets from such samples can be used to predict inter-

chromosomal gene regulatory relationships. Previously we published the database META-

MATCHED, comprising the results from such an analysis of a large number of publically

available cancer datasets. Here we investigate genes in the database which are unusual in

that their copy number exhibits consistent heterogeneous disruption in a high proportion of

the cancer datasets. We assess the potential relevance of these genes to the pathology of

the cancer samples, in light of their predicted regulatory relationships and enriched biologi-

cal pathways. A network-based method was used to identify enriched pathways from the

genes’ inferred targets. The analysis predicts both known and new regulator-target interac-

tions and pathway memberships. We examine examples in detail, in particular the gene

POGZ, which is disrupted in many of the cancer datasets and has an unusually large num-

ber of predicted targets, from which the network analysis predicts membership of cancer

related pathways. The results suggest close involvement in known cancer pathways of

genes exhibiting consistent heterogeneous copy number disruption. Further experimental

work would clarify their relevance to tumor biology. The results of the analysis presented in

the database METAMATCHED, and included here as an R archive file, constitute a large

number of predicted regulatory relationships and pathway memberships which we anticipate

will be useful in informing such experiments.

Introduction

Previously we have demonstrated that an analysis of matched array comparative genomics and

transcriptomics human cancer datasets can reveal inter-chromosomal acting gene regulatory

relationships [1–3]. By regulatory relationship we are refering to either a direct relationship, of
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a transcription factor on its target gene, or a very indirect one, through a pathway containing

intermediate regulatory steps. We published the database METAMATCHED [4], comprising

the results from such an analysis of a large number of publically available cancer datasets.

Careful data randomisation ensures statistically significant predictions. Each dataset originated

from samples of a particular type of cancer, and the datasets covered a wide range of cancer

types.

We noticed that there are genes in the database which have a highly variable copy number

amongst samples within a dataset and this occurs consistently for these same genes across
many of the datasets and different cancer types. In this paper we investigate these unusual

genes. We investigate their target genes, predicted by the meta-analysis of publically available

cancer datasets, the biological pathways enriched in their lists of target genes, and their

relevance to the cancer pathology of the samples. Why genes which have a highly variable,

inconsistent copy number disruption amongst samples within a cancer dataset may, perhaps

counter-intuitively, be of relevance to the cancer pathology is examined later in this introduc-

tion. Firstly we discuss the background to the meta-analysis and the pathway enrichment

analysis.

Array comparative genomics (aCGH) microarrays detect gene deletions or gene amplifica-

tions (extra copies) by comparing gene copy numbers in the DNA extracted from test sample

cells to the copy numbers in normal control cells. Transcriptomics experiments use microar-

rays that measure the abundance of mRNA. In matched experiments the two different types of

measurement are performed on the same samples. Reviews of matched aCGH and transcrip-

tomics experiments, their analysis and uses can be found in references [5] and [6].

In cancer samples the copy numbers of genes are often greatly altered and are in effect of a

natural gene amplification/deletion experiment encompassing many genes. In matched exper-

iments, transcriptomics data is also available for the same samples, and information can be

extracted on how changes in a gene’s copy number affects that gene’s expression. The analysis

can however be extended further, using the measurements to investigate whether a change in a

given gene’s copy number, with an associated change in expression, affects the expression of

any of the other genes in the dataset, hence inferring regulatory relationships.

Inference of regulatory relationships from these experiments is not without difficulties.

Relationships are masked by the noise in the data and further confounded by the biological

complexity of the system being studied. In particular, unlike conventional gene knockdown

experiments, the copy number of many genes are being perturbed simultaneously. Coamplifi-

cation or codeletion of genes situated in the same region of the genome can produce many

spurious relationships and it is for this reason that we concentrate on inter-chromosomal act-

ing regulatory relationships.

We validated the hypothesis that useful regulatory information can be extracted from

matched datasets, experimentally in Goh et al. [1] and computationally in Newton and Wer-

nisch [2]. We then performed a meta-analysis of 31 publically available datasets [3]. These

comprised matched experiments from a variety of different cancer types. Genes that have

altered copy number in one cancer type may have altered copy number in other cancer types

[7], so combining datasets should help reinforce any information within the data on regulator-

target relationships. The results were made available in the METAMATCHED database [4].

For this paper we have extended the meta-analysis to 45 datasets. The 14 extra datasets contain

824 samples, taking the total number of samples in the meta-analysis to 3398 samples.

The meta-analysis predicts target lists for regulatory genes. In this paper, to augment this

information, we investigate the enrichment of biological pathways in the target lists. To this

end, we used a network-based pathway enrichment approach. An enrichment analysis based

on the network of a pathway, rather than simply the gene set of the pathway, takes into
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consideration the interactions between the genes in the pathway. We use PathwayCommons

network databases [8] and the local enrichment analysis (LEAN) method of Gwinner et al. [9]

for network analysis of target lists, and then assess the resulting output for biological pathway

enrichment using a hypergeometric test. The results of the analysis are presented in the Meta-

matched database and are also included in this paper’s supplementary material as an R [10]

archive file (S3 File).

The aim of the pathway enrichment analysis is three-fold. Firstly, statistically significance

enrichments can help to validate the predictions of regulatory relationships generated by the

meta-analysis of the matched datasets. Secondly, the enrichment of a regulatory gene’s pre-

dicted target gene list in a particular pathway can be used to augment current knowledge of

that pathway. Thirdly, the enrichment analysis can be used to investigate the participation of

the regulators in pathways implicated in cancers, which is the main focus of this paper.

We are using cancer samples to predict regulatory relationships because they can be seen as

a natural gene amplification/deletion experiment. That the disruptions are outside our control

does mean however that inference about regulatory relationships will only be possible for cer-

tain genes. Those genes with high variation in their copy number amongst the samples within
a dataset will show the highest self aCGH/expression correlation, provided of course that there

is a concomitant change in expression. Conversely, if a gene is not amplified or deleted in any

sample in a dataset, or if it is amplified or deleted by a similar amount in all the samples, then

little or no self aCGH/expression correlation will be detected and the analysis will be unable to

reveal any regulatory relationships for the gene. This means that any oncogenes which are con-

sistently amplified or deleted in cancer samples are unlikely to feature in the results.

We find that there are a number of genes which have a highly variable copy number

amongst samples within a dataset and this occurs consistently across many of the datasets and

a very wide variety of different cancer types. There are 47 genes which have significant self

aCGH/expression correlation (and predicted targets) in twenty or more datasets. In this paper

we assess the potential relevance to the pathology of the cancer samples of genes exhibiting

this unusual, consistent heterogeneous copy number disruption in light of their predicted reg-

ulatory relationships and enriched biological pathways. A prominent example of such a gene,

that also has an unusually large number of target genes predicted by the meta-analysis, is

POGZ (Pogo Transposable Element Derived With ZNF Domain) and we examine in detail

some of the novel pathway involvements predicted for this interesting gene.

It may appear counter-intuitive that genes whose copy number disruption varies greatly

between the different cancer samples within a dataset could be relevant to tumor biology. It

would suggest that these genes are located in genomic regions which are prone to disruption

in cancer cells, but this disruption occurs only sporadically amongst samples. And this incon-

sistency would suggest that the disruption of these regulators would have little relevance to the

actual cancer pathology. It is known however that few genes are altered in more than 10% of

tumors for any type of cancer [11] and there is a complex interplay of alterations within path-

ways in cancers [12]. So it is possible that disruption of several different gene members of a

particular pathway, in an inconsistent manner across the various cancer samples in a dataset

could result in that pathway being consistently disrupted in all the samples of that cancer type.

Alternatively, these genes may occur in genomic regions which are disrupted, not sporadi-

cally, but consistently in the later stages of tumor development. In general the samples within a

dataset will come from tumors at different stages of the disease, so the disruption to these par-

ticular genes may reflect changes that take place during the course of tumor development.

These points are examined further in the Discussion section.

The aim of the work described in this paper was two-fold. Firstly, to augment the informa-

tion held in the Metamatched database with a comprehensive pathway enrichment analysis.
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This has added predictions of pathway memberships, as well as predictions of regulatory rela-

tionships to the database, and we give examples of the usefulness of these predictions in the fol-

lowing. Secondly, the aim was to explore the relevance of the information in the database to

cancer, concentrating on particular prominent regulators highlighted by the meta-analysis.

We present arguments as to why these genes could play a role in tumor biology, which appears

to be supported by the pathway enrichment results.

Materials and methods

In this section we first give a brief summary of the previously published meta-analysis method

we use to predict gene regulatory relationships. We then describe the network-based pathway

enrichment approach we use in this paper to analyse the results from the meta-analysis. Fig 1

is a flow chart illustrating all the steps involved in the analysis from array data through to

enriched pathways.

Prediction of regulatory relationships

We infer inter-chromosomal acting gene regulatory relationships from a meta-analysis of 45

matched aCGH/transcriptomics datasets, which are listed in Table 1. We use a method based

on correlations, a robust approach for analysing relationships amongst large amounts of data

of unknown complexities. More sophisticated network inference methods are generally more

likely to be susceptible to noise and heterogeneity between datasets. A major advantage of our

method is that it avoids the risk of confounding that can occur when expression data alone

is used in the analysis. Careful data randomisation to generate a null distribution is used to

ensure statistically significant predictions. Full details of the algorithm can be found in refer-

ences [3], [2] and in [1], where the code, written in the R statistical environment [10], can also

be found. The details are also provided in supplementary information S1 File.

We refer to a ‘regulating gene’ or ‘regulator’ as one whose up or down expression change

has a direct or indirect effect on the up or down regulation of a ‘target gene’. Any gene whose

mRNA expression levels are significantly correlated with changes in its own copy number is

considered worth investigating as a potential regulating gene. A potential target gene of a regu-

lating gene has expression levels which are significantly correlated with the copy number alter-

ations of the regulating gene.

A gene appearing in a regulator’s list of predicted targets, does not mean that regulator is

the most probable regulator for that target. Therefore, for each potential regulator, all pre-

dicted targets were assessed to see if the data indicated a more probable gene as its regulator.

There are two possible criteria for assigning the best regulator for a target gene: either by mini-

mum p-value from the meta-analysis or by the maximum number of datasets where there is

significant correlation between the target’s expression and the regulator’s aCGH.

In the following we use the short-hand ‘significant best target’ to refer to a predicted target

of a regulator which is first of all significant (p-value< 0.05). Moreover this regulator is pre-

dicted to be the best regulator for the target out of all the regulators in the Metamatched analy-

sis by way of bothminimum p-value and having the maximum number of datasets where there

is significant correlation between the target’s expression and the regulator’s aCGH. We use the

short-hand ‘less stringent condition for best regulator’ to refer to assigning a regulator as the

best regulator of a target by way of eitherminimum p-value or having the maximum number

of datasets where there is significant correlation between the target’s expression and the regula-

tor’s aCGH.
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Fig 1. Schematic diagram showing the steps involved in the analysis.

https://doi.org/10.1371/journal.pone.0213221.g001
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Table 1. Details of the 45 datasets used in the meta-analysis, the original 31 followed by the 14 new datasets.

Code GEO Publication N P Pathology

parr GSE20486 [13] 97 18616 Breast Cancer (Diploid)

crow GSE15134 [14] 31 16153 Breast Cancer (ER+)

sirc GSE17907 [15] 51 14689 Breast Cancer (ERBB2 amplified)

myll � [16] 46 17050 Gastric Cancer

junn � [17] 10 16844 Gastric Cancer

ch.w † [18] 91 10285 Lung adenocarcinoma

ch.s † [18] 94 10285 Lung adenocarcinoma

hoac GSE20154 [19] 54 14388 Oesophageal adenocarcinoma

zho GSE29023 [20] 115 13697 Multiple Myeloma

shai GSE26089 [21] 68 14201 Pancreatic Cancer

vain GSE28403 [22] 13 10107 Prostate Cancer

bott GSE29211 [23] 53 10321 Pleural Mesothelioma

bekh GSE23720 [24] 173 13682 Breast Cancer (Inflammatory)

chap GSE26863 [25] 245 13667 Multiple Myeloma

ooi GSE22785 [26] 14 10091 Neuroblastoma

brag GSE12668 [27] 11 10310 Waldenström’s Macroglobulinemia

jons GSE22133 [28] 356 4183 Breast Cancer

mura GSE24707 [29] 47 4472 Breast Cancer

lin1 GSE19915 [30] 72 4965 Urothelial Carcinoma

beck GSE17555 [31] 18 12174 Leiomyosarcoma

toed GSE18166 [32] 74 4289 Astrocytic Gliomas

ell GSE35191 [33] 124 13569 Breast Cancer

gra.1 GSE35988 [34] 85 12849 Prostate Cancer

gra.2 GSE35988 [34] 34 12813 Prostate Cancer

lenz GSE11318 [35] 203 15212 Lymphoma

lin2 GSE32549 [36] 131 8450 Urothelial Carcinoma

micc GSE38230 [37] 12 16657 Vulva Squamous Cell Carcinoma

tayl GSE21032 [38] 155 14572 Prostate Cancer

coco GSE25711 ‡ [39] 36 4394 Neuroblastoma

med GSE14079 [40] 8 6376 Lung Cancer

przy GSE54188 [41] 53 17032 Synovial Sarcoma

huang GSE30311 [42] 98 14927 Ovarian Cancer

lira GSE34211 [43] 89 14907 Cancer Cell lines

chpy.1 GSE34171 [44] 87 14907 Diffuse Large B-cell Lymphoma

chpy.2 GSE34171 [44] 78 10437 Diffuse Large B-cell Lymphoma

ross GSE70770 [45] 78 15150 Prostate Cancer

ochs GSE33232 69 14489 Head and Neck Squamous Cell Carcinoma

rama GSE19539 [46] 67 14972 Ovarian Cancer

guar GSE66399 [47] 65 14833 Breast Cancer

wilk GSE36471 [48] 47 13681 Lung Adenocarcinoma

dona GSE32688 [49] 32 14833 Pancreatic Cancer

zhu GSE12805 31 11639 Osteosarcoma

kuij GSE33383 [50] 29 14339 Osteosarcoma

pau GSE26576 [51] 29 14883 Diffuse Intrinsic Pontine Glioma

weig GSE57549 [52] 25 15150 Breast Cancer

GEO = Gene Expression Omnibus dataset reference (http://www.ncbi.nlm.nih.gov/geo/), N = Number of samples, P = Number of matched probes,

� http://www.cangem.org/,
† http://cbio.mskcc.org/Public/lung_array_data/,
‡ Expression data in ArrayExpress (http://www.ebi.ac.uk/arrayexpress/): E-TABM-38, E-MTAB-161. Expts. ch, gra & chpy use 2 expr. platforms, so samples from each

platform treated as separate dataset, to avoid spurious correlations which may be caused by systematic shifts between the 2 sets of expr. data. Each contributes 2 datasets

to study, resulting in 45 d’sets from 42 expts.

https://doi.org/10.1371/journal.pone.0213221.t001
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Network-based pathway enrichment analysis

Introduction. For each regulator, pathway enrichment was investigated separately using

a network based analysis of the list of its target genes. The networks used were four databases

of gene interactions in PathwayCommons [8], namely Humancyc (v20; 2016) [53], Panther

(v3.6.1; 25-Jan-2018) [54], Pid (NCI Curated Human Pathways; 27-Jul-2015) [55] and Reac-

tome (v64; 26-Mar-2018) [56], in the SIF (Simple interaction file) format. In the four databases

there are a total of 9849 pathways, whose membership ranged from 2 to 2405 genes.

The SIF format is a flat-file compendium of pairwise gene interactions documenting on

each line two genes, the nature of their interaction (comprising one of eight different interac-

tion types), and a biological pathway annotation for the interaction and/or a Pubmed ID

(PMID) [57]. Not all interactions are annotated with a pathway or PMID and the pathway

annotations may be composite pathways, each member in the list being separated by a semi-

colon. We use the term node of the network to refer to a gene and the term edge of the network

to refer to the undirected interaction between two genes. In the following pathway analysis we

will make use of this annotation of edges by pathways. We refer to a gene as being annotated

with a pathway if at least one of the edges connected to the gene is annotated with the pathway.

The analysis consisted of two steps. Firstly the target gene list of the regulator was analysed

in order to find enrichment of local subnetworks within the given PathwayCommons network

database. This step uses the network structure encapsulated in the PathwayCommons data-

base. Then the set of enriched local subnetworks discovered in the first step were investigated

for the presence of enriched biological pathways according to the pathway annotations in the

PathwayCommons database. Fig 2 shows a flow diagram of the different steps in the analysis,

which are described in the following two sections.

Network analysis. The local enrichment analysis (LEAN) method of Gwinner et al. [9]

was used for the network analysis. The purpose of this analysis is to find subnetworks of genes

which together have unusually low p-values. The LEAN method examines local subnetworks,

each of which comprises a single centre gene and its direct neighbours in a network database.

All possible local subnetworks (centre genes) are evaluated. Evaluation of a local subnetwork

takes as input the p-values of the centre gene and its direct neighbours, calculates an enrich-

ment score and uses a null distribution derived from random sampling to return an enrich-

ment p-value. The parameter free and exhaustive aspect of the LEAN method makes it

particularly suitable for a comprehensive analysis of large numbers of disparate gene lists.

For a regulator, the input to the LEAN algorithm was the complete list of target gene p-val-

ues from the meta-analysis for this regulator. That is, the p-values for the correlation between

the regulator’s aCGH and the target genes’ expression. For each target gene the minimum of

the p-value for activation by the regulator and the p-value for repression by the regulator was

selected.

A gene was considered to be an enriched centre gene, at the centre of a significantly

enriched subnetwork, if the LEAN p-value for the local subnetwork was less than 0.05.

Pathway enrichment analysis. The LEAN analysis of a regulator’s target gene list gener-

ates a number of significantly enriched local subnetworks for a given PathwayCommons net-

work database. In this step the results of the network analysis are summarised and condensed

in order to extract significantly enriched biological pathways.

The following procedure was carried out for each regulator in each PathwayCommons net-

work database in which the regulator shows significant enrichment of its target list. For each

significantly enriched local subnetwork found for the regulator, biological pathways associated

with the subnetwork were recorded by noting the pathways assigned to the edges of the sub-

network in the PathwayCommons network database. Not all edges were included; only the
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Fig 2. Schematic diagram showing the steps involved in the network-based pathway enrichment analysis.

https://doi.org/10.1371/journal.pone.0213221.g002
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edges attached to a gene for which the regulator is predicted to be the best regulator and where

this regulator-target relationship is significant (p-value < 0.05). The stringent rule was applied

as to whether a regulator is predicted to be the best regulator for a target gene.

The results of applying this procedure for all the significantly enriched local subnetworks of

the regulator were collated to give a list of pathways and the number of enriched centre genes

associated with each of the pathways. The hypergeometric distribution was then used to test

whether the number of occurences for a particular pathway was more than expected by chance.

The hypergeometric distribution provides the distribution of finding k objects with a cer-

tain feature in a random sample of size n out of a population of N objects where a total of K
objects has this feature. Here k is the number of enriched centre genes associated with a path-

way, n is the total number of enriched centre genes in the LEAN analysis for this regulator, K
is the number of genes recorded as being members of this pathway in the PathwayCommons

database and N is the total number of genes in the PathwayCommons database. Significantly

enriched pathways were selected as those with adjusted p-value from the hypergeometric test

less than 0.05.

The pathway with the minimum hypergeometric p-value was recorded as the main pathway

for the regulator. As well as using the pathways in the PathwayCommons databases, the analy-

sis used the Pubmed Ids if an interaction was not annotated with an actual pathway name.

If a regulator itself was not annotated on any of its edges with one of its significantly

enriched pathways then the R package igraph [58] was used to discover whether the regulator

had any path in the network database to any of the genes whose edges were annotated with the

pathway. The package igraph was also used to create plots of the significantly enriched path-

ways for a regulator. The biological pathways derived from the combined local subnetworks

could be too large for plotting and required some pruning. S1 File contains details of how this

was performed.

Results

In this section we first summarize the results of the meta-analysis. We then describe the pri-

mary results of the paper, namely the outcome of the network-based pathway enrichment

anaysis. We first provide an overview of these results and then concentrate on genes exhibiting

consistent heterogeneous copy number disruption, examining some of their enriched path-

ways in detail and their relevance to cancer biology.

Meta-analysis

From the meta-analysis of 45 matched aCGH/transcriptomics datasets we infer inter-chromo-

somal acting gene regulatory relationships. The complete results of the analysis can be found

in the METAMATCHED database [4]. A description of the composition of the database can

be found in S1 File. The analysis found 15496 genes considered worth investigating as potential

regulators; that is, having significant correlation (adjusted p-value < 0.05) between their copy

number profile and gene expression profile in at least one of the datasets. Of the 15496 poten-

tial regulators, 1176 were found to have at least one significant predicted target (adjusted p-
value < 0.05). S2 File is a spreadsheet that summarises the results for the regulatory genes. The

complete results, in R archive format are available for download from the Metamatched web-

site, and are also included here as supplementary file S3 File.

Network analysis

The target gene list of each regulator was analysed for enrichment of local subnetworks within

four PathwayCommons network databases using the LEAN method [9]. The set of enriched
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local subnetworks were then investigated for the presence of enriched biological pathways

using a hypergeometric test. After the results from the LEAN analysis have been summarised

and condensed in this way a total of 250 regulators show significant pathway enrichment of

their target gene lists. Each regulator that demonstrates some pathway enrichment is assigned

a main pathway (or Pubmed ID) as described in the Methods section. The 250 regulators have

a total of 152 unique main pathways (see Table A in S4 File). The number of genes assigned to

the 152 main pathways in the PathwayCommons database ranged from 5 to 262 genes, with a

mean of 65.

Each regulator will, in general, have a number of significantly enriched pathways besides a

main pathway; the number ranges from 1 to 89 pathways, with a mean of 5. The 250 regulators

between them have a total of 663 unique enriched pathways (see Table B in S4 File).

Summary pathway enrichment information is displayed for each of the regulators on its

webpage in the Metamatched database. More detailed information can be downloaded from

the web page; a spreadsheet summarises the pathway enrichment results, an R archive file con-

tains comprehensive information on the enrichment of each of the pathways and plots on the

web page illustrate these pathways.

We classified the enriched pathways into twenty major pathway types based on the top-

level pathway classifications in Reactome. We assessed the frequency of occurrence of each

pathway type by counting the number of regulators with target lists which are enriched with

at least one pathway of the pathway type. In the sum of the number of regulators enriched

with a particular pathway type the values were weighted by the number of datasets in which

each regulator showed significant self aCGH/expression correlation. However, the number

of genes annotated with a top-level pathway type in the PathwayCommons databases vary

greatly, so the frequencies of occurrence of a pathway type were corrected for the number of

annotated genes. Frequencies of occurrence were normalised so that the highest value was

one.

A pathway type will feature high in the ranking if it is enriched in the target lists of many

regulators and these regulators have self aCGH/expression correlation in many datasets, and

hence many types of cancer. The results are shown in Fig 3. The most frequently occurring

pathway types were Metabolism of RNA, Gene Expression (primarily RNA Polymerase II

Transcription) and DNA Repair (primarily DNA Double-Strand Break Repair).

Genes exhibiting consistent heterogeneous copy number disruption

We focus on those regulatory genes which have significant correlation between their aCGH

profiles and their own expression profiles in the highest number of datasets. The top genes in

this respect are listed in Table 2, which gives the number of datasets in which significant self

aCGH/expression correlation is found, the number of significant targets for which the gene is

the best regulator from the meta-analysis and the main pathway for the gene from the network

analysis.

The full list can be found in Table D in S4 File. This information is also displayed graphi-

cally in Fig 4 which plots for each regulator the number of significant best targets against the

number of datasets in which it shows significant self aCGH/expression correlation. There are

genes in the Metamatched analysis which show significant self correlation in a higher number

of datasets (up to 28 datasets, see S2 File), but which do not have significantly enriched path-

ways so are not included in Fig 4.

In the following we examine some of the enriched pathways of these regulatory genes in

detail in order to assess their potential relevance to tumor biology. Enrichment of a pathway

in a gene’s target list can also provide further evidence for previously known interactions
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amongst genes or validate the predictions made by the Metamatched analysis. In addition it

can be used to predict novel participants in pathways in two ways.

Firstly, if a regulator is not currently known to participate in a pathway, but the regulator’s

target list is enriched in that pathway, the enrichment suggests that the regulator has a connec-

tion with the pathway and some effect on the pathway’s function. We investigated whether

each regulator was already known to be part of its enriched pathways or had any network path

to any known member of the pathways in the relevant PathwayCommons database. We found

that 118 of the regulators are known to be connected to all their enriched pathways, 100 to

none, and the remaining 32 to some of their enriched pathways. In Table B in S4 File, which

tabulates each of the 663 enriched pathways, the regulators associated with a pathway are

divided into those that are known to be connected to the pathway and those that are not

known to be connected to the pathway.

Secondly, even if a regulator is already known to be part of a pathway for which its target

gene list is enriched, in general there will be genes in its target gene list which are not known

to be associated with the pathway. The prediction of these genes as targets of the regulator sug-

gests they may be participants in the pathway. In general, the majority of a regulator’s signifi-

cant best targets are not known to be involved in its enriched pathways (see Methods section

for definition of ‘significant best target’). The details of the network analysis for each regulator

that can be downloaded from the Metamatched website includes, for each enriched pathway,

those significant best targets which are known to be connected to the pathway and those which

are not known to be connected.

In the examples we concentrate on some of the pathways found to be the most disrupted

pathways in the 45 datasets used in the analysis. As a measure of the disruption of a pathway

we used the number of datasets in which at least one regulator associated by enrichment with

this pathway has significant copy number disruption, with a concomitant change in expres-

sion. The top disrupted pathways are listed in Table 3 and the full list is given in Table C in S4

File. Note that the pathway entries for gene pairs in PathwayCommons may be composite

pathways, separated by a semi-colon. In the LEAN analysis these composite pathways have

Fig 3. Frequency of occurrence of the major types of pathway amongst the enriched pathways of the 250 regulators.

https://doi.org/10.1371/journal.pone.0213221.g003
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been used, but in compiling Table 3 composite entries have first been split into their compo-

nent pathways. For brevity in the table, if two pathways are found to have exactly the same

complement of regulators associated with them by enrichment then the pathways have been

concatenated by a vertical-bar symbol. This generates 353 unique pathways, or pathway com-

binations, from the 663 composite pathways.

Table 2. Regulatory genes with self aCGH/expression correlation in the greatest number of datasets.

Regulator Targs D’sets Main pathway

AZIN1 2 22 Regulation of ornithine decarboxylase (ODC)

AGO2 7 21 Transcriptional regulation by small RNAs

DERL1 3 21 E3 ubiquitin ligases ubiquitinate target proteins

PTK2 3 21 PMID: 9187108 [59] �; 9256433 [60] ��

BCL9 1 21 Formation of the beta-catenin:TCF transactivating complex

POGZ 33 20 RNA polymerase II transcribes snRNA genes

MRPS28 4 19 Mitochondrial translation termination

YWHAZ 4 19 ATR signaling pathway

CHD1 2 18 Estrogen-dependent gene expression

ZC3H3 1 18 Cleavage of Growing Transcript in the Termination Region;Transport of Mature mRNA derived from an Intron-Containing Transcript;

mRNA 3’-end processing

HSBP1 5 17 CXCR4-mediated signaling events;IL12 signaling mediated by STAT4;IL12-mediated signaling events;TCR signaling in naïve CD4+ T

cells

ANKRD46 4 17 RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function

RABGAP1 1 17 Regulation of gene expression in beta cells

TRAK1 1 17 Signaling by BRAF and RAF fusions

TERF2IP 8 16 Acetylcholine regulates insulin secretion;Activation of . . . ���

RBBP5 2 16 Activation of anterior HOX genes in hindbrain development during early embryogenesis;RUNX1 regulates genes involved in

megakaryocyte differentiation and platelet function

ATG7 1 16 Antigen processing: Ubiquitination and Proteasome degradation;Interconversion of nucleotide di- and triphosphates

NCOA6 1 16 Activation of anterior HOX genes in hindbrain development during early embryogenesis

SLC30A5 1 16 NEP/NS2 Interacts with the Cellular Export Machinery;NS1 Mediated . . . ����

VCPIP1 1 16 Ovarian tumor domain proteases

WWOX 1 16 Formation of the beta-catenin:TCF transactivating complex

PTS 6 15 tetrahydrobiopterin biosynthesis I;tetrahydrobiopterin biosynthesis II

DOCK1 1 15 Integrin signalling pathway

Targs = Number of significant targets for which regulator is the best regulator p-value < 0.05, D’sets = Number of datasets in which the regulator has significant

correlation between its aCGH profile and its own expression profile

� TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta.

�� P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase.

��� Acetylcholine regulates insulin secretion;Activation of NF-kappaB in B cells;Activation of RAS in B cells;Antigen activates B Cell Receptor (BCR) leading to

generation of second messengers;Arachidonate production from DAG;Ca2+ pathway;EGFR Transactivation by Gastrin;Effects of PIP2 hydrolysis;Elevation of cytosolic

Ca2+ levels;Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion;G alpha (q) signalling events;G beta:gamma signalling through PLC beta;GPVI-mediated

activation cascade;Rap1 signalling;Response to elevated platelet cytosolic Ca2+;Syndecan interactions;Synthesis of IP3 and IP4 in the cytosol.

����NEP/NS2 Interacts with the Cellular Export Machinery;NS1 Mediated Effects on Host Pathways;Nuclear Pore Complex (NPC) Disassembly;Nuclear import of Rev

protein;Regulation of Glucokinase by Glucokinase Regulatory Protein;Regulation of HSF1-mediated heat shock response;Rev-mediated nuclear export of HIV RNA;

SUMOylation of DNA damage response and repair proteins;SUMOylation of DNA replication proteins;SUMOylation of RNA binding proteins;SUMOylation of

chromatin organization proteins;Transcriptional regulation by small RNAs;Transport of Mature mRNA Derived from an Intronless Transcript;Transport of Mature

mRNA derived from an Intron-Containing Transcript;Transport of Ribonucleoproteins into the Host Nucleus;Transport of the SLBP Dependant Mature mRNA;

Transport of the SLBP independent Mature mRNA;Viral Messenger RNA Synthesis;Vpr-mediated nuclear import of PICs;snRNP Assembly;tRNA processing in the

nucleus.

https://doi.org/10.1371/journal.pone.0213221.t002
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We now look at three examples of enriched pathways in detail (a further two are given in

supplementary information S5 File):

Pathway example 1: Formation of the beta-catenin:TCF transactivating complex.

Beta-catenin plays an important part in the Wnt-signaling pathway and is itself controlled by

binding partners such as the TCF family of transcription factors that affect its stability and

localization. It participates in various processes such as gene expression and cell adhesion.

Mutations in beta-catenin and the partners regulating its stability can contribute to tumorgen-

esis [61].

Thirteen regulators have this pathway as one of their enriched pathways, namely BCL9
(21), POGZ (20), RBBP5 (16),WWOX (16), CPEB4 (9),MYC (8), PYGO2 (7), LYL1 (3),

ZNF446 (3),HOXD9 (2), NIPAL4 (2), RAB3A (2) and HIST2H2BE (2). The numbers in brack-

ets indicate the number of datasets in which the regulator has significant self aCGH/expression

correlation.

BCL9 (B Cell CLL/Lymphoma 9) has significant self-correlation in 21 datasets. It is known

to be part of this pathway, being annotated with the pathway in Reactome.

POGZ (Pogo Transposable Element Derived With ZNF Domain), a protein coding gene,

has significant self-correlation in 20 of the datasets in Metamatched (Table 2). It also has an

Fig 4. For regulators, number of significant best targets against number of datasets. For each regulator, plotting the

number of their predicted significant best targets against the number of datasets in which they show significant self

aCGH/expression correlation. Showing only regulators with self-correlation in 8 or more datasets and regulators with

at least one enriched pathway. The regulator with the maximum number of targets at each number of datasets is

annotated.

https://doi.org/10.1371/journal.pone.0213221.g004
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Table 3. Most disrupted pathways in the 45 datasets used in the analysis.

Pathway Regulators N

Downstream TCR signaling ABCC12 ARHGEF4 ATXN7L2 HSBP1 IGSF9 MEF2C

MNS1 PBXIP1 PIK3R1 PIP5K1A PLCG2 POGZ

PSMB10 PTK2 RASGRF2 TERF2IP VHL

33

Generation of second messenger molecules ARHGEF4 ATXN7L2 HSBP1 PIP5K1A PLCG2 POGZ

PTK2 TERF2IP VHL

33

Antigen activates B Cell Receptor (BCR) leading to

generation of second messengers

ABCC12 ARHGEF4 ATXN7L2 ETV7 GALE IGSF9

INTS8 MCMDC2 MEF2C MNS1 PBXIP1 PEBP4

PIK3R1 PIP5K1A PLCG2 PTK2 RASGRF2 TERF2IP

31

Formation of the beta-catenin:TCF transactivating

complex

BCL9 CPEB4 HIST2H2BE HOXD9 LYL1 MYC NIPAL4

POGZ PYGO2 RAB3A RBBP5 WWOX ZNF446

31

RUNX1 regulates genes involved in megakaryocyte

differentiation and platelet function

ANKRD46 DAAM2 HIST2H2BE HOXD9 KMT2E

LYL1 NIPAL4 POGZ RAB3A RBBP5 ZNF446

31

PD-1 signaling ARHGEF4 ATXN7L2 HSBP1 MNS1 POGZ VHL 31

Phosphorylation of CD3 and TCR zeta chains j

Translocation of ZAP-70 to Immunological synapse

ARHGEF4 ATXN7L2 HSBP1 POGZ VHL 31

FCERI mediated Ca+2 mobilization j Role of

phospholipids in phagocytosis

ABCC12 ETV7 IGSF9 MCMDC2 MEF2C MNS1

PBXIP1 PEBP4 PIK3R1 PIP5K1A PLCG2 PTK2

RASGRF2 TERF2IP

30

SUMOylation of DNA damage response and repair

proteins

ASNSD1 GUCA2B HOXD9 LINC01587 NR3C2

NSMCE2 PHC3 SLC30A5 SSB TNNT2 TSPAN7

XRCC4

30

Ca2+ pathway ETV7 GALE INTS8 MCMDC2 PEBP4 PIP5K1A PLCG2

PTK2 TERF2IP

30

DAG and IP3 signaling j PLC beta mediated events j

VEGFR2 mediated cell proliferation

ETV7 MCMDC2 PEBP4 PIP5K1A PLCG2 PTK2

TERF2IP

30

Major pathway of rRNA processing in the nucleolus

and cytosol

AGO2 BCAN CDX1 CFHR4 DENND1C DUOX1

FAM212B FCRL5 GKN1 IDH1 KCNK4 KDELR1 KLK6

MYC NIP7 PDE4C PRKACA PROCR RIPK3 RPL13A

RPS23 RPS4X SEC24D SF3B4 STARD4 TLE2 ZCCHC9

29

Transcriptional regulation by small RNAs AGO2 ASNSD1 BCAN GIMAP2 GUCA2B HIST2H2BE

HOXD9 LINC01587 LYL1 NIPAL4 NR3C2 RAB3A

SLC30A5 SSB TNNT2 TSPAN7 ZNF446

29

snRNP Assembly ASNSD1 CFHR4 FIGF GCG GEMIN7 GEMIN8

GUCA2B HOXD9 LINC01587 NR3C2 POGZ SLC30A5

SSB TNNT2 TSPAN7

29

GPVI-mediated activation cascade ABCC12 GALE IGSF9 INTS8 MEF2C MNS1 PBXIP1

PIK3R1 PIP5K1A PLCG2 PTK2 RASGRF2 TERF2IP

29

Estrogen-dependent gene expression AGO2 CHD1 HIST2H2BE IQGAP2 LYL1 MYC

NIPAL4 PIEZO1 POGZ RAB3A ZNF446

29

FGF signaling pathway ARHGEF4 COTL1 GAB2 PIK3R1 PLCG2 POGZ PTK2

SELPLG TNFSF10

29

G alpha (q) signalling events INTS8 MNS1 NPY4R PIP5K1A PLCG2 PTK2 TERF2IP 29

Activation of anterior HOX genes in hindbrain

development during early embryogenesis

DAAM2 HIST2H2BE LYL1 NCOA6 NIPAL4 PARP10

PAX6 PLCG2 POGZ RAB3A RBBP5 VHL ZNF446

28

PKMTs methylate histone lysines ASH1L DAAM2 DQX1 KMT2E LYL1 MECOM

PARP10 POGZ RBBP5

28

G beta:gamma signalling through PLC beta GALE INTS8 PIP5K1A PLCG2 PTK2 TERF2IP 28

MHC class II antigen presentation DCTN4 GIMAP2 HSBP1 POGZ RASGRF2 RILP 28

N = Total number of datasets in which pathway potentially disrupted

https://doi.org/10.1371/journal.pone.0213221.t003
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unusually high number of significant targets for which it is predicted to be the best regulator;

33 in total (see Fig 4). It is not annotated with this pathway, and there is no path in Reactome

from POGZ to known members of this pathway, so the pathway enrichment analysis is sug-

gesting a novel involvement of POGZ in the pathway ‘Formation of the beta-catenin:TCF

transactivating complex’, disruption of which is of relevance to tumor biology.

The pathway enrichment analysis of the predicted targets for POGZ infers a total of 17

enriched pathways (Table 4), fifteen of them in Reactome and two in Panther. The functional

role of POGZ is, as yet, not well characterised in the literature and it is not annotated with

these pathways, neither is there any path in Reactome or Panther from POGZ to known mem-

bers of the pathways, so the enrichment analysis in conjunction with the meta-analysis is sug-

gesting a novel involvement of POGZ in all of these pathways.

POGZ is known to encode a protein containing a zinc-finger cluster, an HP1-binding

motif, a centromere protein-B-like DNA-binding (CENPB-DB) domain, and a transposase-

derived DDE domain [62]. The HP1-binding domain of POGZ is required for mitotic progres-

sion and dissociation of HP1α from mitotic chromosome arms and for activation and dissocia-

tion of Aurora B kinase from chromosome arms at M phase [63]. POGZ has also been found

to interact with glucocorticoid receptors, which regulate various metabolic, homeostatic and

Table 4. Enriched pathways of POGZ with associated significant best targets.

Pathway Targets

TGF-beta signaling pathway ACVR2B EP400

EGF receptor signaling pathway;FGF signaling pathway RASA1

RNA polymerase II transcribes snRNA genes SP1 YY1 TRRAP EP400

RUNX1 regulates genes involved in megakaryocyte differentiation and platelet

function;RUNX1 regulates transcription of genes involved in differentiation of

HSCs

YY1 TRRAP KMT2A SMC4

EP400

Activation of anterior HOX genes in hindbrain development during early

embryogenesis;Estrogen-dependent gene expression

YY1 TRRAP KMT2A SMC4

EP400

Condensation of Prophase Chromosomes YY1 TRRAP KMT2A SMC4

EP400

snRNP Assembly GEMIN5

MHC class II antigen presentation SP1 HLA-DPA1

Formation of the beta-catenin:TCF transactivating complex;Ub-specific

processing proteases

YY1 TRRAP KMT2A SMC4

EP400

PKMTs methylate histone lysines;RUNX1 regulates genes involved in

megakaryocyte differentiation and platelet function;RUNX1 regulates

transcription of genes involved in differentiation of HSCs

YY1 TRRAP KMT2A SMC4

EP400

Formation of the beta-catenin:TCF transactivating complex;HATs acetylate

histones

YY1 TRRAP KMT2A SMC4

EP400 NAT8L

HATs acetylate histones SP1 YY1 TRRAP KMT2A SMC4

EP400 NAT8L

DNA Damage Recognition in GG-NER YY1

HATs acetylate histones;Ub-specific processing proteases TRRAP EP400

Formation of the beta-catenin:TCF transactivating complex;HATs acetylate

histones;Ub-specific processing proteases

YY1 TRRAP KMT2A SMC4

EP400

Downstream TCR signaling;Generation of second messenger molecules;

Interferon gamma signaling;MHC class II antigen presentation;PD-1 signaling;

Phosphorylation of CD3 and TCR zeta chains;Translocation of ZAP-70 to

Immunological synapse

HLA-DPA1

Downstream TCR signaling;Generation of second messenger molecules;PD-1

signaling;Phosphorylation of CD3 and TCR zeta chains;Translocation of ZAP-

70 to Immunological synapse

HLA-DPA1

https://doi.org/10.1371/journal.pone.0213221.t004

A meta-analysis reveals regulatory relationships and pathway enrichment of potential oncogenes

PLOS ONE | https://doi.org/10.1371/journal.pone.0213221 July 23, 2019 15 / 28

https://doi.org/10.1371/journal.pone.0213221.t004
https://doi.org/10.1371/journal.pone.0213221


differentiation processes [64], and with the C terminus of LEDGF/p75 via its DDE domain

[65, 66], and with trimethyl-lysine modifications on histones that control chromatin-mediated

regulation of gene expression, and with the mitotic spindle checkpoint protein MAD2L2 [67].

POGZ has six significant best targets associated with the pathway ‘Formation of the beta-

catenin:TCF transactivating complex’ in the enrichment analysis. TTRAP is annotated with

this pathway in Reactome, EP400 and YY1 are centres of enriched local subnetworks, and

SMC4, KMT2A and NAT8L are part of enriched local subnetworks.

If the stringency of the best regulator condition is relaxed (see Methods section for details),

then more significant targets of POGZ appear in the pathway. Fig 5 plots the enriched network

when the less stringent condition is applied. The enrichment analysis now associates sixteen

significant targets for which POGZ is the best predicted regulator with the pathway.

Loss of function mutations in POGZ are known to be associated with severe neurodevelop-

mental delay, resulting in a majority of cells being unable to form metaphase plates, exiting

mitosis prematurely and causing the formation of polyploidy cells, which can lead to cell death

or genome instability in subsequent division cycles [68]. POGZmutations that disrupt the

DNA-binding activity of POGZ are also associated with Autism spectrum disorder (ASD) [62,

69, 70]. Loss of POGZ has also been found to affect the proliferation of mouse neural progeni-

tor cells [71].

Another better characterised gene associated with ASD, CHD8, interacts with POGZ [72]

and is known to be involved with beta-catenin pathways [73], and mutations in pathways regu-

lating beta-catenin have been shown to occur in ASD [74]. POGZ expression is also correlated

with CTNND2 (Catenin Delta 2) [75], providing circumstantial support for POGZ’s involve-

ment in the beta-catenin pathways predicted here by the pathway enrichment analysis of the

regulatory relationships inferred from the meta-analysis of matched datasets.

Disruption of CHD8 is also implicated in cancer [76], as is the disruption of the destruction

complex of beta-catenin [77]. Thus the genomic disruption of POGZ in many of the cancer

datasets used in our study and the concomitant changes in its expression, and the significant

correlation of the expression changes of an unusually high number of targets, may indicate

that POGZ has a functional role in cancer biology. The datasets in which POGZ showed signifi-

cant aCGH/expression correlation corresponded to the following tissues and cancer patholo-

gies: Breast (ER+, ERBB2 amplified, Inflammatory), Head and Neck Squamous Cell, Lung

Adenocarcinoma, Lymphoma, Multiple Myeloma, Osteosarcoma, Ovarian, Pancreatic, Pros-

tate and Urothelial.

RBBP5 (RB Binding Protein 5) has significant self-correlation in 16 datasets. It is known to

be involved in signaling by Wnt, and in Reactome it is annotated with the pathway ‘Formation

of the beta-catenin:TCF transactivating complex’, as is one of its two significant best targets,

SETDB2. Its other significant best target is SLTM. If the less stringent condition for RBBP5 to

be the best regulator is applied then a further significant best target, CDCA5, is included in the

pathway.

WWOX (WWDomain Containing Oxidoreductase) has significant self-correlation in 16

datasets. ‘Formation of the beta-catenin:TCF transactivating complex’, is an enriched pathway

forWWOX due to its predicted significant best target LEF1. This prediction agrees with prior

knowledge ofWWOX in that it has a known regulatory relationship with LEF1 involving the

beta-catenin pathway. That is,WWOX interacts with DVL2, inhibiting the function of DVL2
in controlling the transcriptional activity of LEF1, and also by interacting with a cofactor of the

Wnt/beta-catenin pathway, BCL9-2, to enhance the activity of the beta-catenin-TCF/LEF tran-

scription factor complexes [78, 79].WWOX is also known to act as a tumor suppressor [80].

If the less stringent condition forWWOX to be the best regulator is applied then five further

significant best targets are included in the pathway, in addition to LEF1, namely SUV39H1,
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TLE1, SIN3A, KDM4B and RCL1. None are annotated with this pathway but they are associ-

ated with the pathway by the enrichment analysis as either enriched centres or connected to

enriched centres. Overexpression of SUV39H1 is known to be associated with cell proliferation

in cancer [81]. SIN3A is downregulated in a variety of cancers and is thought to influence a

specific step of tumorgenesis in part via the beta-catenin pathway [82]. KDM4B overexpression

Fig 5. POGZ: Formation of the beta-catenin:TCF transactivating complex. Simplified diagram of the pathway ‘Formation of the beta-catenin:

TCF transactivating complex’ as enriched in the target list of the gene POGZ. Applying the less stringent criterion for a regulator to be the best

regulator of targets. Nodes: Green = significant target, Red border = regulator is best regulator for target Dark Blue = enriched centre also significant

target, Light Blue = enriched centre but not significant target. Edges: grey = ‘in-complex-with’, purple = ‘catalysis-precedes’, ‘used-to-produce’

orange = ‘controls-state-change-of’, ‘controls-phosphorylation-of’ brown = ‘controls-expression-of’, ‘cntrls-production-of’, consumption-cntrlled-

by’.

https://doi.org/10.1371/journal.pone.0213221.g005
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contributes to the genesis of colorectal tumors via its role in beta-catenin mediated gene tran-

scription [83].

CPEB4 (Cytoplasmic Polyadenylation Element Binding Protein 4) has significant self-cor-

relation in 9 of the datasets and has ‘Formation of the beta-catenin:TCF transactivating

complex’ as an enriched pathway through its significant best target TCF7L2. In Reactome

CPEB4 is not connected to members of the pathway. Besides TCF7L2 it has four other signif-

icant best targets, namely NQO2, CES4A, TET1 and ZNF26. CES4A has no path to the path-

way in Reactome, indicating that it may be a novel member of this pathway. If the less

stringent condition is applied then the gene CROT is also a significant target of CPEB4 in

this pathway.

CPEB4 has been shown to have a role in oncogenesis through translational activation

of mRNAs that are normally silenced [84]. Silencing of CPEB4 prevents cell invasion and

migration in non-small cell lung cancer [85]. High CPEB4 expression can serve as a prognostic

factor in invasive ductal breast carcinoma [86]. The related gene CPEB1 regulates beta-catenin

mRNA translation [87].

MYC (MYC Proto-Oncogene) has significant self-correlation in 8 of the datasets and is

known to be part of the pathway ‘Formation of the beta-catenin:TCF transactivating complex’.

Similarly PYGO2 (Pygopus Family PHD Finger 2), with significant self-correlation in 7 datasets,

is also annotated with this pathway in Reactome.

Pathway example 2: RUNX1 regulates genes involved in megakaryocyte differentiation

and platelet function. RUNX1 is a transcription factor, known to be essential for the matu-

ration of megakaryocytes [88]. It is known as a tumor suppressor in leukemia but has recently

been implicated to have a role in other cancer types [89, 90]. A total of eleven regulators have

their target lists enriched with this pathway in Metamatched, namely POGZ (20), ANKRD46
(17), RBBP5 (16), KMT2E (9), DAAM2 (4), LYL1 (3), ZNF446 (3),HOXD9 (2), NIPAL4 (2),

HIST2H2BE (2) and RAB3A (2).

POGZ (Pogo Transposable Element Derived With ZNF Domain): There is no path in Reac-

tome from POGZ to members of the pathway ‘RUNX1 regulates genes involved in megakaryo-

cyte differentiation’ however it has been shown that POGZ is highly expressed in mouse

megakaryocyte erythroid progenitors [71].

Five of the thirty three significant best targets of POGZ are associated with the pathway in

the enrichment analysis. Of the five, KMT2A is annotated with this pathway in Reactome,

EP400 and YY1 are at the centres of enriched local subnetworks, and SMC4 and TRRAP are

part of enriched local subnetworks. Of the remaining 28, 11 do not currently appear in Reac-

tome, one occurs but has no path to any members of the pathway, and 14 do have paths to

members of this pathway. If the less stringent condition for a regulator to be the best regulator

is applied then a further four significant best targets are associated with the pathway, namely

MORF4L1,MORF4L2,MTA1 and YEATS2.
ANKRD46 (Ankyrin Repeat Domain 46) is also not known to be part of this pathway, but is

associated in this analysis by gene KAT2B being a significant best target. Whereas, RBBP5 (RB
Binding Protein 5, Histone Lysine Methyltransferase Complex Subunit) and KMT2E (Lysine
Methyltransferase 2E) are both annotated with this pathway in Reactome.

Pathway example 3: HDMs demethylate histones. By removing methyl groups from his-

tone proteins Histone demethylases (HDMs) contribute to epigenetic regulation by reversing

histone methylation [91] and given their epigenetic role they are of interest as therapeutic tar-

gets in cancer [92].

In Metamatched three regulators have this pathway enriched in their target lists: DERL1
(21),MAN2A1 (13) and POLD3 (11). Fig 6 shows a simplified pathway diagram derived by

amalgamating the results of the enrichment analysis for these three regulators.
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DERL1 (Derlin1) is a component of the endoplasmic reticulum-associated mechanism for

the degradation of misfolded proteins. It demonstrates significant self correlation in 21 of the

datasets and has 3 significant best targets, JMJD6, ZKSCAN7 and CCPG1. Its main pathway

from the enrichment analysis is ‘HDMs demethylate histones’. DERL1 is not known to be part

of this pathway, but in Reactome it has a path to members of the pathway by way of forming a

complex with RAD23B, which in turn is connected to SUMO1. Significant best target JMJD6
is associated with the pathway. Of the two other significant best targets CCPG1 does not cur-

rently appear in Reactome whilst ZKSCAN7 does have a path to members of this pathway. If

Fig 6. DERL1, MAN2A1 and POLD3: HDMs demethylate histones. Simplified diagram of the pathway ‘HDMs demethylate histones’ fusing the

results of the enrichment analysis for regulators DERL1, MAN2A1 and POLD3. Key to nodes and edges as in Fig 5 with the addition of: Nodes:

Red = regulator, White = target, not significant.

https://doi.org/10.1371/journal.pone.0213221.g006
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the stringency of the condition for a regulator to be a target’s best regulator is relaxed then

POLD3 is also included as a significant best target. POLD3 (see below) is itself a potential regu-

lator in the Metamatched analysis and interestingly its own target list is also enriched with the

pathway ‘HDMs demethylate histones’.

POLD3 (DNA Polymerase Delta 3, Accessory Subunit) plays an important role in DNA repli-

cation and repair. Depletion of POLD3 results in an increase in genome instability, by way of

breaks, S-phase progression impairment and chromosome abnormalities [93]. It has self corre-

lation in 11 datasets and has 7 significant best targets, one of which, PHF2, is associated with

this pathway. Four of the others have some path to the pathway and two do not appear in Reac-

tome. POLD3 has a path to PHF2 via POLR2A. If the less stringent condition is applied then

five further significant best targets are associated with the pathway, DOT1L, RARG, SUPT5H,

TAF1L and PDCD7.
MAN2A1 (Mannosidase Alpha Class 2AMember 1) has self correlation in 13 datasets and

one significant best target, KDM4A.MAN2A1 is not annotated with this pathway, but can be

connected to members of the pathway in Reactome.

Discussion

Previously we have used matched aCGH/expression datasets to predict statistically significant

gene regulatory relationships [3], validated the method experimentally [1] and computation-

ally [2]. In this context regulatory relationship refers to more than just direct casual relation-

ships of transcription factors on targets, encompassing indirect casual relationships as well,

through pathways containing intermediate regulatory steps.

The data used in the analysis consists of more than three thousand cancer samples so in this

paper we explore whether the results can provide insights into tumor biology. To this end we

have carried out an exhaustive network-based pathway enrichment analysis. We concentrate

on those genes that are unusual in manifesting copy number heterogeneity, and a concomitant

change in expression, in many of the 45 datasets and a very wide variety of different cancer

types.

This consistent heterogeneity could indicate genes located in genomic regions which are

prone to disruption in cancer cells, but this disruption occurs only sporadically amongst sam-

ples, suggesting little relevance to the actual cancer pathology. However it is known that genes

are rarely altered in more than 10% of tumors for any type of cancer [11] and there is a com-

plex interplay of alterations within pathways in cancer [12]. So disruption of more than one

member of a pathway in an inconsistent manner across samples could result in that pathway

being consistently disrupted in all of the samples. We plan to explore this aspect of the data

further in future work since it has been recognised that phenotypic heterogeneity between

tumors, in terms of the pathways disrupted, is much less than the observed genetic heterogene-

ity [94].

An alternative possibility is that these genes occur in genomic regions which are disrupted

consistently in the later stages of tumor development. In general the samples within an experi-

ment will come from tumors at different stages of the disease, so the disruption to these partic-

ular genes may reflect changes that take place during the course of tumor development. In this

case the disruption to regulators and their pathways might have a role in later phases of the dis-

ease, for example in the development of metastases. Along with tumor heterogeneity, metasta-

ses are a major challenge facing cancer therapy [95].

In some cases the pathway enrichment analysis predicts known down-stream target genes

of a regulator, and some examples of this feature in the Results section. In other cases however

known down-stream targets are not predicted. Such missing predictions may be due to lack of
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predictive power of the analysis. Alternatively they may result from cellular mechanisms able

to compensate for a regulator’s copy number disruption and concomitant change in expres-

sion. For example, they may represent regulator-target relationships that are highly non-linear

so that large changes in a regulator’s expression has little effect on down-stream components

of the pathway. Activation of an alternative pathway, or pathways, that can compensate for the

disruption to a pathway is another possible method for nullifying the effects of changes in a

regulator’s expression.

If cellular mechanisms are responsible, then the analysis presented here may be

highlighting those regulator-target relationships that lack redundancy or any buffering pro-

cess in the cell. They are relationships where disruption to the regulator’s expression, due to

changes in its copy number, cannot be compensated for by the cell and so may have a real

functional effect. The genetic diversity of tumors is a major problem in cancer therapy and

the aim of personalized cancer therapy is to identify mutations that are clinically relevant.

This involves distinguishing ‘driver’ mutations from neutral ‘passenger’ mutations that tend

to accumulate during tumorgenesis [11, 96]. If this study is highlighting functionally impor-

tant regulators, then some of these may be ‘driver’ genes whose disruption is relevant to

tumor biology.

So despite the inconsistent disruption of the copy number across samples of the genes in

this study, it is possible to hypothesize that these genes could be regulators that have a role in

tumor biology. The pathway memberships predicted by the network analysis of the meta-anal-

ysis results do suggest a close involvement of some of these genes in known cancer pathways.

This includes genes for which there is currently little or no information on their relevance to

cancer, especially multiple types of cancer, but which have cancer related pathways enriched in

the target lists predicted for them by the meta-analysis of matched experiments.

The pathway enrichment analysis shows some interesting examples of direct validation, for

example the relationship betweenWWOX and LEF1 in the beta-catenin pathway, and circum-

stantial validation, for example the enrichment of the target list of POGZ with the megakaryo-

cytes and beta-catenin pathways.

In order to reduce false positives we use high confidence levels and a stringent condition as

to whether a regulator is the best regulator for a target in our analysis. Inevitably the stringency

may remove some true positives. An example can be seen in the results for the regulator

WWOX where applying the less stringent condition reveals further significant best targets

known to be involved with beta-catenin pathways. Consequently the Metamatched database

also provides the significant targets of a regulator found using the less stringent condition for a

regulator to be the best regulator of a target.

The work highlights those genes disrupted in many of the datasets. One of the most inter-

esting of these regulators is POGZ. It stands out in having self aCGH/expression correlation in

a large number of datasets and cancer types, and also an unusually high number of predicted

significant targets (Fig 3) and some novel enriched pathways. Whilst not connected in Reac-

tome to these pathways, and not yet well characterised in the literature, prior knowledge of the

role of the gene POGZ does provide some support for the enriched pathways predicted by the

network analysis presented here.

A major advantage of the analytical approach used, that is correlation of aCGH with expres-

sion, is that it avoids the risk of confounding that can occur when using the correlation of

expression profiles alone. One problem of the analysis is the potential difficulty of distinguish-

ing the targets of two regulators which are neighbours in the genome and are often co-dis-

rupted. The more datasets in which a regulator demonstrates copy number disruption, the less

likely this will occur. The relationships that can be investigated are also necessarily constrained

by the probes that are available on the arrays used in the experiments.
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The aim of the predictions in the Metamatched database is to inform experiments and pro-

vide information for generating gene regulatory networks. Since our analysis builds on the

causal influence of the regulator gene on its target, the predictions of pathway membership

may help to infer the downstream effects of drugs on their targets.

As discussed in more detail in our previous publication [3] it is possible that some of the

predicted relationships in this study have arisen through a confounding factor as part of some

as yet poorly understood or unknown genetic mechanisms. For example histone modification

regulated by microRNAs promoting copy number variation [97, 98] or hypoxia-dependent

copy gain [99] are possible mechanisms by which confounding could occur. This means that

as well as detecting direct interactions, and indirect ones through pathways, the analysis may

be detecting subtler genomic effects, which cannot be isolated with current knowledge.

In future work we plan to explore whether the inconsistent genomic disruption of multiple

genes within a dataset leads to a more consistent phenotypic disruption of the samples in

terms of pathways altered. It would be interesting to identify which subsets of regulators are

required to be altered to consistently perturb a particular pathway within a dataset, where

these genes are positioned in the pathway and what role they perform there. We also plan to

update the METAMATCHED database in line with updates to PathwayCommons, GO and

cocitation information, and to integrate the results with other oncogenomics databases. In

addition there are alternative analysis methods which could be employed, for example, Pear-

son correlation, or maximal information-based nonparametric exploration statistics [100], a

technique designed to cope with non-linearities in the data being analysed.

Conclusion

We have added information from an exhaustive network-based pathway enrichment analysis to

METAMATCHED, a database of statistically significant regulator-target predictions. In this

paper we explore the relevance of these results to tumor biology. We have concentrated on genes

exhibiting consistent heterogeneous copy number disruption and presented arguments why

these genes could be of relevance to cancer pathways, which appear to be supported by the path-

way enrichment results. The wealth of predicted regulatory relationships and pathway member-

ships contained in the Metamatched database provide pointers as to possible experiments that

could clarify their role in cancer. We demonstrate how the predictions contained in the database

can be useful in informing experiments and extending networks of regulatory relationships. We

provide some interesting examples of this process, in particular for the gene POGZ.
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