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ABSTRACT

Assessing the causal tissues of human complex
diseases is important for the prioritization of trait-
associated genetic variants. Yet, the biological un-
derpinnings of trait-associated variants are ex-
tremely difficult to infer due to statistical noise in
genome-wide association studies (GWAS), and be-
cause >90% of genetic variants from GWAS are
located in non-coding regions. Here, we collected
the largest human epigenomic map from ENCODE
and Roadmap consortia and implemented a deep-
learning-based convolutional neural network (CNN)
model to predict the regulatory roles of genetic vari-
ants across a comprehensive list of epigenomic mod-
ifications. Our model, called DeepFun, was built on
DNA accessibility maps, histone modification marks,
and transcription factors. DeepFun can systemati-
cally assess the impact of non-coding variants in
the most functional elements with tissue or cell-type
specificity, even for rare variants or de novo muta-
tions. By applying this model, we prioritized trait-
associated loci for 51 publicly-available GWAS stud-
ies. We demonstrated that CNN-based analyses on
dense and high-resolution epigenomic annotations
can refine important GWAS associations in order
to identify regulatory loci from background signals,
which yield novel insights for better understanding
the molecular basis of human complex disease. We
anticipate our approaches will become routine in
GWAS downstream analysis and non-coding variant
evaluation.

INTRODUCTION

In the past 15 years, genome-wide association studies
(GWAS) have identified thousands of susceptibility vari-
ants associated with human complex diseases and traits
(1,2). It remains an open challenge to identify true func-
tional variants (e.g. causal variants) from background sig-
nals (3). In addition, >90% of the genetic variants identi-
fied from GWAS lie outside of protein-coding regions (4)
and some are in gene deserts (5), implicating that they influ-
ence disease risk through transcriptional regulation mech-
anisms (6). However, the distinct transcription regulatory
functions across different tissues and cell types have ag-
gravated the challenge of variant prioritization and inter-
pretation of variant effects on regulatory elements (7). In-
creasing evidence shows that disease-associated variants are
likely to perturb genes and regulatory modules within spe-
cific disease-relevant tissues or cell types (8). Previous stud-
ies have revealed that risk variants of psychiatric diseases
tend to be in neuron-specific regulatory regions (9–11).
For example, schizophrenia (SCZ) risk variants rs12293670
and rs2514218 were attributed to two genes specifically ex-
pressed in brain: NRGN and DRD2 (12); ADHD index vari-
ants rs28452470 and rs2243638 were related to two brain-
specifically-expressed genes: CADPS2 and RNF219-AS1
(13). Furthermore, variants of immune-related traits, such
as inflammatory bowel disease (IBD) risk variant rs653178
has trans-eQTL effects on two genes specifically expressed
in immune cells: TAGAP and STAT1 (14). To elucidate the
potential molecular functions of non-coding variants and
to derive biological insights from a vast array of GWAS sig-
nals, there is a pressing need to prioritize variants in a tissue
or cell-type specific manner (15).

To help annotate non-coding regions of the genome,
large-scale experimental mapping of epigenomic modi-
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fications have been conducted by several large consor-
tia, including the ENCyclopedia of DNA Elements (EN-
CODE) (16) and Roadmap Epigenomics Project (17). These
epigenomic maps provide valuable resources for prioritiz-
ing disease-associated variants by considering their over-
lap with regulatory elements enriched in disease-associated
signals (18,19). Moreover, convolutional neural network
(CNN) models for studying epigenomic features are aris-
ing as a dominant approach to investigate regulatory mo-
tifs within the genomic context. A multilayer CNN network
is well suited to capture high-level information (20). Cur-
rently, there are lots of CNN-based frameworks for priori-
tizing non-coding genomic variants, such as DeepBind (20),
DeepSEA (21), Basset (22), DanQ (23), Basenji (24), De-
Fine (7), ExPecto (25) and Seqweaver (26). CNN models
offer computational predictions of the likely regulatory ef-
fects of genomic variation based on disruption or creation
of regulatory motifs discovered by the convolutional fil-
ters. These computational predictions thereby facilitate the
downstream prediction of chromatin accessibility and reg-
ulatory modifications (21,22).

While CNN models provide an attractive framework for
variant prioritization, there are currently still several limita-
tions to improve upon. Firstly, their models are still based
on incomplete epigenomic annotations, where many marks
miss the annotation of greatly important disease-relevant
tissues (21–23). Secondly, they underestimated the complex-
ity of chromatin features in epigenome. It is reported that
80% of the genome is comprised of biochemically func-
tional regions (16), while most previous models only take
30% genomic regions as epigenomic active sites, due to
limited chromatin features collection (21–23). Thirdly, the
quality of reference epigenomes is highly variable. Refer-
ence epigenomes of previous models typically consider only
a small number of replicates, making them lack statistical
power and sensitive to experimental noise.

To address these fundamental issues, we overcome these
limitations and present a dense epigenomic map of the hu-
man epigenome by incorporating 7879 datasets across 225
tissues/cell lines and 322 marks (including transcription
factors (TFs)) from ENCODE (16) and Roadmap (17) con-
sortia. These chromatin feature annotations greatly surpass
previous epigenomic maps in scope, scale, and coverage of
biological space. Moreover, we trained a CNN-based deep
learning model, DeepFun, on a broad collection of genome-
wide epigenomic profiles to capture chromatin regulatory
features. We use different genetic variant datasets to as-
sess the performance at single-base resolution, demonstrat-
ing that DeepFun can systematically study the impact of
a variant with tissue or cell-type specificity. Lastly, we ap-
ply the DeepFun model to systematically prioritize trait-
associated regulatory loci from 51 publicly-available GWAS
studies. Then we recognized and compared their potential
associated tissues (27). Our results demonstrated that re-
fined GWAS regulatory loci can provide a lot of novel in-
sights into trait-tissue relationships. We anticipate the CNN
model on dense epigenomic maps will be a valuable ap-
proach for both gene-regulatory studies and disease studies
seeking to elucidate the molecular basis of complex disor-
ders.

