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Abstract
Aims/hypothesis The aim of this workwas to assess the role of
well-established cardiovascular risk factors in the late-life cog-
nitive decline of patients with type 2 diabetes.
Methods Data from 831 participants (aged 60–75 years) at-
tending the 4 year follow-up of the Edinburgh Type 2Diabetes
Study (ET2DS) were used. Smoking history (pack-years), BP,
HbA1c, plasma glucose and cholesterol were determined at
baseline clinics (single time measurements) and/or from serial
data recorded on a clinical management database from diag-
nosis until recruitment (‘historical’ data). Principal component
analysis derived a factor, g, of general ability from seven cog-
nitive tests. Linear regression models of follow-up g were
adjusted for baseline g to represent 4 year cognitive change.
‘Accelerated late-life cognitive decline’ was defined as scor-

ing in the lowest tertile of ‘4 year cognitive change’ regression
scores. Analyses controlled for age and sex.
Results A baseline history of moderate/heavy smoking (≥10
pack-years) and a 1% increased historical HbA1c (equivalent
to an increase by 11 mmol/mol) predicted a 64% (OR 1.64;
95% CI 1.14, 2.34; p=0.007) and 21% (OR 1.21; 95% CI
1.00, 1.45; p=0.046) increased risk of accelerated cognitive
decline, respectively. When treated as continuous measures,
higher pack-years, historical HbA1c and historical BP
emerged as significant independent predictors of 4 year de-
cline in g (standardised β range −0.07 to −0.14; all p≤0.05).
Conclusions/interpretation Increased smoking and poorer
glycaemic control (with relatively weaker findings for BP)
during the life-course were independently associated with ac-
celerated late-life cognitive decline. Where possible, evalua-
tion is warranted of these risk factors as targets for intervention
to reduce the burden of cognitive impairment in diabetes.
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TMT-B Trail-Making Test-B
WAIS-III Wechsler Adult Intelligence Scale,

third edition

Introduction

People with type 2 diabetes are at greater risk of cognitive
impairment in later life than their non-diabetic peers [1]. With
the prevalence of diabetes expected to reach 15% in the USA
within the current decade [2], researchers have attempted to
identify underlying pathophysiological mechanisms and po-
tentially modifiable risk factors that may be responsible for the
observation. For instance, based on competition of insulin
with β-amyloid peptide for degradation and recent reports
identifying the amyloid precursor amylin, which is co-
secreted with insulin from the pancreas, in brains of patients
with diabetes (but not in diabetes-free controls), increased
concentrations of β-amyloid and amylin are candidate links
between type 2 diabetes and cognitive impairment [3, 4]. The
role of vascular disease has also received increasing attention
of late due to an increased prevalence in type 2 diabetes and
plausible biological mechanisms linking the two conditions.
Amylin, for instance, is known to contribute to cardiovascular
disease, so similar effects on the vascular system of the brain
may be plausible [4]. Recent epidemiological evidence has
also shown a direct association between cognitive decline
and markers of symptomatic and asymptomatic vascular dis-
ease in people with type 2 diabetes [5]. These observations
suggest a potential role for smoking, hypertension, adverse
lipid profiles and hyperglycaemia, all of which are established
risk factors for adverse cardiovascular outcomes, in the devel-
opment of cognitive impairment in people with type 2 diabe-
tes. If such a role is repeatedly demonstrated, then future clin-
ical trials targeting these risk factors should consider inclusion
of cognitive endpoints (e.g. to determine whether a change in
the threshold for existing clinical intervention may be
indicated).

In the general population, hypercholesterolaemia, hyper-
tension, smoking and hyperglycaemia have each been associ-
ated with a poorer level of cognitive function [6–8]. Lower
childhood intelligence, however, potentially leads to increased
vascular risk, as well as to lower cognitive ability and greater
cognitive decline in later life [9]. Therefore, studies with a
prospective design and, preferably, with a measure of pre-
morbid cognitive ability, are required to help determine the
direction of relationships between vascular risk factors and
cognitive decline. Compared with previous prospective stud-
ies in the general population that suggest a degree of complex-
ity and do not always provide a consistent picture of vascular
risk and cognitive impairment [10, 11], such studies in diabet-
ic populations are much more scarce and often sub-optimal in
design not least due to the neglect of consideration of pre-

morbid ability [12]. For smoking in particular, this type of
evidence was lacking until a recent analysis of the Fremantle
Diabetes Study, which showed that midlife smoking predicted
an increased risk of future cognitive impairment [13].

Using data from a large prospective cohort of older adults
with type 2 diabetes, the Edinburgh Type 2 Diabetes Study
(ET2DS), we tested the associations of serum cholesterol, BP,
glycaemic control and smoking with late-life cognitive de-
cline. Given known strong correlations among vascular risk
factors themselves, it was important to evaluate the relative
independence of their contributions in our cohort. Our analy-
ses had the additional advantage of using ‘historical’ data on
BP and HbA1c covering the time between diabetes diagnosis
and attendance at the clinic.

Methods

Study population

The baseline clinic of the ET2DS was attended by 1,066
community-dwelling adults aged 60–75 years [14], of whom
831 returned 4 years later. Ethical approval was obtained from
the Lothian Medical Research Ethical Committee. Examina-
tions complied with the Declaration of Helsinki and partici-
pants gave full written consent. Details of study recruitment
and examination have been described previously [15].

Baseline clinical examination and historical data

Data obtained at baseline (‘clinic data’) and from a clinical
management database between diabetes diagnosis and atten-
dance at the baseline clinic (‘historical data’) were used. At
baseline, blood samples were taken following an overnight
fast to measure HbA1c, plasma glucose, serum LDL-
cholesterol and HDL-cholesterol. The ratio of HDL-cholester-
ol/ total cholesterol was used (‘cholesterol’) in subsequent
analysis as such ratios may be preferable to non-ratio mea-
sures in cardiovascular risk prediction [16].

Questionnaires administered at baseline obtained data on
education, smoking and medical history. Medical history data,
together with Scottish Morbidity Record Data, responses on
the World Health Organization chest pain questionnaire and
12-lead ECG data, identified angina, transient ischaemic at-
tack, stroke and myocardial infarction [14]. Hypertension was
defined as systolic BP ≥140 mmHg and/or diastolic BP
≥85 mmHg at the clinic visit and/or when participants
self-reported taking medication to lower BP. Hypercholeste-
rolaemia was defined as plasma total cholesterol ≥5 mmol/l
and/or when participants self-reported taking medication to
lower blood lipids.

Questionnaire items ascertained current and previous
smoking, including years since cessation and number of
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cigarettes, cigars or ounces of tobacco smoked per day. Each
self-reported cigar smoked was converted to equal four ciga-
rettes; each 20 cigarettes were converted to equal one pack.
The number of packs was multiplied by the number of years
participants had smoked to obtain ‘pack-years’ (1 pack-year is
equivalent to 20 cigarettes/day for 1 year). For pipe smoking,
7,300 g of tobacco were equivalent to 1 pack-year. The mea-
sure of pack-years was additionally categorised into partici-
pants who had never smoked or had a history of light smoking
(<10 pack-years) and those with a history of moderate to
heavy smoking (≥10 pack-years).

Historical data from the Lothian Diabetes Register between
1988 and 2007 (the year of study recruitment) were used to
obtain time-weighted mean measures of systolic and diastolic
BP (‘historical systolic BP’; ‘historical diastolic BP’) and
HbA1c (‘historical HbA1c’). Data from between one reading
and 65 readings (median 19 readings, interquartile range 14–
25 readings) were available for each individual and were used
to calculate the time-weighted mean. Assessments captured
by the register spanned between 0 years (single assessment)
and 19.8 years (median 10.4 years, interquartile range 7.3–
13.6 years). ‘Poor glycaemic control’ was defined as a histor-
ical HbA1c >7% (>53 mmol/mol). ‘Poor BP control’ was
defined as historical systolic BP ≥140 mmHg and/or histo-
rical diastolic BP ≥85 mmHg. Clinical characteristics of the
study population are shown in Table 1.

Cognitive assessment

At baseline and at year 4, seven age-sensitive tests of
cognitive function were administered. Executive func-
tion was measured by the Trail-Making Test-B (TMT-
B) and the Borkowski Verbal Fluency Test (BVFT).
The Digit Symbol Coding (DSC) subtest of the
Wechsler Adult Intelligence Scale, third edition
(WAIS-III) ascertained processing speed [17]. The Ma-
trix Reasoning (MR) subtest of the WAIS-III measured
non-verbal reasoning and the Letter–Number Sequenc-
ing (LNS) subtest measured working memory. The Log-
ical Memory (LM) and Faces subtests of the Wechsler
Memory Scale, third edition, assessed verbal and non-
verbal declarative memory, respectively [18]. Scores on
the combined junior and senior synonyms of the Mill
Hill Vocabulary Scale (MHVS) [19], which have been
shown to correlate with scores on other vocabulary-
based tests [20], estimated pre-morbid cognitive ability.
Vocabulary-based tests are used in this function on the
grounds that vocabulary is part of ‘crystallised’ ability
and hence is relatively immune to age-related cognitive
decline [21]. The criteria used to identify participants
with possible dementia by year 4 have been described
previously [5].

Statistical analyses

Distribution was approximately normal for all measured var-
iables; for TMTB and clinic plasma glucose, normal
distribution was achieved following transformation to their
natural logarithms. Normal distribution for pack-years was
achieved using square root transformation. Missing data on
cognitive ability tests other than Mill Hill Vocabulary (0.6–
1.7% at baseline; 0.8–4.7% at year 4) were imputed, as de-
scribed in detail previously [5]. Since people who perform
well on one cognitive test tend to perform well on another,
data reduction techniques may be applied to batteries of cog-
nitive tests with complete data on all individual tests to obtain
a factor g of general ability [22]. The use of g is advantageous,
because it is relatively unaffected by measurement error.
Here, components with eigenvalues >1 were extracted in
principal component analysis. All seven cognitive tests
(those other than Mill Hill Vocabulary) loaded on a single
component, accounting for 44.74% and 47.44% of
variance at baseline and at year 4, respectively. Factor
loadings ranged between 0.47 (Faces) and 0.80 (TMTB)
at baseline and between 0.51 (Faces) and 0.81 (TMTB) at
year 4 [5].

Linear regression analyses regressed cognitive function
at year 4 and cognitive change between baseline and
year 4 on each of the vascular risk factors (see Table 2
for analyses of g; see Electronic supplementary material
[ESM] Table 1 for analyses of individual cognitive tests
and ‘estimated lifetime cognitive change’, determined by
adjustment of year 4 cognitive test scores for Mill-Hill
Vocabulary). Four year cognitive change was represented
by adjustment of year 4 scores for baseline scores (the
procedure to ensure that baseline and year 4 g were
standardised on the same sample has been described pre-
viously [5]). This method may be preferable to raw
change scores because it is less dependent on individual
differences in initial cognitive status [23].

Regression analyses of cognitive function at year 4 were
adjusted for age and sex; those of 4 year cognitive change
were adjusted for baseline cognitive scores, age and sex, be-
fore myocardial infarction, angina, transient ischaemic attack,
stroke (‘vascular disease’) and duration of diabetes, and Mill-
Hill Vocabulary were controlled for in two separate steps. For
g, analyses that survived this adjustment were additionally
controlled for mode of glucose-lowering treatment. Finally,
pack-years, historical systolic BP, historical HbA1c and cho-
lesterol were selected a priori (with the aim of avoiding
multicollinearity) to be entered as predictors in a single model
to ascertain the relative independence of associations. Addi-
tional categorisation of cognitive outcomes allowed the calcu-
lation of ORs for ‘poor’ cognitive function (scoring in lowest
vs highest tertile of follow-up g) and ‘accelerated’ 4 year cog-
nitive decline (lowest vs highest tertile of follow-up g adjusted
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for baseline g) using logistic regression. All linear and logistic
regression analyses of g were repeated separately with strati-
fication by sex (see Table 3 and ESM Table 2), on the basis of

original rather than imputed data, and with exclusion of cases
with possible dementia (n=4); none of the findings were al-
tered in these latter two steps unless noted in the text.

Table 1 Baseline demographics and clinical characteristics of attendees of the year 4 follow-up

Characteristic/demographic Total sample Men Women p valuea

N Mean ± SD, median
(interquartile range)
or n (%)

N Mean ± SD, median
(interquartile range)
or n (%)

N Mean ± SD, median
(interquartile range)
or n (%)

Age (years) 831 67.7±4.2 430 67.8±4.1 401 67.6±4.3 0.569

Duration of diabetes (years) 824 6 (3–11) 425 6 (4–11) 399 6 (3–10) 0.236

Insulin±oral glucose-lowering treatment 830 139 (16.7) 429 66 (15.4) 399 73 (18.2) 0.756
Oral glucose-lowering treatment alone 830 526 (63.4) 429 276 (64.3) 399 250 (62.4)

Diet alone as glucose-lowering treatment 830 165 (19.9) 429 87 (20.3) 399 78 (19.5)

Lipid-lowering treatment 831 719 (86.5) 430 368 (85.6) 401 351 (87.5) 0.411

Hypercholesterolaemia 831 770 (92.7) 430 394 (91.6) 401 376 (93.8) 0.238

Total cholesterol (mmol/l) 826 4.3±0.9 427 4.2±0.8 399 4.5±0.9 <0.001

HDL/total cholesterol 826 0.30±0.09 427 0.29±0.08 399 0.32±0.08 <0.001

Historical systolic BP (mmHg) 825 139±11 425 139±10 400 139±11 0.509

Historical diastolic BP (mmHg) 825 79±6 425 79±6 400 79±6 0.189

Clinic systolic BP (mmHg) 829 133±16 430 133±15 399 132±17 0.575

Clinic diastolic BP (mmHg) 829 69±9 430 70±9 399 67±8.7 <0.001

Antihypertensive treatment 826 684 (82.8) 426 359 (84.3) 400 325 (81.3) 0.250

Hypertension 831 729 (87.7) 430 384 (89.3) 401 345 (86.0) 0.151

Poor blood pressure control 825 389 (47.2) 425 193 (45.4) 401 196 (49.0) 0.302

Pack-years 803 6 (0–30) 410 17 (0–40) 393 0 (0–20) <0.001

Never smoked/history of light smoking 803 425 (52.9) 420 166 (40.5) 393 259 (65.9) <0.001
History of moderate/heavy smoking 803 378 (47.1) 420 422 (59.5) 393 134 (34.1)

Historical HbA1c (%) 825 7.4±0.9 425 7.3±0.9 400 7.5±0.9 0.061
Historical HbA1c (mmol/mol) 825 57±10 425 56±10 400 59±10

Clinic HbA1c (%) 804 7.4±1.1 415 7.4±1.2 389 7.4±1.1 0.386
Clinic HbA1c (mmol/mol) 804 57±12 415 57±13 389 57±12

Clinic plasma glucose (mmol/l) 821 7.2 (6.2–8.4) 424 7.3 (6.3–8.5) 397 7.1 (6.0–8.2) 0.059

Poor glycaemic control 825 560 (67.9) 425 279 (65.6) 400 281 (70.3) 0.157

History of severe hypoglycaemia 816 77 (9.4) 425 33 (7.8) 391 44 (11.3) 0.089

Diabetic retinopathy 819 266 (32.5) 424 155 (36.6) 395 111 (28.1) 0.010

Waist–hip ratio 828 0.97±0.08 429 1.00±0.06 399 0.93±0.07 <0.001

Carotid intima-media thickness (mm) 775 1.00±0.17 399 1.03±0.18 376 0.96±0.16 <0.001

Myocardial infarction 831 111 (13.4) 430 83 (19.3) 401 28 (7.0) <0.001

Angina 831 222 (26.7) 430 137 (31.9) 401 85 (21.2) 0.001

Stroke 831 44 (5.3) 430 32 (7.4) 401 12 (3.0) 0.004

Transient ischaemic attack 831 27 (3.2) 430 16 (3.7) 401 11 (2.7) 0.427

Total N=831

Poor glycaemic control was defined as historical HbA1c >7% (>53 mmol/mol). Poor blood pressure control was defined as historical systolic BP
≥140 mmHg and/or historical diastolic BP ≥85 mmHg. Hypertension was defined as systolic BP ≥140 mmHg and/or diastolic BP ≥85 mmHg at the
clinic visit and/or self-reportedmedication prescribed by a doctor to lower blood pressure. Hypercholesterolaemia was defined as plasma total cholesterol
≥5 mmol/l and/or when a participant self-reported medication prescribed by a doctor to lower blood lipid level. Never smoked/history of light smoking
was defined as <10 pack-years. History of moderate/heavy smoking was defined as ≥10 pack-years. Carotid intima-media thickness was measured at
year 1 follow-up. Diabetic retinopathy was defined as mild or moderate/severe retinopathy on seven-field retinal photographs. History of severe
hypoglycaemia was defined as self-reported history of at least one episode of hypoglycaemia requiring assistance by another person (for details, see [32])
a p value for sex difference in χ2 tests or t tests
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Results

Cohort characteristics

Eight hundred and thirty-one participants (51.7% male) of the
ET2DS attended for follow-up cognitive testing. Clinical and
cognitive differences between attenders and non-attenders
have been described previously [5]. Baseline clinical and de-
mographic characteristics of attendees (forming the study pop-
ulation for this analysis) are shown in Table 1. Mean age at
baseline was 67.7 years, with median time since diabetes di-
agnosis of 6 years. Almost all participants suffered from hy-
percholesterolaemia (92.7%) and/or hypertension (87.7%); a
majority had poor glycaemic control (67.9%) and around half
(47.2%) had poor blood pressure control, according to our
pre-specified criteria, respectively.

Vascular risk and cognition in total sample

Blood pressure Mill Hill Vocabulary was unrelated to histor-
ical diastolic ( p=0.076) or systolic BP ( p=0.701). Higher
historical systolic BPwas marginally associated with a steeper
4 year decline in g (Table 2), mainly due to an association with
reasoning abilities (Matrix Reasoning) (ESM Table 1).
Adjusting the association with 4 year decline in g for vascular
disease, disease duration and Mill Hill Vocabulary did not
alter the results in terms of effect size or statistical signifi-
cance, and adjusting for glucose-lowering treatment led to
statistical significance (standardised β −0.07; p=0.047). Upon

exclusion of individuals with possible dementia, the finding
for g (standardised β −0.06; p=0.069) was attenuated. When
analyses were repeated with non-imputed rather than imputed
data, the marginal association with 4 year decline in g lost
statistical significance (−0.06; p=0.125). BP was unrelated
to risk of poor cognitive outcome (Table 3).

Cholesterol People with higher cholesterol levels tended to
have higher Mill Hill Vocabulary (r=0.07; p=0.054). A sta-
tistically significant association of higher cholesterol
level with lower g did not survive adjustment for Mill
Hill Vocabulary (ESM Table 1) or for baseline g
(Table 2), and logistic regression analyses showed that
cholesterol was unrelated to risk of poor cognitive out-
come (data not shown).

Smoking Pack-years was unrelated to Mill Hill Vocabulary
( p=0.157), but was associated with lower g at baseline and
with accelerated decline in g (Table 2). Neither inclusion of
vascular disease, disease duration and Mill Hill Vocabulary
(Table 2) nor of glucose-lowering treatment (data not shown)
altered the results. In addition to g, pack-years was associated
with decline on all of the seven individual tests (ESMTable 1).
Overall, individuals with a history of moderate to heavy
smoking had a 64% increased odds of accelerated 4 year cog-
nitive decline after controlling for age and sex. To illustrate,
independent of age and sex, each additional pack-year was
associated with 1% increased odds of accelerated 4 year de-
cline (Table 3).

Table 2 Clinical predictors of global cognitive performance (g) at year 4 and of 4 year change in g adjusted for MHVS and other covariates

Predictor β adjusted
for age and sex

4 year cognitive change

Adjusted for age,
sex, baseline g

Adjusted for age, sex,
baseline g, covariates

Adjusted for age, sex, baseline
g, covariates, MHVS

Cholesterol 0.08 (0.017) 0.01 (0.823) 0.00 (0.938) −0.01 (0.981)

Hypercholesterolaemia 0.02 (0.524) 0.02 (0.630) 0.02 (0.543) 0.02 (0.601)

Historical systolic BP 0.00 (0.992) −0.07 (0.052) −0.07 (0.067) −0.07 (0.051)

Historical diastolic BP 0.05 (0.149) −0.01 (0.750) −0.02 (0.602) −0.03 (0.375)

Poor BP control 0.01 (0.815) −0.01 (0.810) 0.00 (0.931) −0.01 (0.711)

Hypertension 0.01 (0.740) 0.00 (0.968) 0.01 (0.764) 0.03 (0.470)

Pack-years −0.15 (<0.001) −0.15 (<0.001) −0.14 (<0.001) −0.12 (0.002)

Historical HbA1c −0.11 (0.001) −0.11 (0.001) −0.10 (0.005) −0.10 (0.004)

Poor glycaemic control −0.03 (0.337) −0.05 (0.149) −0.05 (0.144) −0.04 (0.264)

Clinic plasma glucose 0.04 (0.296) 0.03 (0.350) 0.04 (0.216) 0.04 (0.296)

Data are shown as standardised β coefficients (p values). N=778–823

Results are frommultiple linear regression models performed separately for each risk factor. Outcome variable is g at year 4. Adjustment of year 4 scores
for baseline scores represented 4 year change in cognitive performance. Pack-years are square root transformed. Clinic plasma glucose was transformed
to its natural logarithm. Hypertension was defined as systolic BP ≥140mmHg and/or diastolic BP ≥85mmHg and/or self-reported medication prescribed
by a doctor to lower BP. Hypercholesterolaemia was defined as plasma total cholesterol ≥5mmol/l and/or self-reportedmedication prescribed by a doctor
to lower blood lipids level. Poor glycaemic control was defined as historical HbA1c >7% (>53 mmol/mol). Poor BP control was defined as historical
systolic BP ≥140 mmHg and/or historical diastolic BP ≥85 mmHg. Covariates are baseline myocardial infarction, transient ischaemic attack, stroke,
angina, duration of diabetes. MHVS, Mill Hill Vocabulary Scale
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Historical HbA1c Historical HbA1c was unrelated to Mill
Hill Vocabulary ( p=0.311), but was associated with lower g
and with accelerated decline in g (Table 2). It was also signif-
icantly associated with decline on all tests except verbal mem-
ory (Logical Memory) and processing speed (Digit Symbol
Coding; ESM Table 1). Adjustment for vascular disease, dis-
ease duration and Mill Hill Vocabulary (Table 2; ESM
Table 1), or for glucose-lowering treatment (data not shown),
did not alter the results. Each percentage (11 mmol/mol) in-
crease in historical HbA1c was associated with a 21% in-
creased odds of accelerated 4 year decline when age and sex
were controlled for (Table 3).

Relative independence of vascular risk associations
with cognition in total sample

Historical HbA1c, historical systolic BP, cholesterol and pack-
years were entered in a single linear regression model control-
ling for age and sex. Significant contributors to 4 year change
in g were pack-years (−0.14; p<0.001), historical HbA1c

(−0.10; p=0.006) and historical systolic BP (−0.07; p=
0.052). The addition of vascular disease, duration of diabetes
and Mill-Hill Vocabulary into the model did not alter the

results: pack-years (−0.11; p=0.004), historical HbA1c

(−0.09; p=0.014) and historical systolic BP (−0.07; p=
0.050) were each associated with a steeper 4 year decline in
g. Cholesterol was not included in these models (both
p>0.10).

Vascular risk and cognition in stratified analyses

Subgroup analysis by glucose-lowering treatment mode
showed that findings on historical HbA1c in the total sample
were driven by insulin-treated patients: for this treatment
group, effect sizes in linear regression analyses appeared to
be particularly strong (fully adjusted model for 4 year decline
in g, standardised β −0.22; p<0.001). Findings on historical
HbA1c also appeared to be driven by female sex, whereas
those for historical systolic BP were restricted to the subsam-
ple of men (ESM Table 2). When historical HbA1c, historical
systolic BP, cholesterol and pack-years were entered in a sin-
gle model controlling for age, vascular disease and duration of
diabetes, significant predictors of a steeper 4 year decline were
pack-years (−0.13; p=0.011) and historical systolic BP
(−0.12; p=0.018) for the subsample of men ( p>0.05 for cho-
lesterol and historical HbA1c, respectively), and pack-years

Table 3 Incremental odds of poor cognitive performance at year 4 and of accelerated 4 year cognitive decline according to preceding vascular risk
factors

Risk factor Poor cognitive function at year 4a p value Accelerated cognitive declineb p value

Entire sample (max N=831)

Historical systolic BP 1.00 (0.98, 1.01) 0.635 1.01 (0.99, 1.03) 0.228

History of moderate/heavy vs never
smoked/history of light smoking

2.01 (1.38, 2.92) <0.001 1.64 (1.14, 2.34) 0.007

Pack-years 1.01 (1.00, 1.02) 0.001 1.01 (1.00, 1.01) 0.013

Historical HbA1c 1.24 (1.02, 1.49) 0.029 1.21 (1.00, 1.45) 0.046

Men (max N=430)

Historical systolic BP 1.00 (0.97, 1.02) 0.651 1.02 (1.00, 1.05) 0.053

History of moderate/heavy vs never
smoked/history of light smoking

2.09 (1.25, 3.52) 0.005 1.61 (0.97, 2.66) 0.065

Pack-years 1.01 (1.00, 1.02) 0.036 1.01 (1.00, 1.02) 0.154

Historical HbA1c 1.34 (1.02, 1.77) 0.035 0.95 (0.73, 1.24) 0.706

Women (max N=401)

Historical systolic BP 1.00 (0.98, 1.02) 0.932 1.00 (0.98, 1.02) 0.802

History of moderate/heavy vs never
smoked/history of light smoking

1.83 (1.06, 3.17) 0.030 1.66 (0.99, 2.77) 0.054

Pack-years 1.02 (1.01, 1.04) 0.003 1.02 (1.00, 1.03) 0.023

Historical HbA1c 1.14 (0.88, 1.45) 0.326 1.50 (1.15, 1.96) 0.003

Data are ORs (95% CIs) comparing incremental odds of scoring in the lowest tertile of the respective distributions vs the highest tertile

Analyses are multiple logistic regression analyses that were performed separately for each risk factor. Never smoked/history of light smoking was
defined as <10 pack-years. History of moderate/heavy smoking was defined as ≥10 pack-years. Pack-years was untransformed in these analyses.
Outcome variable is g at year 4. Analyses for entire sample was adjusted for age, sex and in sex-stratified analyses for age. Cut-points for follow-up
g: lowest tertile <−0.43; medium tertile −0.43 to 0.48; highest tertile >0.48. Cut-points for follow-up g adjusted for baseline g: lowest tertile <−0.39;
medium tertile −0.39 to 0.44; highest tertile >0.44
aModel of reduced cognitive function at year 4 was defined as scoring in the lowest tertile of g at year 4
bModel of accelerated 4 year cognitive decline was defined as scoring in the lowest tertile of year 4g adjusted for baseline g
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(−0.13; p=0.012) and historical HbA1c (−0.16; p=0.003) for
women ( p>0.05 for cholesterol and historical systolic BP,
respectively). These sex-specific patterns of associations were
supported by findings from logistic regression analyses
(Table 3).

Discussion

Smoking history, long-term exposure to raised BP and poorer
glycaemic control were independently associated with an ac-
celerated late-life cognitive decline short of dementia. Overall
effect sizes were modest but, compared with the findings on
BP, those for a measure of mean HbA1c collected over a time
period of up to 20 years prior to cognitive testing and for
lifetime smoking history appeared to be more robust across
the total sample. Independent of age and sex, a history of
moderate to heavy smoking and each percentage increase in
HbA1c (an increase that is equivalent to 11 mmol/mol) was
associated with a 64% and 21% increased risk of an acceler-
ated cognitive decline during 4 year follow-up, respectively.
Cholesterol was associated only cross-sectionally with cogni-
tion. While our findings are not directly transferable to a clin-
ical setting (since our definition of accelerated decline was
arbitrary and sample-specific), they should serve to increase
awareness of cognitive impairment and the potential impor-
tance of treatment of vascular risk factors in patients with type
2 diabetes.

To date, the relationships between cardiovascular risk fac-
tors and cognition have only infrequently been studied in peo-
ple with diabetes. The present study has extended earlier evi-
dence of cross-sectional associations of hypertension [24, 25]
and poorer glycaemic control [26, 27] with reduced cognitive
function in type 2 diabetes by demonstrating prospective as-
sociations with accelerated late-life cognitive decline. The as-
sociation of smoking history with cognitive decline supports
recent findings from the Fremantle Diabetes Study, in which
midlife smoking was associated with the risk of cognitive
impairment in later life [13]. Findings on glycaemic control
in the present cohort are also consistent with a recent analysis
of the Atherosclerosis Risk in Communities (ARIC) study,
which reported that people with diabetes in midlife declined
cognitively at faster rates during a 20 year follow-up period
compared with diabetes-free individuals [28] and which addi-
tionally suggested a role for severity of hyperglycaemia [28].
In our study, the corresponding association of historical blood
glucose levels with cognitive decline in people with diabetes
in later life was particularly evident for tests of executive
function, which again is consistent with findings from the
ARIC study [28] and with reports of vulnerability of that do-
main in people with diabetes [29]. The suggestion of stronger
findings for glycaemic control in insulin-treated patients in the
present study may be due to the advanced disease stage and

comorbidity in these patients and, in women, merits further
investigation.

Many previous studies on a similar range of risk factors
have investigated single factors, despite complex relationships
among them. The present study makes an important advance
by showing that associations of each of the risk factors iden-
tified as being predictive of cognitive decline were indepen-
dent of one another. