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ABSTRACT

RNA structures play a fundamental role in nearly
every aspect of cellular physiology and pathology.
Gaining insights into the functions of RNA molecules
requires accurate predictions of RNA secondary
structures. However, the existing thermodynamic
folding models remain less accurate than desired,
even when chemical probing data, such as selec-
tive 2′-hydroxyl acylation analyzed by primer exten-
sion (SHAPE) reactivities, are used as restraints.
Unlike most SHAPE-directed algorithms that only
consider SHAPE restraints for base pairing, we ex-
tract two-dimensional structural features encoded in
SHAPE data and establish robust relationships be-
tween characteristic SHAPE patterns and loop mo-
tifs of various types (hairpin, internal, and bulge)
and lengths (2–11 nucleotides). Such characteris-
tic SHAPE patterns are closely related to the sugar
pucker conformations of loop residues. Based on
these patterns, we propose a computational method,
SHAPELoop, which refines the predicted results of
the existing methods, thereby further improving their
prediction accuracy. In addition, SHAPELoop can
provide information about local or global structural
rearrangements (including pseudoknots) and help
researchers to easily test their hypothesized sec-
ondary structures.

INTRODUCTION

Single-stranded RNA molecules fold into intricate sec-
ondary structures due to intramolecular base pairing. RNA
structures and their rearrangements are intimately involved
in a diverse range of cellular processes, including tran-
scription (1,2), alternative splicing (3), translation (4,5) and
degradation (6). Although conventional experimental ap-
proaches to RNA structure determination, such as crystal-

lography, nuclear magnetic resonance (NMR), and cryo-
genic electron microscopy (cryo-EM), have been deemed
sufficiently accurate, applying these techniques to large or
flexible RNAs poses a significant challenge. Recently, mul-
tiple enzyme-based (7,8) or chemical-based (9,10) prob-
ing experiments have been used to quantitatively determine
RNA secondary structures without the limitation of RNA
size (10). Selective 2′-hydroxyl acylation analyzed by primer
extension (SHAPE) probing (10–12) is one of the most
popular methods with the least amount of base-dependent
bias (13), and this approach can be implemented in a low-
throughput manner by capillary electrophoresis (14) or in
a high-throughput manner by next-generation sequencing
(15–17). Although next-generation sequencing can probe
RNA structures at the whole-transcriptome level, the ac-
curacy is often compromised due to the low read coverage
of RNAs (18). This problem is more severe for some long
non-coding RNAs that have relatively low expression levels
compared with mRNAs.

Generally, RNA residues with higher SHAPE reactivi-
ties are more likely to be unpaired, while those with lower
SHAPE reactivities tend to be paired. However, the SHAPE
reactivities of both paired and unpaired residues can be low
(19,20). Moreover, SHAPE data alone cannot directly pro-
vide information about two-dimensional (2D) structures,
such as pairing partners (21,22). Consequently, SHAPE
data are commonly incorporated into RNA secondary
structure prediction algorithms as restraints. The minimum
free energy (MFE) (23) and the maximum expected accu-
racy (MEA) (24) are the two main types of algorithms that
have been developed; of these, the MFE is the most widely
used secondary structure prediction model. SHAPE data
are converted into various pseudo-energy terms and serve
as restraints in these algorithms, e.g. Fold utility in RNAs-
tructure (12,25), MaxExpect utility in RNAstructure (24),
RME (22), RNAsc (26), and RNApbfold (27). These meth-
ods require pseudo-energy parameters to combine SHAPE
probing data with thermodynamic prediction models, al-
though there is no evidence showing that those combina-
tion strategies are mathematically reasonable (28). Given
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this fact, ‘sample and select’ approaches have been devel-
oped. For example, SeqFold (29) selects the centroid struc-
ture with the minimal Manhattan distance to SHAPE data,
based on the clustering results of Sfold (30). Although Se-
qFold significantly improves the prediction accuracy when
using high-throughput enzymatic probing data, its perfor-
mance with SHAPE data is not satisfactory compared to
pseudo-energy based methods (22,28,29).

Although prediction algorithms with SHAPE restraints
effectively increase the accuracy of the predicted structures,
there remains space for improvement (31). Overall, there is
a false negative and false discovery rate for shorter RNAs
(<∼150 nt) of approximately 20% (32,33), and the pre-
diction accuracy decreases dramatically for longer RNAs
(34). More importantly, the performance of these algo-
rithms in identifying high-level interactions (e.g. pseudo-
knot) and dynamic structural changes is far from satisfac-
tory. As the prediction accuracy of methods using differ-
ent pseudo-energy parameters has reached a ‘ceiling’ (35),
greater effort should be made to exploit the various types of
structural information encoded in SHAPE signals. For ex-
ample, patteRNA uses a Gaussian mixture model-hidden
Markov model (GMM-HMM) to search for user-defined
RNA structural motifs from SHAPE profiling data (36).
However, patteRNA aims neither to identify characteris-
tic SHAPE patterns for structural motifs nor to predict the
most optimal structures for given SHAPE data. Instead, it
is designed to automatically mine all putative locations for
target motifs; thus, the false discovery rate of patteRNA-
recognized loops is comparatively high (36).

To bridge the gap between SHAPE data and struc-
tural information, we developed a computational method,
SHAPELoop, which establishes direct relationships be-
tween SHAPE patterns and loop motifs of various
types and lengths. Equipped with such relationships,
SHAPELoop quantitatively estimates the discrepancies be-
tween the SHAPE reactivities of predicted loops and the
characteristic SHAPE patterns, and selects the candidate
structure most consistent with the characteristic SHAPE
patterns. The application of SHAPELoop to benchmark
RNAs demonstrates that SHAPELoop outperforms the
commonly used pseudo-energy-based and ‘sample and
select’-based prediction models. Moreover, the design prin-
ciples of SHAPELoop render it an effective tool to ade-
quately decipher SHAPE-implied structural information,
which can potentially inform us of local or overall struc-
tural rearrangements (including pseudoknots) mediated by
varied folding conditions or mutated primary sequences.

MATERIALS AND METHODS

Benchmark RNAs and their SHAPE probing data

To identify the characteristic SHAPE patterns for hairpin,
internal, and bulge loop motifs, we analyzed a dataset con-
sisting of 11 RNAs with known structures as determined by
crystallography or NMR and with low-throughput SHAPE
reactivities publicly available (12,37–39) (Supplementary
Table S1). These RNAs include nine short RNAs and two
long rRNAs (Escherichia coli 16S and 23S). The two long
rRNAs were divided into 10 domains for structural predic-
tion following the published strategies (40,41).

Table 1. Summary of the loops extracted from benchmark RNAs

Total
number

Number of
motif type Length range

Hairpin 106 13 2–13, 15
Bulge 33 6 2–7
Internal 87 25 2–11, 13, 14, 16, 23
Multi-branch 60 57 1–15, 18, 19, 22, 25, 27

Identification of characteristic SHAPE patterns

Hairpin, internal, and bulge loops with two flanking base
pairs were extracted from the benchmark RNAs (Table 1).
Loops involved in pseudoknot structures were removed. A
loop motif was defined as any loops with the same length
and type (hairpin, bulge, or internal), irrespective of their
sequences. We applied paired Wilcoxon signed-rank tests
(42) to detect significant differences in SHAPE reactivi-
ties between any two positions in each loop motif (Figure
1A). Among the pairs under comparison, if the P-value was
<0.05 and was ranked as the top two smallest P-values for
that loop motif, the pair was selected as a characteristic
SHAPE pattern of that specific motif (Supplementary Fig-
ure S1). We also attempted to identify SHAPE patterns for
multi-branch loops; however, such data were too diverse for
a statistical analysis (Supplementary Table S2).

Statistics of sugar conformation

RNA three-dimensional (3D) structures were obtained
from the Protein Data Bank (PDB). The non-redundant
list of PDB structures was downloaded from the Nucleic
Acid Database (v3.127) with the resolution threshold set to
3.0 or 4.0 Å, resulting in 966 and 1475 structures, respec-
tively. Secondary structure information of the selected PDB
structures was derived from the outputs of DSSR software
(v1.6.9) (43). The sugar conformations of loop residues were
determined as C2′-endo or C3′-endo based on whether both
of the following two criteria were satisfied: (i) the sugar
pucker is C2′-endo as determined by DSSR and (ii) 2′-OH
forms a hydrogen bond with pyrimidine O2, purine N3, or
the non-bridging O from the phosphodiester. These three
types of hydrogen bonds were reported to be associated with
the C2′-endo-conformation and high SHAPE reactivities
(44–46).

SHAPELoop framework

SHAPELoop is designed to refine loops in the MFE struc-
tures (referred to as ‘guidance structures’ hereinafter) to
make them agree better with the characteristic SHAPE pat-
terns. To this end, SHAPELoop includes five major steps:
(i) identifying characteristic SHAPE patterns (Figure 1A);
(ii) scoring loops in the guidance structure (Figure 1B);
(iii) scoring loops in the candidate structures (Figure 1C);
(iv) classifying loops in the guidance structure (Figure 1D);
and (v) selecting a final structure from the candidates (Fig-
ure 1E). For an RNA of interest, SHAPELoop first iden-
tifies the characteristic SHAPE patterns with a ‘leave-one-
out’ strategy; that is, the RNA being predicted is removed
from the benchmark dataset to avoid biased evaluation.
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Figure 1. SHAPELoop workflow. (A) SHAPELoop is established based on the characteristic patterns of selective 2′-hydroxyl acylation analyzed by primer
extension (SHAPE) for loop motifs of various types (hairpin, internal, and bulge) and lengths. The difference in SHAPE reactivities between any two
positions of each loop motif is tested, and pairwise comparison results with sufficient significance are defined as the characteristic SHAPE patterns. The
next two major steps of SHAPELoop are calculating penalties for loops in the guidance (minimum free energy, MFE) structure (B) and the Boltzmann-
weighted candidate ensemble (C). Discrepancies between the SHAPE reactivities of predicted loops and the characteristic SHAPE patterns are estimated
using a posterior probabilistic model and then used to calculate the penalties for predicted loops. (D) Loops in the guidance structure are divided into
‘good’ and ‘poor’ loops based on their penalties. (E) Candidates that retain all ‘good’ loops and have loops with lower penalties in ‘poor’ loop regions will
be selected as the predicted structures.

Second, SHAPELoop generates the guidance structure and
candidate ensemble. The guidance structure is the MFE
structure predicted by the RNAstructure-Fold algorithm
with SHAPE restraints (12). Meanwhile, 1000 candidates
are sampled using the partition and stochastic utilities in
RNAstructure, with both the Boltzmann conditional prob-
abilities (30) and SHAPE restraints considered. To score
loops in these structures rigorously, SHAPELoop employs
a probabilistic model to quantitatively estimate the degree
of difference between the SHAPE patterns of the predicted
loop and the characteristic SHAPE patterns, as detailed be-
low.

First, the true or false loops are defined as loops that are
either present or absent in the reference structures (the pairs
of bases mentioned below refer only to the bases involved
in characteristic SHAPE patterns). When the experimental
SHAPE difference between a pair of bases is given, a poste-
rior probabilistic model is used to calculate their probability
of belonging to a true loop, i.e. P(Wi,j = 1|Di,j), where Di,j
is the SHAPE difference between the pair of bases i and j,
and Wi,j is defined as the structure class, Wi,j ∈ (0,1) (1 =
the pair of bases resides in a true loop, 0 = the pair of bases
resides in a false loop). Similar to the models used in other
studies (22,36), P(Wi,j = 1|Di,j) can be calculated as below:

P( Wi, j = 1|Di, j )

= P(Di, j |Wi, j = 1) · P
(
Wi, j = 1

)

P(Di, j |Wi, j = 1) · P
(
Wi, j = 1

) + P(Di, j |Wi, j = 0) · P
(
Wi, j = 0

)

In this equation, P(W) is the prior probability that a pair
of bases belongs to a specific structure class, which can be
estimated as the fraction of pairs of bases residing in true or
false loops extracted from the candidate ensemble of bench-
mark RNAs. In our study, P(Wi,j = 1) = 0.549, P(Wi,j =
0) = 0.451. P(D|W) is the probability of observing a cer-
tain SHAPE difference D between the pair of bases, given a
structure class; this can be estimated from the SHAPE data
of reference structures through maximum likelihood fitting.
We used a normal-inverse Gaussian distribution to fit the
distribution of the SHAPE difference between pairs of bases
belonging to true loops (Wi,j = 1) and a Johnson’s SU distri-
bution for false loops (Wi,j = 0). Both distributions passed
the Kolmogorov–Smirnov test for goodness-of-fit. We used
the norminvgauss and johnsonsu functions from the python
module scipy.stats to fit these two distributions (Supplemen-
tary Figure S2). Inspired by the logarithm of posterior odds
used in other models (22,47), we defined a penalty score for

each predicted loop, denoted as
N∑

1
δi, j , where N is the total

number of pairs of bases that satisfy P(Wi,j = 1|Di,j) < 0.5,
and δi, j is calculated as below:

δi, j = − ln
P( Wi, j = 1|Di, j )

1 − P( Wi, j = 1|Di, j )

After obtaining the penalty scores, loops in the guidance
structure are divided into ‘good’, ‘fair’, and ‘poor’ groups
based on their penalties (‘good’: penalty = 0; ‘fair’: 0 <
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penalty ≤ 1 or characteristic SHAPE patterns are unavail-
able; ‘poor’: penalty > 1). In the last step, SHAPELoop se-
lects the candidate that satisfies the following criteria: (i) all
‘good’ loops are retained; (ii) there are no loops with penal-
ties higher than 1 in ‘fair’ loop regions; (iii) ‘poor’ loops
are replaced by loops with lower penalties; and (iv) the to-
tal penalty is the lowest among the candidates that meet the
three criteria mentioned above. If no candidate satisfies all
these four criteria, the one with the lowest penalty will be
selected. Please note that here we define a loop region as
the loop itself, along with the four preceding nucleotides
and the four following ones. The centroid structure can be
selected as the predicted secondary structure if suboptimal
structures are not desired (29,30).

MC-Fold candidate ensemble

MC-Fold was used to generate a candidate ensemble by
considering both non-canonical base pairs and SHAPE re-
straints (48). SHAPE reactivities were converted into prob-
abilities of being unpaired using a linear model included in
RNAfold (a slope of 0.68 and an intercept of 0.2) (49), and
then divided into ‘high reactivity’ (probability > 0.85) and
‘medium reactivity’ (0.65 < probability ≤ 0.85) groups ac-
cording to the input requirements of MC-Fold.

Robustness test

The effect of choosing a different guidance structure on the
prediction results was examined by substituting the MFE
structure with other suboptimal secondary structures pre-
dicted by the RNAstructure-Fold algorithm with SHAPE
restraints. We applied three statistical metrics to evaluate
the performance of these guidance structures: sensitivity,
positive predictive value (PPV), and Matthews correlation
coefficient (MCC). Sensitivity is defined as the fraction of
the base pairs in the native structures that are correctly
predicted, and PPV is defined as the fraction of the pre-
dicted base pairs that occur in the native structures. The
RNAstructure-scorer algorithm was used to calculate these
two metrics. MCC, which summarizes both sensitivity and
PPV, was calculated following a published method (33). The
robustness of SHAPELoop to noise in SHAPE data was
also inspected. To this end, we randomly selected increas-
ing fractions of data points and shuffled their SHAPE re-
activities to simulate noise in the SHAPE data. The guid-
ance structure and candidate ensemble were re-generated
using the shuffled SHAPE reactivities. This procedure was
repeated ten times for each noise level, and the average sen-
sitivity and PPV were calculated on benchmark RNAs each
time.

RESULTS

SHAPELoop identifies characteristic SHAPE patterns for
loop motifs

We identified the characteristic SHAPE patterns for loop
motifs to establish relationships between SHAPE reactivi-
ties and secondary structure features. To this end, we first
extracted hairpin, internal, and bulge loops from bench-
mark RNAs (12,37–39) (Supplementary Table S1) and clas-
sified them into different loop motifs based on their types

and lengths (Table 1). Then, for each loop motif, the dif-
ference in SHAPE reactivities between any two positions
(Di,j) was tested, and pairwise comparison results with suffi-
cient significance were defined as SHAPE patterns that were
characteristic of the specific loop motif (see Materials and
Methods). As a result, we obtained characteristic SHAPE
patterns for six hairpin loop motifs (4–9 nt), two bulge loop
motifs (2 nt and 5 nt), and six internal loop motifs (1 × 2 nt,
2 × 2 nt, 3 × 3 nt, 3 × 4 nt, 3 × 6 nt, and 5 × 6 nt) (Figure 2
and Supplementary Tables S3 and S4). The Di,j distributions
of these loop motifs are markedly more concentrated above
zero than those of false loops (i.e. loops extracted from the
candidate ensemble and not present in reference structures,
as defined in Materials and Methods) (Supplementary Fig-
ure S3), suggesting that these SHAPE patterns can be used
to evaluate loop motifs in predicted secondary structures.

To bolster the rationality of these characteristic SHAPE
patterns, we examined whether these patterns reflect spe-
cific 3D structural features of each loop motif. As SHAPE
reagents acylate the 2′-OH group of RNA ribose, we spec-
ulated that ribose puckering might be an underlying struc-
tural factor that dictates SHAPE patterns. The sugar con-
formations of nucleotides in an RNA A-form helix are dom-
inated by C3′-endo. In contrast, nucleotides with a C2′-endo
sugar pucker are often associated with greater conforma-
tional flexibility and local motions (50–53). The difference
in C3′-endo/C2′-endo sugar conformation between the two
positions involved in each characteristic SHAPE pattern
was subjected to the paired Wilcoxon signed-rank test. The
results show that, for most of the characteristic SHAPE pat-
terns, the trends of SHAPE reactivities are consistent with
the preferences of the C2′-endo sugar pucker (Figure 2, Sup-
plementary Figure S4, and Supplementary Tables S3 and
S4). In other words, residues with C2′-endo sugar confor-
mations are more likely to have high SHAPE reactivities.
This finding agrees with previous studies showing that nu-
cleotides with a C2′-endo sugar pucker have lower activa-
tion barriers for the 2′-OH acylation reaction (46) and are
more reactive to SHAPE reagents (44,45,54). These results
indicate that loops with the same loop motif share similar
structural features, particularly the sugar pucker preference
at specific positions. Therefore, it is both possible and rea-
sonable to extract characteristic SHAPE patterns for loop
motifs.

We further confirmed the reliability of the sugar con-
formation patterns by reviewing the available literature on
tetraloops, the most characterized loop motif. Among all
reported tetraloops, GNRA (55) and UNCG (56) (N =
any and R = G/A) are the most abundant species. The
second and third residues in a UNCG loop are C2′-endo,
whereas the first and fourth residues are C3′-endo (57–59).
Similarly, the second and third residues in GNRA loops fa-
vor a mixture of C3′-endo and C2′-endo, whereas the first
and fourth residues exist only in C3′-endo (57,60–63). In
addition to GNRA and UNCG, other tetraloops, such as
AGAA, UUUC, GGAG and CAAC, are also more likely
to adopt a C2′-endo conformation at the second and third
residues than the first residue (58,64–67). These published
results support the sugar conformation patterns that we
identified for the tetraloop motif and are also accordant
with their characteristic SHAPE patterns (the second and
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Figure 2. Characteristic SHAPE patterns for hairpin, internal, and bulge loop motifs. The averaged SHAPE reactivities at all positions of each loop motif
in benchmark RNAs are shown by orange lines. The proportions of the C2′-endo sugar pucker conformation (for RNAs in the non-redundant PDB list
with 4.0 Å cutoff) are shown by black lines. The characteristic SHAPE patterns of each loop motif are shown at the top of each subplot, with the residues
at the top of each table showing higher SHAPE reactivities than the residues to the left, and their P-values are indicated by asterisks (*0.01 < P-value �
0.05; **0.001 < P-value � 0.01; ***P-value � 0.001). The residue position is counted from the 5′ end of each loop motif. Detailed P-values and sample
sizes are listed in Supplementary Tables S3 and S4.

third positions are higher than the first position, as shown in
Figure 2). Additionally, we found that loops extracted from
benchmark RNAs were also highly abundant in RNA struc-
tures deposited in PDB (Supplementary Figures S5 and S6).
Collectively, these results demonstrate that the character-
istic SHAPE patterns identified on benchmark RNAs are
both representative and structurally explainable.

SHAPELoop effectively identifies loops that are falsely pre-
dicted

We developed an RNA secondary structure prediction tool,
SHAPELoop (see Materials and Methods), using the iden-
tified characteristic SHAPE patterns for loop motifs. Be-
fore evaluating SHAPELoop-predicted structures, we first
examined whether SHAPELoop could identify incorrectly
predicted loops in the guidance structures. Among the nine

short RNAs and 10 domains of the long E. coli 16S and 23S
rRNAs, SHAPELoop identified ‘poor’ loops (penalty > 1)
in the guidance structures of five short RNAs and eight do-
mains, and these ‘poor’ loops were indeed falsely predicted
(Figure 3 and Supplementary Figures S7 and S8). In con-
trast, the penalties for loops in native structures were much
lower. For the remaining RNAs and domains, falsely pre-
dicted loops that were not categorized as ‘poor’ loops gen-
erally lacked characteristic SHAPE patterns. For example,
the worst predicted loop region in the guidance structure
of E. coli 5S rRNA included a 1 × 1 nt internal loop and
a 3 nt hairpin loop, but no characteristic SHAPE patterns
were identified for these two loop motifs (Figure 3). Simi-
lar phenomena were observed on Saccharomyces cerevisiae
P546 domain (a 1 × 9 nt internal loop), E. coli 16S rRNA
domain 4 (a 3 nt hairpin loop and a three-way junction),
and E. coli 23S rRNA domain 6 (1 × 1 nt, 2 × 3 nt, and
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Figure 3. SHAPELoop efficiently identifies loops that are falsely predicted by RNAstructure and selects candidates with low penalties. Shown are the
native structures (N), RNAstructure-predicted guidance structures (G), and SHAPELoop-predicted structures (S) for six benchmark RNAs. The SHAPE
reactivities are shown on the structures using a coloring scheme. The penalties are shown as heat maps. The false-positive (incorrect) base pairs in the
guidance or SHAPELoop-predicted structures are shown by green lines, and false-negative (missing) base pairs are shown by orange lines. The remaining
benchmark RNAs are shown in Supplementary Figures S7 and S8.
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2 × 6 nt internal loops and a four-way junction). In sum-
mary, these results suggest that characteristic SHAPE pat-
terns identified by SHAPELoop can reliably detect falsely
predicted loops.

SHAPELoop significantly improves the accuracy of RNA
secondary structure prediction

Given the finding that characteristic SHAPE patterns are
useful for distinguishing falsely predicted loops from cor-
rectly predicted loops, we proceeded to examine whether
SHAPELoop could improve the accuracy of RNA sec-
ondary structure prediction. For the five short RNAs whose
‘poor’ loops were successfully identified by SHAPELoop,
the ‘poor’ loops were replaced by loops with lower penal-
ties, and the resulting structures were indeed more accu-
rate than the guidance structures (Figure 3, Supplemen-
tary Figure S7, and Supplementary Table S5). Of the 10
domains of E. coli 16S and 23S rRNAs, the accuracy of
six domains was improved by SHAPELoop, although with
only modest improvements in some domains (Supplemen-
tary Figure S8 and Supplementary Table S5). The inade-
quate sampling of candidates is one important reason for
these limited improvements. For example, falsely predicted
loops in the guidance structures of E. coli 23S rRNA do-
mains 3 and 5 were successfully identified by SHAPELoop;
however, these ‘poor’ loops were not replaced with ‘good’
ones in the final selected structures due to the absence of the
correct structure in the candidate ensemble (Supplementary
Figure S8). Unsurprisingly, SHAPELoop selected the cor-
rect structures after the reference structures were manually
added to the candidate ensemble. Another important rea-
son for the insufficient improvement is the lack of charac-
teristic SHAPE patterns for complex structural motifs. In-
deed, we observed worse predictions of loop motifs lack-
ing characteristic SHAPE patterns, particularly for multi-
branch loops (Supplementary Figure S9). Undoubtedly, the
increasing availability of SHAPE data for these complex
structural motifs will help to identify characteristic SHAPE
patterns for them and eventually improve the prediction ac-
curacy of long RNAs.

Notably, the characteristic SHAPE patterns are not lim-
ited to evaluations of structures containing only canonical
base pairs and G-U wobbles. In fact, if the penalty for one
loop is considerably high but no better candidates can be
selected, there is a possibility that the RNA forms some
non-canonical base pairs. Considering that most RNA sec-
ondary structure prediction tools, including RNAstructure,
cannot predict non-canonical base pairs, we did not take
these into account initially. However, for the Hepatitis C
virus IRES domain II, the loop penalties for its guidance
structures were much higher than for those of other RNAs,
and SHAPELoop failed to select structures with lower
penalties from the candidate ensemble; therefore, we spec-
ulated that this RNA might include non-canonical base
pairs. In line with this, we reconstructed the candidate en-
semble using MC-Fold (48) to include non-canonical base
pairs, and as a result, we found that SHAPELoop preferred
non-canonical base pairs to loops in the ‘poor’ loop re-
gions (Figure 3). Indeed, the native structure forms five
non-canonical base pairs in the same regions. These non-

canonical base pairs mimic the A-form dsRNA structure
and are essential for the activation of the protein kinase
PKR (68,69). These results demonstrate that the application
of SHAPELoop can be extended to predictions of struc-
tures with non-canonical base pairs.

Overall, SHAPELoop achieved the highest mean and
median sensitivity and PPV, compared with RNAstructure-
Fold (12), RNAstructure-MaxExpect (24), RME (22), and
SeqFold (29) (Figure 4A and Supplementary Table S5). The
difference between SHAPELoop and the second-best pre-
dictor RME was statistically significant in terms of sensitiv-
ity but not PPV (paired Wilcoxon signed-rank test P-value
= 0.024 and 0.188, respectively), and the improvement with
SHAPELoop relative to the guidance structures (predicted
by RNAstructure-Fold) was statistically significant in terms
of both sensitivity and PPV (P-value = 0.010 and 0.005, re-
spectively).

SHAPELoop is moderately robust to variations in guidance
structures and noise in SHAPE probing data

Given that SHAPELoop requires a guidance structure of
the RNA being predicted, we examined the robustness of
SHAPELoop against alternative guidance structures. In do-
ing so, we replaced the MFE structure with other struc-
tures, such as those with the 2nd, 3rd or 10th lowest free
energy. The mean sensitivity and PPV of the MFE structure
(without SHAPE restraints) on benchmark RNAs served as
the baseline values. As a result, the SHAPELoop-predicted
structures outperformed the guidance structures in all cases
(Figure 4B). To further explore the upper and lower limits of
SHAPELoop prediction, we calculated the MCC for each
structure predicted by RNAstructure-Fold (with SHAPE
restraints) and selected the highest or lowest MCC struc-
ture as the guidance structure for each benchmark RNA.
The results show that SHAPELoop-predicted structures re-
mained superior to the lowest-MCC guidance structures;
however, there was no improvement in comparison with the
highest-MCC guidance structures (Figure 4B), which could
be attributed to the inadequate representation of sampled
candidates and the lack of characteristic SHAPE patterns
for intricate loop motifs. In addition, noise in the SHAPE
probing data is another potential cause of the insufficient
improvement observed.

Next, we assessed the performance of SHAPELoop un-
der different levels of noise in SHAPE probing data. To in-
troduce noise into SHAPE data, we randomly selected in-
creasing fractions of data points and shuffled the SHAPE
reactivities at these data points (29). The guidance struc-
ture and candidate ensemble were both re-generated using
the shuffled SHAPE reactivities. The results show that the
mean sensitivity and PPV of SHAPELoop outperformed
RNAstructure-Fold when the fraction of noise was <20%,
and the performance of SHAPELoop prediction was evi-
dently inferior to that of RNAstructure-Fold when the noise
fraction increased to 40% (Figure 4C). In summary, the re-
sults indicate that SHAPELoop is moderately resistant to
noise in SHAPE probing data. Despite this, special care
needs to be taken to follow the standard SHAPE procedure,
thereby improving the quality of SHAPE data and making
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Figure 4. Performance comparison between SHAPELoop and other algorithms. (A) Boxplot comparison of the performances of SHAPELoop and five
other predictors on benchmark RNAs. The central marks indicate the medians, and the bottom and top edges of the boxes indicate the 25th and 75th
percentiles, respectively. The mean values are shown as ‘+’. (B) Comparison of the performances of SHAPELoop using different guidance structures on
benchmark RNAs. The guidance structures are replaced by structures of different energy rankings: ‘#1’, ‘#2’, ‘#3’, and ‘#10’ refer to the structure with
the first (MFE), second, third, and tenth lowest energy, respectively. ‘P’ (i.e. positive) indicates the RNAstructure-predicted candidates with the highest
Matthews correlation coefficient (MCC), and ‘N’ (i.e. negative) indicates the RNAstructure-predicted candidates with the lowest MCC. (C) The sensitivity
and positive predictive value (PPV) yielded by SHAPELoop and RNAstructure-Fold, with increasing fractions of SHAPE data replaced by randomized
values. Error bars in (B) and (C) represent the standard errors of the means.

the SHAPE pattern identification and structure modeling
procedures more reliable.

SHAPELoop penalty helps to identify pseudoknots in RNA
structures

The kissing loop, also called the loop-loop pseudoknot
(70,71), is one type of RNA tertiary interaction. The for-
mation of a kissing loop involves the transition of residue
states from single-stranded to paired. Given that the char-
acteristic SHAPE patterns were identified for loops that are
not engaged in pseudoknot interactions, in principle, penal-
ties calculated based on these SHAPE patterns can help us
to test hypotheses regarding kissing loops.

The first example is a study of the Murine musD transport
element (MTE) (72), in which a nonaloop and a 1 × 10 nt
internal loop form a kissing loop (Figure 5A). Since the low
SHAPE reactivities provided a clue about the formation of
a kissing loop, we intended to confirm this at a higher level
of confidence using SHAPELoop penalties, similar to the
other validation experiments conducted in that study. To

this end, we assessed the nonaloop in the wild-type (WT)
MTE. The SHAPE reactivities of two out of three residue
pairs (A8 and A11, G9 and A11) moderately contradicted
the characteristic SHAPE patterns (Figure 5A), suggesting
that this hairpin loop may be involved in a higher-level ar-
chitecture. We further validated this inference by examining
the SHAPELoop penalties for the nonaloop in four MTE
mutants: M1, M2, M3 and M4 (Figure 5B–E). The M1, M2,
and M3 mutants were designed to disrupt the kissing loop
architecture, and M4 was designed as an alternative form of
kissing loop interaction. As expected, the penalties for M1,
M2 and M3 were zero, whereas the penalty for M4 was 2.87.
Accordingly, we can draw a convincing conclusion that the
kissing loop formed in WT and M4 and was disrupted in
M1, M2 and M3. In addition, the penalties suggest that
the kissing loop interaction in M4 is stronger than that in
WT, given that the penalty for M4 is higher than that for
WT (2.87 versus 0.56). Unsurprisingly, these conclusions
are in agreement with the results of the oligonucleotide hy-
bridization experiments and biological function assays (72).
Specifically, the biological functions of M1, M2 and M3
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Figure 5. SHAPELoop identifies kissing loops in the musD transport element (MTE) and its mutants. Shown are loops and their SHAPE reactivities in
wild-type MTE (A) and its mutants M1 (B), M2 (C), M3 (D) and M4 (E). Kissing loops in wild-type MTE and M4 mutant are shown as dashed lines. The
SHAPE reactivities are shown on the structures using a coloring scheme, and penalties are shown as heat maps. Mutated residues are marked with black
circles. The residues are renumbered compared to the original paper (72).

were severely impaired, whereas the function of M4 was en-
hanced compared to WT. Overall, these results indicate that
SHAPELoop penalties can help researchers to test pseudo-
knots effectively and conveniently.

Similarly, we also examined SHAPELoop penalties for a
tetraloop in the WT and mutant forms of Peach latent mo-
saic viroid (PLMVd.282) (73). Consistent with the conclu-
sion of the original study, the penalty for the WT was higher
than the penalty for the mutant (2.18 versus 0), supporting
the conclusion that the kissing loop forms in the WT but not
in the mutant (Supplementary Figure S10). Together, these
results demonstrate that the characteristic SHAPE patterns
identified by SHAPELoop are reliable, and the penalties
calculated based on these patterns can be combined with
mutagenesis experiments to credibly identify pseudoknots.

SHAPELoop penalty is capable of capturing rearrangements
of RNA secondary structures

Multivalent cations play an essential role in RNA struc-
tural stability (74). For instance, Mg2+ ions facilitate com-
plex tertiary structures and folding arrangements that al-
low RNA molecules to perform various biological func-
tions (75). Thus, we proceeded to investigate the ability

of SHAPELoop penalties to recognize alternative RNA
folding. To this end, we first evaluated the performance of
SHAPELoop on the P5c subdomain of Tetrahymena ther-
mophila group I intron ribozyme. The NMR and crystal-
lography studies indicate that the P5c subdomain forms a
tetraloop (Figure 6A) in the absence of Mg2+, and a hep-
taloop (Figure 6B) upon addition of Mg2+ (32,76,77). How-
ever, the RNAstructure-Fold algorithm predicted the same
tetraloop structure when incorporating SHAPE data ac-
quired in the absence or presence of Mg2+. We next exam-
ined the penalties for these two secondary structures to de-
termine whether SHAPELoop could provide evidence of
this Mg2+-induced secondary structural change. Figure 6A
shows that, in the absence of Mg2+, the penalties for the
tetraloop and the heptaloop were 0 and 0.72, respectively,
indicating that the P5c subdomain folds into a tetraloop un-
der this condition. On the contrary, once Mg2+ was added,
the tetraloop penalty was higher than the heptaloop penalty
(2.45 versus 0) (Figure 6B), suggesting the formation of a
heptaloop in the presence of Mg2+. Additional evidence was
gained from the penalties for the U30C mutant, which was
designed to stabilize the tetraloop, and the G39A mutant,
which was designed to stabilize the heptaloop. Figure 6C
and D shows that the secondary structures with zero penal-
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Figure 6. SHAPELoop accurately identifies the structural switch in the P5c subdomain. The structural switch between the tetraloop and the heptaloop
is shown. The P5c subdomain folds into the tetraloop form in the absence of Mg2+ (A) and the heptaloop form in the presence of Mg2+ (B). (C) The
U30C mutant, which is designed to stabilize the tetraloop. (D) The G39A mutant, which is designed to stabilize the heptaloop. The SHAPE reactivities
are shown on the structures using a coloring scheme, and penalties are shown as heat maps. Mutated residues are marked with black circles. The residues
are renumbered compared to the original paper (76).

ties were indeed the actual structures for the two mutants.
Overall, these results provide valuable insights into the ap-
plication of characteristic SHAPE patterns in identifying
local structural changes in RNA.

In addition to local structural switches, SHAPELoop rec-
ognizes rearrangements of global structures. Figure 7 shows
an example of the structural rearrangement between a pseu-
doknot form and a hairpin-only form for a 63 nt RNA.
This rearrangement was first discovered in the 3′ splice site
of influenza A segment 8 mRNA by several NMR stud-
ies (78,79). Turner and colleagues later proposed that this
structural change was also present in influenza A segment
7 mRNA (Figure 7A and B), which was further proven us-
ing a series of enzymatic (RNase T1, A and If) and chemical
(DMS, SHAPE, CMCT, DEPC and Pb2+) probing methods
(80). Unfortunately, neither RNAstructure-Fold nor more
specialized tools, such as ProbKnot (81) or ShapeKnots
(82), could predict this structural switch. Therefore, in an

attempt to decipher more structural information encoded
in SHAPE data, we calculated SHAPELoop penalties for
a distinct octaloop in the pseudoknot structure (PK) and
a distinct hexaloop in the hairpin structure (HP). Figure
7A shows that, under a folding condition that shifted the
equilibrium to the PK, the penalty for the octaloop was
lower than that for the hexaloop (0.28 versus 1.00). Con-
versely, when another folding condition inverted the equi-
librium to the HP, the penalty for the octaloop was higher
than that for the hexaloop (1.47 versus 0.19) (Figure 7B). Of
note, although the structure with the lower SHAPELoop
penalty was the actual dominant structure for each fold-
ing condition, the penalty was not zero. This imperfect sit-
uation is reasonable because the predicted free energies of
these two structures are similar (PK: −16.3 kcal/mol; HP:
−16.9 kcal/mol) (80); thus, the predicted equilibrium con-
stant is not far from 1, which means that the folding con-
ditions may not push the equilibrium completely to one of
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Figure 7. SHAPELoop identifies the structural switch in the 3′ splice site of influenza A segment 7 mRNA. Shown is the 63 nt structure in the 3′ splice
site of influenza A segment 7 mRNA. This RNA switches between a pseudoknot structure (PK) (A) and a hairpin structure (HP) (B), with a predicted
equilibrium constant close to 1. (C) The hairpin mutant (HPmut) folds completely into a hairpin structure. A splicing enhancer-binding site is marked with
arrows. It folds into a distinct octaloop in PK and a distinct hexaloop in HP and HPmut. SHAPE reactivities are shown on structures using a coloring
scheme, and penalties are shown as heat maps. Mutated residues are marked with black circles.

these two structures. This explanation was proven by using
an HP mutant (HPmut), to which specific mutations were
introduced to inhibit pseudoknot folding (Figure 7C). For
the HPmut, the penalty for the hexaloop was zero, whereas
the penalty for the octaloop was 1.20. Taken together, the
above results demonstrate that SHAPELoop is an effective
and convenient tool for detecting local or global structural
rearrangements under different folding conditions.

DISCUSSION

In this work, we identified characteristic SHAPE patterns
for a variety of loop motifs and developed a new method,
SHAPELoop, to refine the structures predicted by existing
thermodynamic folding models. Unlike models that con-
sider only SHAPE-derived pseudo-energy for base pairing,
SHAPELoop evaluates SHAPE patterns for loop motifs
based on a posterior probabilistic model. Although RNAsc
also evaluates residues in loop regions, it converts SHAPE
reactivities into energy-tuning parameters, so the penal-
ties imposed by loop regions can be easily overwhelmed
by penalties from other regions (26). PatteRNA employs
a GMM-HMM model to search for putative loop mo-
tifs based on given SHAPE data (36); however, this model
considers only the influence between adjacent-neighbor

residues, leading to an unsatisfactory prediction accuracy
compared to SHAPELoop (Supplementary Figure S11).

SHAPELoop provides a novel insight into the interpre-
tation of SHAPE probing data. In addition to improv-
ing the prediction accuracy of RNA secondary structures,
it can also help to identify RNA secondary structural
changes such as the local or global structural rearrange-
ments, as demonstrated by several examples. The applica-
tion of SHAPELoop to reference RNAs yielded the highest
mean and median sensitivity and PPV values, compared to
those generated using RNAstructure-Fold, RNAstructure-
MaxExpect, RME, and SeqFold. However, the predictions
of some RNAs exhibited little or no improvement. For these
RNAs, the insufficient improvements are partially due to
an inadequate representation of Boltzmann-weighted struc-
ture sampling (28,30). In other words, the candidate en-
semble did not include the real structure. Alternatively, one
can manually add structures of interest to the Boltzmann-
weighted candidate ensemble, which may be useful when
prior knowledge is available. Another major obstacle is the
lack of characteristic SHAPE patterns for complex struc-
tural motifs, particularly for multi-branch loops (Supple-
mentary Figure S9). These results underscore the neces-
sity of identifying characteristic SHAPE patterns for more
structural motifs.
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SHAPELoop is moderately robust to noise in SHAPE
data. Nonetheless, SHAPE experiments should be con-
ducted with special care to maximize the data quality, for
example, by strictly following standard protocols to avoid
technical noise that may influence the outcome of structure
modeling (10). Users can also integrate their benchmark
datasets into SHAPELoop so that more SHAPE patterns
will be reliably identified, especially for internal and multi-
branch loops whose occurrences are rather scant in our
benchmark RNA dataset. Accumulation of data may also
help us understand why some loops deviate from the charac-
teristic SHAPE patterns. We attempted to explain such de-
viations by comparing the conformations of tetraloops with
the classic UUCG and GAAA loops (56,61) and found that
the deviations could be partially due to experimental uncer-
tainties; however, no further conclusions can be reached due
to the paucity of data (Supplementary Figure S12).

The mechanism of SHAPE modification has attracted
considerable interest, and several structure factors were
shown to be linked to SHAPE reactivities (42,44–46,54).
In this study, we examined the sugar conformations of
loops extracted from non-redundant RNA structures from
PDB and found that C2′-endo is overrepresented in residues
with high SHAPE reactivities. Nevertheless, some charac-
teristic SHAPE patterns are inconsistent with this sugar
pucker preference, which might be caused by the incorrect
assignment of the sugar pucker. Further investigations into
SHAPE modifications will help us to better understand the
identified SHAPE patterns.

High-throughput sequencing methods such as SHAPE-
MaP (16,17) and icSHAPE (18) are widely used to mea-
sure the structures of whole transcriptomes, especially for
in-cell analyses. The result of applying SHAPELoop to
one SHAPE-MaP dataset (17) showed that this approach
also improved prediction accuracy by integrating high-
throughput SHAPE data (Supplementary Figure S13 and
Supplementary Table S6). However, next-generation se-
quencing data are usually more vulnerable to uneven read
coverage and noise arising from the complicated experimen-
tal procedure. Moreover, RNAs isolated from cells often
bear various modifications such as m6A, which may induce
local or global structural changes of RNAs (18,83) and af-
fect the primer extension procedure in SHAPE experiments
(10); therefore, users should select the optimal SHAPE ex-
perimental method according to their particular interests of
the study.
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