MATERIALS AND METHODS

Primary chromatin feature collection and processing

The DeepFun framework expanded 7879 chromatin fea-
tures from ENCODE Project Consortium and Roadmap
Epigenomics Consortium (6 May 2019), including 1548
DNase-seq datasets and 6331 epigenomic ChIP-seq
datasets. These ChIP-seq datasets included 1536 histone
modification marks and 4795 TFs binding profiles. Ac-
cording to their functional category and completeness,
we classified these assays into two tiers. Tier 1 assays (18
marks, 3451 total experiments): DNase-seq, H3K14ac,
H3K18ac, H3K23ac, H3K23me2, H3K27ac, H3K27me3,
H3K36me3, H3K4ac, H3K4me1, H3K4me2, H3K4me3,
H3K79me1, H3K79me2, H3K9ac, H3K9me2, H3K9me3
and CTCF; Tier 2 assays (305 marks, 4428 total experi-
ments): POLR2A, H2AFZ, EP300, RAD21 and all others
transcription factors. We removed poor quality chromatin
profiles and kept only profiles with appropriately matched
ChIP-seq controls. For all datasets, the uniformly processed
them with the same computational pipelines using HotSpot
algorithm with 1% false-discovery rate (22). We used the
coordinates of the optimal peaks sets produced with the
Irreproducible Discovery Rate (IDR) procedure for further
analysis. Any peaks within 1000 bp to rRNA, snRNA,
snoRNA and tRNA genes were removed to avoid confu-
sion based on GENCODE annotation (26). Each dataset
was assigned a unique accession ID (Supplementary Table
S1).

DeepFun input feature encoding

The training, validation and test datasets for the convolu-
tional neural network training were created analogously to
the approach used in Basset (22). Briefly, we created 1000 bp
genomic intervals to all narrow peaks by extending 500 bp
on each side of the midpoint of the peak. We then greed-
ily merged peaks based on their distance to an adjacent
peak, until no peaks overlapped by >200 bp. The center
of the merged peak was determined as a weighted average
of the midpoints of the merged peaks from individual pro-
files, these peaks were regarded as potential epigenomic ac-
tive sites. Finally, we use BEDTools software (v2.26.0) (28)
mapping coordinates of epigenomic active sites against the
human reference genome build version hg19.

We classified these assays into two separately model
according to their functional category and completeness,
these resulted in 2 298 761 epigenomic active sites with
assigned presence (positive dataset) or absence (negative
dataset) across 3451 features in model A, and 2 400 512
epigenomic active sites with 4428 features in model B. Sub-
sequently, we encoded these epigenomic active sites as one-
hot code position weight matrix (PWM), and mapping these
sequences into a four-row binary matrix, corresponding A,
C, G and T at each position. Moreover, for each 1000 bp
sequence, we created an accompanying binary vector de-
noting which of these chromatin features showed a sig-
nal peak overlapping with sequence. To investigate histone
marks and TFs specificity on human epigenome, we con-
ducted Uniform Manifold Approximation and Projection
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(UMAP) dimension reduction analysis (29) on both epige-
nomic active sites binary vector matrix.

CNN model training

Deep convolutional network is a type of multilayer neural
network that is specifically parameterized to take advantage
of known spatial structure (30). We applied an extended ver-
sion of the Basset model (22) with default three-layer ar-
chitecture to learn parameters, implemented in the Torch7
framework (http://torch.ch). We trained the CNN model
with different hyperparameter settings. To reach the appro-
priate performance of the model, we applied stochastic gra-
dient descent to learn all model parameters, including those
representing the number of convolutional filters, dimension
of convolutional filters, dimension of pool size and learning
rate, by using RMSprop updates on minibatches (31). Sim-
ply, the network computes predictions for small batches of
sequences during training. After we compare the difference
between predicted and real experiment measurement (loss
function), then, model parameters will be updated through
back propagation algorithm. Model with the smallest loss
value in the validation set was saved as best model.

After hyperparameter optimization, we applied 300 con-
volutional filters (width 19) scans across all sequences
PWM. After convolving the PWM of the sequence, the rec-
tified linear (ReLU) nonlinearity active function was ap-
plied connected by a maximum ‘pool’ layer (pool width 3,
pad width 18) were incorporated to DeepFun model. The
second and third convolutional layers were operated on the
output of the prior layer. Therefore, they were capable of
capturing more complex patterns in larger spatial ranges.
After three convolutional layers, two fully connected arti-
ficial neural network hidden layers with 30% dropout rate
were applied to avoid over fitting. Finally, a fully connected
sigmoid transformation layer is applied to represent the pre-
dicted accessibility probability. Since DNase-seq and ChIP-
seq are not strand specific-assays, the reverse complement
sequence gives the same epigenetic signal as the original
sequence. We augmented the dataset by including the re-
verse complement of each example doubles the number of
sequence-signal pairs (32).

From total epigenomic active sites in both models, we
randomly selected 80% for training and another 10% for
validation, leaving 10% remain epigenomic active sites for
testing. Training and testing sets were split strictly with-
out any overlapping. We trained these sequence features
across all chromatin profile predictors with a multitask
model. We used the area under receiver operating charac-
teristic (AUC) to evaluate the performance on validation
and testing sets. The predicted accessible probability for
each profile was computed separately. The network train-
ing was stopped until the loss in the validation set did not
decrease within 12 successive epochs of Bayesian optimiza-
tion. Each epoch of training takes about 8 h under NVIDIA
Tesla V100 32GB GPU computing accelerator with Intel
(R) Xeon (R) Platinum 8180 CPU.

Capture first layer convolutional filters to functional motifs

CNN model could recognize specific sequence motifs to
project this recognition through after iterating over many

batches of training data. To assess the impact and contri-
bution of each filter, we investigated each filter informa-
tion content (IC) base on previous studies (22,25). Simply,
we convert initial convolutional layer learned filters into
probabilistic PWMs. Then, we apply TomTom (v4.12.0)
software (33) mapping learned filters to potential human
TF binding motifs download from CIS-BP database (34).
The information content for a motif was defined as IC =
−∑

i, j
p log2 (p j ) + ∑

i, j
m j log2 (mi j ), where m is the 19 × 4

matrix of nucleotide probabilities for the motif, and p is
the length four array of background nucleotide probabili-
ties. We use FDR value 0.1 as threshold. When a given fil-
ter showed high similarity to multiple motifs, only the best
match motif was selected for downstream analysis. We visu-
alized motifs using ggseqlogo package (35).

To quantify each filter’s influence in the initial convolu-
tion layer, we nullified each filter from the model by setting
all output from the filter to its mean output over all nu-
cleotides in the test set. Thereby, all information from an
initial filter was obstructed when passing forward through
the network. The new predicted accessibility in each pro-
file was compared to the originally predicted accessibility to
represent the influence of the filter. As disagreement influ-
ence of the same filter across different profiles, we calculated
each filter’s global influence as this vector’s sum of squares
(22). These procedures were repeated 10 times and the aver-
age values were calculated for downstream analysis.

To uncover the correlation of each filter’s influence across
different measurements, we collected matched RNA-seq ex-
pression profiles from ENCODE and consortia (16), re-
sulting in a total of 138 RNA-seq samples across 44 tis-
sues. For 108 filters in model A were captured by CIS-BP
database TF binding motifs, we calculate the Pearson cor-
relation coefficient (PCC) between each convolution filter’s
influence score and corresponding filter captured gene ex-
pression level across different measurements. We used two
thresholds grouping filters information content for a motif:
high confident captured filters, FDRTomTom < 10−4, and low
confident captured filters, 10−4 < FDRTomTom < 0.1.

Application of CNN model to prioritize regulatory variants

The DeepFun model is designed to predict the functional
impacts of sequence alterations at single-nucleotide reso-
lution. For each variant, DeepFun will consider variant
nearby 1000 bp region context information, and then pre-
dict the ‘activity’ probability of sequences contain refer-
ence allele or alternative allele. Here, the ‘activity’ means
the accessibility or binding affinity for DNase-seq or his-
tone modifications and TFs, respectively. To evaluate the
impact of variant, we implemented previous methods de-
fined by SNP Activity Difference (SAD): Alt – Ref, where
Ref and Alt represent the predicted activity probability for
the reference allele/original sequence and the alternative
allele/mutated sequence, respectively. Both bases predict ac-
tivity probability range from 0 to 1. Variants have a higher
positive SAD indicates that the alternative allele increases
the epigenetic signal compared to the reference allele, while
negative value indicates decrease the epigenetic signal. Al-
though DeepFun models are trained jointly across a large

http://torch.ch
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dataset, each variant predicted functional score is indepen-
dent as it is based on a single experiment assay.

Functional validation of regulatory variants

We used two independent test datasets to evaluate the non-
coding variants functional differentiating (pathogenic vs.
benign variants, functional vs. nonfunctional), included 442
778 variants from the ClinVar database (36) downloaded
on 15 May 2019, and 135 435 Autism de novo mutations
from Simons Simplex Collection (SSC) cohort (37) down-
loaded on 18 November 2019. For ClinVar test variants, we
grouped all non-coding variants into benign (true negatives,
variants labeled as ‘benign’ or ‘likely benign’), pathogenic
(true positives, variants labeled as ‘pathogenic’ or ‘likely
pathogenic’) and uncertain significance (control). For SSC
cohort test variants, we grouped all non-coding variants
into unaffected and affected siblings. All test variants were
submitted to DeepFun model to calculate their SAD score
under individual profile. Variants were then stratified based
on variant consequence (i.e. intergenic, 5′ and 3′ UTR, etc.).
Based on research purpose difference, their average abso-
lute SAD scores on target profiles were firstly calculated,
followed by one side Wilcoxon rank-sum test.

Canonical correspondence analysis

Canonical correspondence analysis (CCA) is a multivari-
ate technique to illuminate the relationship between two
sets of explanatory variables (38). The CCA results pre-
sented in this work is conducted by the R package CCA (39).
Specifically, CCA projects the two variables onto a low-
dimensional space where these variables are maximally cor-
related. In our case, we used CCA to investigate schizophre-
nia associated variants of functional impact scores versus
tissue specificity.

Let X be a N × P matrix of SAD scores of N vari-
ants over P chromatin profiles. Similarly, let Y denote an
N × T matrix recording the source of each profile over T
tissues. Let a1 = (a1

1; · · ·; a1
p)Tand b1 = (b1

1; · · ·; b1
t )T denote

the two basis vectors. Then the projections of the two ex-
planatory variables onto these basis vectors are given by:

U1 = Xa1 = a1
1 X[,1] + a1

2 X[,2] + · · · + a1
p Xp

and V1 = Yb1 = b1
1Y1 + b1

2Y2 + · · · + b1
t Yt.

CCA seeks to find two vectors (a and b) to maximize the
correlation ρ = cor(aT X, bTY). Thus, the correlations be-
tween two projections are mutually maximized as follows:

ρ1 = cor
(
U1, V1) = max

a, b
[cor (Xa, Yb)]

where the derived linear projections U1 and V1 are the first
canonical components and ρ1 refers to the canonical corre-
lation between the first components. Note that the succes-
sively computed canonical correlations decrease by nature,
i.e. ρ1 ≥ ρ2 ≥ . . . ≥ ρmin (C,R).

Compiling trait-associated loci from GWAS data

We expanded 51 publicly-available GWAS studies based
on our previous study (40). These GWAS studies span a

wide range of phenotype measurements and can be cate-
gorized into several groups. For each GWAS trait, we fil-
tered significant associated SNPs with chi-squared P-value
< 10−3, defined as lead causal SNPs. Additionally, we ap-
plied DeepFun model to predict their potential regulatory
effects. Since the mean and median SAD across all assays
were very close to zero, we defined those SNPs with a max-
imum SAD score greater than 0.1 (or less than –0.1) as reg-
ulatory loci. To better examine these SNPs with genetic as-
sociation, we employed Pascal software (41) mapped them
to gene level, if these SNPs were located by the location
within a range of 50 kb upstream or downstream of cor-
responding gene transcription start sites by taking into ac-
count of LD, gene length, and SNP density information.
Any genes with at least one regulatory loci (max SAD > 0.1)
were regarded as regulatory trait-associated genes (TAGs),
while TAGs without regulatory loci were regarded as non-
regulatory TAGs.

For both regulatory and non-regulatory TAGs, we com-
pared their pLI scores, which downloaded from the Exome
Aggregation Consortium (ExAC) project (42). Simply, the
ExAC pLI score indicates the probability that a gene is in-
tolerant to a loss of function (LoF) mutation. Genes with
high pLI scores are LoF intolerant, whereby genes with low
pLI scores are LoF tolerant. To assess whether regulatory
or non-regulatory TAGs with higher chance overlap with
LoF intolerant genes (ExAC pLI > 0.9) than expectation,
we build a dichotomous 2 × 2 contingency table, followed
by Fisher’s exact test analysis.

Based on our previous study, we found most TAGs show
strong tissue specific associations (15,27). However, there
are still many traits that could not recapture biological as-
sociated tissue (15). To further investigate the association
between TAGs containing regulatory loci and tissue-specific
expressed genes, we conduct tissue specific enrichment anal-
ysis (TSEA) for regulatory and non-regulatory TAGs by us-
ing deTS software GTEx panel (27). Genes with top 5%
highest t-statistics were regarded as tissue-specific expressed
genes.

RESULTS

Overview of chromatin features in epigenome compendium

With the increasing availability of epigenetics measure-
ments, we curated comprehensive chromatin features from
ENCODE and Roadmap (Supplementary Table S1), span-
ning 1548 DNase-seq (accessible chromatin), 1536 histone
modification marks and 4795 TFs binding profiles. Among
these features, 2371 were in different tissue types, while the
remaining 5508 were in different primary cells or cell lines.
These features were summarized in Figure 1A, B. Accord-
ing to the functional category and completeness, we clas-
sified these assays into two tiers (Figure 1C). Tier 1 assays
(model A) included 3451 profiles [DNase-seq (1548), all hi-
stone marks (1536) and TF CTCF (367)]. Most marks in
model A have at least 50 epigenomic measurements across
different tissues or cell lines, which provides the user with
the opportunity to further study the impact of genetic vari-
ants in a tissue-specific or cell-specific manner. Tier 2 as-
says (model B) consisted of 4428 measurements across 305
TFs in 66 cell lines, providing the opportunity to extensively
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Figure 1. Data process and framework for DeepFun model construction. (A) Summary of epigenomic features: DNA accessibility, histone marks and
transcription factors. (B) Summary of epigenomic features of the top 20 most abundant transcription factors. (C) Data process pipeline. (D) Framework
of DeepFun, a tissue and cell type specific, sequence-based convolutional neural network (CNN) model.

investigate the impact of variants to TF binding affinity
in a cell-specific fashion. After the removal of technical or
biological replicates, DeepFun incorporates a total of 117
DNase-seq, 360 histone modification, and 795 TF binding
profiles, representing the true diversity of functional predic-
tions. More detailed information for tier 1 and 2 assays can
be found in material and methods.

DeepFun achieved broader biological space and better perfor-
mance

For both datasets in tier 1 and 2, the downloaded annota-
tion for peaks were created as 1000 bp genomic intervals
to all narrow peaks by extending 500 bp on each side of
the midpoint of the peak (Details in methods), according
to basset configuration, respectively (22). These genomic in-
tervals were regarded as epigenomic active sites for down-
stream analysis. Overall, models A (model B) produced a
set of 2 298 761 (2 400 512) epigenomic active sites with a
median of 3.3% (10.2%) peaks present in all measurements.
A total of 73.7% (model A) and 76.9% (model B) of hu-
man genome regions are bounded by at least one chromatin
measurement (Supplementary Table S2). Notably, results
from both model A and B are very close to the ENCODE
reported estimation, which states that 80% of the human
genome is comprised of biochemically active regions (16).

As illustrated in Figure 1D, our framework and the ar-
chitecture of DeepFun models epigenomic active sites as
present (label ‘1’) versus absent (label ‘0’). For each epige-
nomic active site, we firstly transformed the corresponding
sequence fragments into a position weight matrix (PWM),
along with binary vectors representing presence (1) or ab-
sence (0) of the site in each chromatin feature. Both datasets

were regarded as input data of the DeepFun model. Then,
the CNN model applies hundreds of convolutional filters
to search for motifs along the sequence of epigenomic ac-
tive sites. This is followed by nonlinear rectifier operation
and maximum pooling at multiple resolutions to predict
the probability of sequence accessibility in a given profile.
All convolutional filters are initialized randomly and then
optimized along with the training progress. We trained our
models using different parameters in order to improve ro-
bustness. For each of them, we applied early stop training to
avoid overfitting in the case when the loss in the validation
set did not decrease within 12 successive epochs. Overall,
these models were terminated between 18 to 30 epochs. Our
results showed that the genomic interval in 1000 bp gave
the best performance. However, changing the number of fil-
ters or changing the filter width did not produce a substan-
tial change in prediction accuracy. Therefore, we applied the
same hyper-parameters of the original Basset application
(22) for the final model in DeepFun.

To synthesize model sensitivity and specificity, we as-
sessed DeepFun performance by using the area under re-
ceiver operating characteristic (AUC), which plots the false-
positive rate versus the true-positive rate. By this measure-
ment, we show DeepFun is more accurate, achieving a me-
dian AUC of 0.933 over all DNase-seq assays (Figure 2B,
details AUC for each feature were listed in Supplemen-
tary Table S1), compared to 0.895 for original Basset result
(22). Simultaneously, our model achieves a mean AUC of
0.872 over all histone mark assays, compared to 0.856 for
DeepSEA (21). Although DeepSEA and DeepFun mod-
els are different in a number of ways, e.g. not exact same
data, the improved AUC suggested that DeepFun may ben-
efit from a dense epigenomic map of the human epigenome
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Figure 2. Evaluation of DeepFun model across different experimental targets. (A) Overview of histone mark associated regions. (B) Evaluaton of model
performance. Each violin represents the AUC value of the evaluation for a specific DNase-seq or histone mark feature. (C, D). Uniform manifold approxi-
mation and projection (UMAP) analysis of tissue and cell type specificity for the epigenomic profiles for (C) DNA accessibility and histone mark, and (D)
transcription factor.

(22). On the other hand, we observed that the performance
varied depending on the predicted features (Figure 2A).
We anticipated it may be correlated with evolutionarily
conservative regulatory sequences and experiment quality
(7). For example, two promoter region associated histone
marks, H3K4me3 and H3K9ac, achieved the highest me-
dian AUC at 0.932 and 0.901, followed by two enhancer
region associated histone marks, H3K27ac and H3K4me1,
with AUC at 0.865 and 0.828. However, for histone marks
associated with gene body and repressed chromatin regions,
H3K36me3, H3K27me3 and H3K9me3, the median AUC
is less than 0.8. Moreover, DeepFun model achieved a me-
dian AUC at 0.80 for all TFs assays, ranging from 0.64
(ZC3H11A) to 0.98 (SP4).

Marks and TFs specificity on human epigenome

The landscape of epigenomic features in enhancer and pro-
moter regions exhibited stronger mark specificity than tis-
sue specificity in our previous study (19). To get a global
landscape of the human epigenome, we used UMAP di-
mension reduction analysis to visualize the binary vec-
tor matrix of epigenomic active sites, mainly including
DNase-seq, histone marks, and TF CTCF (insulation, chro-
matin looping) binding profiles among different tissues or

cell lines (Figure 2C). Consistent with our previous study
(19), we observed clusters of DNase-seq, and most his-
tone marks were clearly segregated, suggesting there were
obvious disagreements in terms of epigenomic modifica-
tion. The UMAP plot also revealed uniform pattern for
those functionally similar histone marks. For example,
promoter [H3K4me3 and H3K9ac], enhancer [H3K27ac
(active enhancers/promoters) and H3K4me1 (poised en-
hancers)], gene body and repressed chromatin region en-
riched marks [H3K36me3 (transcribed), H3K27me3 (poly-
comb repression), H3K9me3 (heterochromatin)] tended to
be clustered together, respectively. Moreover, we conducted
UMAP analysis analogously on model B to investigate TF
and tissue specificity on human epigenome. As Figure 2D
showed, although some TFs, e.g. H2AFZ, formed notable
clusters, most other TFs binding profiles were not segre-
gated clearly, indicating most TFs chromatin state tissue
specificity are stronger than histone marks.

Influence of convolutional filter correlates with captured gene
expression abundance

The convolution model can automatically extract predic-
tive features from signal sequences through filter scanning
(43). We hypothesized these filters would correspond to
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binding motifs of different TFs, therefore, after convert-
ing convolutional filters into PWMs as motifs, we mapped
these PWMs to well-known protein binding motifs by us-
ing TomTom software (33). Under FDR threshold of 0.1,
both model A and B’s 300 convolutional filters captured 108
(36%) and 113 (37.7%) known DNA binding protein in CIS-
BP database (Supplementary Figures S1, S2 and Table S3)
(33,44). This is slightly lower than the proportion reported
in previous studies (i.e. 45%) (22). The higher proportion of
unrecognized filters in DeepFun model implied more novel
sequence motifs that are not currently represented in CIS-
BP database.

As shown in Figure 3A, B, a summary of alignments be-
tween first layer convolutional filters and CIS-BP captured
motifs. Both models dedicated most filters to comprehen-
sively represent CTCF’s 19-bp-long DNA recognition site,
followed by IRF1’s 21-bp-long DNA recognition site (Sup-
plementary Table S3). In addition, as shown in Supplemen-
tary Figures S1 and S2, many filters only captured partial
coverage of known motifs. To explore each filter’s influence
score, we nullified each filter on the downstream accessibil-
ity or binding activity predictions over all epigenetic signals,
which was used to emphasize the importance of the local se-
quence context of binding motifs that can affect their func-
tion (22). From filter information content (IC) and global
influence score plots in Figure 3C, D, we note there are a
lot of un-annotated filters with a higher influence score.

As the influence score of filter across different features
are different, we further investigated the correlation be-
tween filter influence score and corresponding motif cap-
tured gene expression level in DNase-seq profiles. For ex-
ample, as shown in Figure 3E, F, filter-71 and filter-250 in
colon tissue, stomach and pancreas tissue are predicted with
the highest influence score. Interestingly, we observed a sig-
nificant positive correlation between genes expression levels
and influence score: Pearson correlation coefficient (PCC) =
0.66 for HNF4G and filter 71 (P-value = 1 × 10−4) and PCC
= 0.59 for HNF1A and filter 250 (P-value = 5 × 10−4). We
conjecture most TF genes are known to regulate develop-
ment to their active tissue types. To validate our hypoth-
esis, for all 108 captured filters by TomTom software (33)
in model A, we calculated the PCC between the influence
score of filter and corresponding motif captured gene ex-
pression level. Interestingly, one side t-test (P-value: 5.9 ×
10−3) showed the PCC value of high confidence captured fil-
ters (FDRTomTom < 10−4) are significantly higher than low
confidence captured filters (10−4 < FDRTomTom < 0.1), in-
dicating the impact of variant across different tissues is cor-
related variant affected gene expression level.

DeepFun models identify causal variants in disease-
associated tissues

We applied DeepFun model to evaluate the genetic variants
that had been labeled by the ClinVar database (36) with be-
nign, pathogenic, or uncertain functions. For each variant,
we defined a SNP Activity Difference (SAD) score (details
in methods) to represent its functional impact based on all
epigenetic features. Consistent with previous reports (32),
the average SAD of most variants were close to zero when
clustering all epigenetic features together. Nevertheless, we

compared their absolute average SAD scores over DNase-
seq signals across all tissues and cell types. As shown in Fig-
ure 4A, the median absolute SAD of pathogenic variants
(7.4 × 10−3) is ten times higher than benign variants (6.5
× 10−4), indicating they are more likely to be deleterious
mutations than the benign group (Figure 4A). The P-value
0.028 from the one side Wilcoxon rank-sum test revealed
pathogenic variants had significantly higher average SAD
scores than benign variants. Moreover, we found that the
percentage of pathogenic variants increases as SAD score
increases, while the percentage of benign variants decrease
along with SAD threshold improve (Figure 4B).

Human tissues carry out common genetic information,
however, tissue and cell-type specific gene expression are
distinguished by distinct transcription regulatory programs
(45). Variants impact prediction in tissue and cell type spe-
cific fashion remains a critical challenge (21,22). Therefore,
we evaluated the predicted impact of variants in different
features. Firstly, we started with the de novo mutations in
autism spectrum disorder (ASD) cohort from the Simons
Simplex Collection (SSC) in brain tissues (37). The SSC
achieved its primary goal to establish a permanent repos-
itory of genetic samples from 2600 simplex families. No-
tably, each family has one child affected by ASD and un-
affected parents and siblings. This cohort makes it possible
to perform large-scale reliable non-coding de novo causal
mutations evaluation. As shown in Figure 4C, along with
groups of variants defined using increasing SAD thresholds,
the percentage of variants in patient siblings increases, while
the percentage in health siblings decreases.

We re-evaluated pathogenic variant effects from ClinVar
across different epigenomic features (36), especially for 11
pathogenic variants located in intergenic regions (Supple-
mentary Table S4, Supplementary Figure S3). These causal
variants are associated with various kinds of diseases. For
example, rs1554398510 (chr7: 117315915, C > T) is asso-
ciated with cystic fibrosis, rs886037620 (chr8: 11331747,
G > A) is associated with maturity-onset diabetes of the
young, and rs1024611 (chr17: 32579788, A > G) is associ-
ated with coronary artery disease. Therefore, we examined
their SAD score for different features and presented fea-
tures ranked within top 15. As Figure 4D showed, most fi-
broblast tissues related DNase-seq profiles were associated
with rs1554398510, especially in fibroblast of dermis. Fig-
ure 4E showed both DNase-seq and H3K4me1 profiles in
pancreas tissue had strong association with rs886037620. In
addition, the impact of rs1024611 was the strongest in heart
and cardiac muscle tissue (Figure 4F). Together, the results
are consistent with their disease symptoms, suggesting that
our model can be insightful to prioritize non-coding causal
variants in a tissue specific fashion.

GWAS lead regulatory loci capture trait-tissue associations
systematically

To further understand the biological insights, we evaluated
lead SNPs from GWAS raw statistics. We started from ul-
cerative colitis (UC) GWAS summary statistics. UC is a
chronic inflammatory disease of the colon with symptoms
such as diarrhea and gastrointestinal bleeding (46). A to-
tal of 8354 SNP with P-value < 10−8 were submitted to
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Figure 3. Transcription factor binding motifs learned by DeepFun through its initial convolutional layer learning. (A, B) Canonical transcription factor
binding motifs identified by DeepFun models A and B. (C, D) The initial convolutional layer of DeepFun models A and B identified known and novel
sequence motifs. Each dot represents a convolution filter in the initial convolutional layer. The x and y axes are the information content (IC) and global
influence (details in methods). (E, F) Correlation between convolution filter influence score and TF motif captured gene expression levels. Two typical (E)
filter-71 (HNF4G) and (F) filter-250 (HNF4G). The x axis is motif analysis (mapping filter-71 to HNF, details in methods) captured TF gene expression
level (from RNA-seq data of ENCODE matched tissues). The y axis is influence of the same filter across different profiles (only DNA accessibility profiles
across different tissues were presented).

DeepFun model. We presented all SNPs with max abso-
lute SAD score > 0.1. As Supplementary Figure S4 showed,
most SNPs demonstrated tissue specific fashion. The SNP
rs6426833, whose GWAS P-value = 4.86 × 10−31, exhibited
the highest SAD value. We further investigated the SAD
value of rs6426833 in different tissue chromatin features.
As shown in Figure 5A, the top 3 tissues with the highest
SAD were transverse colon (averaged SAD value = 0.19),
small intestine (0.17) and large intestine (0.16). In addition,
we observed several blocks (SNPs cluster) in Supplemen-
tary Figure S4 were specific to features in large intestine and
small intestine tissue. These results suggested that Deep-
Fun predicted strong functional impact of UC associated
SNPs on colon and intestine tissues, which is consistent with
the disease symptom associated tissues. Moreover, we found
most SNPs clustered together are located in Linkage Dise-
quilibrium regions.

Since SNPs in strong LD with the lead SNP may also
achieve a very low p value, we next evaluated schizophre-
nia (SCZ) GWAS summary statistics by using a less strin-
gent P-value < 10−3 as a threshold. As SCZ is a brain
disorder (27), we only focus on those SNPs with absolute

SAD score > 0.1 in brain tissue. In addition, we presented
the SAD value of these variants over different tissues in
Figure 5B, then applied canonical correspondence analysis
(CCA) to explore their functional impact tissue specificity.
CCA infers information from two matrices and projects
data points into a single embedding space (detail in Ma-
terials and Methods). The distance from the center indi-
cates the relation strength and data points that are close
to each other show correspondence. For better visualiza-
tion, we used two-dimensional scatter plots, also known as
canonical loading plots, to exhibit the correspondence be-
tween variant SAD score and DNase-seq profiles. As Fig-
ure 5C shown, the greater the distance from the origin, the
stronger the association between variants and tissues. For
clarity, one circle with a radius of 0.5 is shown to indicate as-
sociations between SCZ associated variants and DNase-seq
profiles in different tissues. Although the majority of vari-
ants located inside the circle with radius of 0.5, we found
several variants are tightly coupled with brain tissues. This
reinforced the notion that these polymorphic loci were likely
specifically involved in brain functions, which demonstrated
our model is capable to predict tissue or cell-specific regula-
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Figure 4. GWAS causal SNPs validation. (A) Comparison of the average absolute SAD values among three sets of intergenic variants (benign, uncertain
and pathogenic) as annotated in ClinVar database. (B) The proportion of ClinVar benign, uncertain and pathogenic variants by the SAD threshold, showing
the improvement proportion of pathogenic variants along with SAD threshold improvement. (C) The proportion of de novo mutations in autism spectrum
disorder (ASD) health and patient siblings comparison, by different SAD threshold. Of note, different from the ClinVar variants that were associated
with various diseases or phenotypes, here, we only compared the average SAD scores of the non-coding variants over all brain tissues. (D–F) The top 15
chromatin features for three non-coding variants in ClinVar database with the highest SAD values were presented: (D) rs1554398510 associated with cystic
fibrosis, (E) rs886037620 associated with maturity-onset diabetes of the young (MODY), and (F) rs1024611 associated with coronary artery disease. We
labeled a circle on chromatin features consistent with their disease symptoms.

tory loci. Moreover, some polymorphic loci are tightly cou-
pled with ‘placenta’, a tissue derived from fetal cells (47,48).
Interestingly, the previous study showed brain developmen-
tal stages involved in SCZ disease (49), therefore, we fur-
ther investigated human brain spatiotemporal expression
profiles analysis from BrainSpan (50). Interestingly, based
on WGCNA results (details in supplementary material), we
found brain prenatal stage-specific expression genes are en-
riched in ‘uterus’ tissue (Supplementary Figure S5). While
previous study also reported SCZ related genes tend to
highly express during prenatal development (49). Overall,
our approach demonstrated non-coding variant evaluation
on a comprehensive epigenetic features enable us to capture
the trait-tissue associations systematically.

CNN on dense epigenomic maps refine GWAS regulatory
mechanism loci

Epigenetic features provide insights for complex traits in-
terpretation. We downloaded 51 publicly available GWAS
summary statistics (Details in Supplementary Table S5) and
selected SNPs with GWAS P-value < 10−3, leading to a
total of 2 039 160 variants (range from asthma: 1264 to

mean red blood cell volume: 166,322) for potential regu-
latory loci prediction. After predicting the maximum SAD
score across all chromatin features, we distinguish these loci
as potential regulatory loci (max SAD > 0.1 or < –0.1), or
non-regulatory loci. Due to linkage disequilibrium, Deep-
Fun approach generally lacks the resolution to pinpoint
real causal genomic variants. Therefore, we mapped reg-
ulatory loci to trait-associated genes (TAGs) through as-
signing SNPs to its up/down streams genes by Pascal (de-
tail see methods) (41). On the other hand, we downloaded
ExAC pLI score of genes, which indicates the probability of
intolerant to a loss of function (LoF) from ExAC project
(42). To accurately estimate the overlap between regulatory
TAGs and LoF intolerant genes (ExAC pLI > 0.9), we used
Fisher’s exact test (FET) to investigate each trait separately.
As shown in Figure 6A, in 18 of 51 TAGs containing regu-
latory loci are significantly overlapped with LoF intolerant
genes at FET P-value < 0.05, especially for schizophrenia
and education attainment with P-value < 1 × 10−5. How-
ever, all 51 traits show no significant associations between
non-regulatory TAGs and LoF intolerant genes. For exam-
ple, although previous study showed schizophrenia com-
mon alleles are enriched in mutation intolerant genes (51),
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Figure 5. DeepFun captures tissue specific, functional SNPs. (A) The average absolute SAD values of DNA accessibility chromatin features for the most
associated SNP (rs886037620) with ulcerative colitis (UC) (only tissues with at least eight replicates profiles were presented). (B) The SAD values of
schizophrenia-associated SNPs (max SAD > 0.1) over different DNA accessibility profiles. (C) Canonical correspondence analysis (CCA) (details in
methods) of schizophrenia-associated variants SAD scores across different DNase-seq chromatin profiles. As functional variants impact of SAD and
source of each DNase-seq profiles (tissue) are assumed to be of unit variance, their projections on the plane reside within a circle of radius 1 centered at the
origin. Distance to the center indicates the strength of the association. For clarity, one circle with radius of 0.5 is shown to indicate associations of variants
and tissues. Variants (dots) located within or outside of circle with radius of 0.5 were labeled in green and red color, respectively. Different tissue profiles
located within or outside of circle with radius of 0.5 were labeled in orange color text or marked as triangle.

our results demonstrated only SCZ associated genes con-
taining regulatory loci (P-value = 5.5 × 10−9) are over-
lapped with LoF intolerant genes.

Identifying the tissue and cell type context is a criti-
cal step to interpret genetic variants and understand the
insights of disease origin (15). We recently developed an
R package deTS (27) and demonstrated its robustness on
most TAGs that are enriched in the trait-related tissues. For
example, most neuropsychiatric diseases were enriched in
brain tissues, immune-related traits in blood and spleen,
and metabolic traits in liver tissue (27). The genetic variants
tend to manifest their impacts in the trait-related tissues.
We conducted in house tissue-specific enrichment analy-
sis to compare the enriched tissues of regulatory and non-
regulatory TAGs for each trait (15,52). As shown in Fig-
ure 6B and Supplementary Figure S6, although most reg-
ulatory and non-regulatory TAGs show consistent associ-
ation patterns, non-regulatory TAGs have a broad weak
enrichment and tend to be enriched in non-traits-relevant
tissue (e.g. brain tissue). More importantly, we observed
a lot of novel trait-tissue associations for genes contain-

ing regulatory loci (Figure 6B), e.g. asthma genes associ-
ated with the lung (asthma associated genetic variants were
found to be eQTLs in lung (53)); age at menarche genes as-
sociated with the uterus (menstruation is the process after
estrogen and progestogen stimulate growth and vascular-
ity of the endometrium in the uterus. Therefore, estrogen
and progesterone receptor expression in the human uterus
might be associated with the age at menarche (54)), body
fat percentage genes associated with muscle (previous study
shows that muscle sympathetic nerve activity is related to
the body fat distribution (55)), fasting glucose associated
with liver (the liver can store and manufacture glucose and
helps to keep your circulating blood sugar levels and other
body fuels steady and constant (56)), and 2-h glucose as-
sociated with pancreas tissue (pancreatic islet could gener-
ate the hormone insulin, which could maintain the glucose
homeostasis (57)). However, these associations could not
be captured by non-regulatory TAGs. Therefore, our study
demonstrated that interpreting GWAS functional conse-
quence of genetic variants through CNN model cannot only
improve the possibility to prioritize real causal variants, but
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Figure 6. Comparison between 51 traits regulatory and non-regulatory loci associated genes. (A) Fisher’s exact test of the association between regulatory
(non-regulatory) TAGs and LoF intolerant genes (ExAC pLI > 0.9) for each trait. (B) Tissue-specific enrichment analysis of 51 TAGs containing regulatory
loci. The heatmap only shows the significant trait-tissue associations by P-value < 0.05, the shared gene count between trait regulatory loci associated genes
and tissue-specific expressed genes were labeled on thie figure.

also can provide novel insights for better decoding disease-
relevant tissues and etiology.

DISCUSSION

In the past decade, genome-wide association studies
(GWAS) and whole-genome sequencing (WGS) analysis of
family trios have generated rich resources of genetic variants
and de novo mutations associated with monogenic or com-
plex diseases (37,40). However, more than 90% of genetic
variants reported are located in non-coding regions (4). Al-
though several deep learning-based models have exhibited
remarkable advantages (21,22), interpreting the genetic sus-
ceptibility of these variants remains a big challenge due to
the distinct transcription regulatory programs (7). In this
study, we present the most comprehensive chromatin maps
of human epigenome, encompassing 7879 datasets, includ-
ing both DNase-seq and ChIP-seq data for different histone
marks and TFs, which greatly expand the biological space
covered by previous reference epigenome maps. Although
many of these are simply replicates (58), they can also help
users distinguish reproducible results from accidental re-
sults. Our broader biological space provides valuable impli-
cations for both capturing gene-regulatory elements of an
increased set of tissue-specific measurements, and for an-
notating gene-regulatory variants across a broader biolog-
ical spectrum for traits and disease phenotypes, which was

previously uncaptured (59). With DeepFun, researchers can
also perform in silico saturated mutagenesis analysis in their
interested cell type and simultaneously learn the influence
of every mutation on chromatin accessibility or TF binding
activity (Supplementary Materials and Figure S7).

The application of deep learning methods to characterize
the regulatory potential of non-coding variants has been a
subject of interest in recent years (6,21,22). Deep learning
models exhibited great advantage when dealing with larger
data set (60). In this work, based on dense epigenomic maps,
we presented a tissue and cell type specific CNN model,
which can be widely used for prioritizing variants in non-
coding regions. By applying our DeepFun model, we ob-
served potential casual variants can be well distinguished
from multiple examples, such as ClinVar (36) and Simons
Simplex Collection (SSC) cohort (37). Moreover, CNN-
prioritized variants provide a powerful way for dissecting
causal variants in a tissue- or cell-specific manner. There-
fore, we anticipate our work will be a valuable approach for
the further refinement of GWAS association signals. To our
knowledge, DeepFun model is superior to previous mod-
els in three ways. Firstly, DeepFun greatly expanded the
biological space covered by previous reference epigenomic
maps, which surpasses previous reference maps in scope,
scale, and coverage of biological space. Moreover, training
on this broader biological space reveals that DeepFun ex-
hibits better performance than previous Basset model (22).
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Secondly, as chromatin states are dynamic across different
tissue types, the assessment of the impact of variants un-
der specific tissue type is necessary for downstream func-
tional investigation (7). The extended profiles collected for
the DeepFun model not only facilitate the systematical as-
sessment of the impact of variants in a specific tissue or cell
types (tier 1), but also provide the opportunity to exten-
sively interpreted potential target genes affected by func-
tional variants (tier 2). Finally, we keep redundant epige-
nomic profiles rather than merged technical or biological
replicates of one profile, which significantly improved pre-
diction robustness of noise signals.

Trait-associated tissues serve as promising gauges for
identification and interpretation of causal variants. We ap-
ply DeepFun to decipher non-coding variant effects on
complex disease tissue. To do so, we systematically evalu-
ated 51 GWAS lead SNPs. We filtered ‘hitchhiker’ SNPs
with low absolute SAD scores. Then we classified TAGs into
two categories: regulatory and non-regulatory TAGs. In-
terestingly, tissue specific enrichment analysis of regulatory
TAGs revealed numerous novel associations, e.g. asthma en-
riched in lung, age at menarche enriched in uterus, body
fat percentage enriched in muscle tissue. In most com-
plex diseases, the association between traits and tissues is
not always straightforward because in some cases, multi-
ple tissues may be implicated in the etiology of the dis-
ease (6,59). In this study, we show several attractive appli-
cations for DeepFun. We demonstrate the interpretation of
causal variants. We show how a deep-learning-based model
trained on dense, rich, and high-resolution epigenomic an-
notations can provide an important basis for studying the
common and distinct components of disease-comorbidity
relationships. We believe the focus on regulatory loci will
greatly prompt the establishment of the trait-tissue associ-
ation map, which is of utmost importance to understand
the insights of disease etiology and to advance post GWAS
analyses (61,62).

There are several ways in which we can further improve
on our methods in the future. First, we may integrate quan-
titative epigenomic signals instead of binary vector, thereby
upgrading DeepFun to predict more accurate quantitative
signals (24). However, appropriate normalization of the
data across different samples is necessary for eliminating
technical bias due to experiment design. Second, we ex-
pect to collect more epigenomic annotations or use com-
putational methodology, such as tensor-based imputation,
to complete the epigenomic data in diverse missing experi-
ments (63). So far, the ChIP-seq data of TF over different
cell type measurements remain highly incomplete. There-
fore, interpreting the impact of a functional variant on a
TF still remains challenging in the case when suitable tissue
chromatin feature is missing. Thirdly, to improve the model
structure, we will explore novel architecture algorithms for
more effective deconvolution of sequence signals. For ex-
ample, we may initialize half of convolutional filters with
known binding motifs (7), or use dilated convolution fil-
ters strategy, thereby capturing distinct sequence motifs that
would not be identified by regular convolution filters (24).
Fourth, our approach did not take the genotype of differ-
ent individuals into consideration (32). Lastly, we expect to
analyze non-human datasets, as training models on multi-

ple species, e.g. mouse or primate data, is an alternative way
to improve prediction accuracy (25). On the other hand, in
this work, we utilized Pascal to aggregate the GWAS sig-
nals to the nearby genes and conducted the tissue-specific
enrichment analysis to further explore the tissue-specificity
of these GWAS surrogate genes, which might not fully
represent the long-range regulations. There are several al-
ternative methods that could directly obtain the traits-
associated tissues utilizing the tissue-specific eQTL infor-
mation (64,65). Moreover, we can further compare the per-
formance of DeepFun with some machine learning based
model, such as DIVAN (58). Despite these challenges, we
demonstrated that a CNN-based model trained with dense,
rich, and high-resolution epigenomic annotations is very ef-
fective at prioritizing non-coding regulatory variants from
GWAS data. Moreover, for most complex diseases, a fo-
cus on true regulatory variants against background signals
would be an alternative approach to dissect the map of trait-
tissue associations.
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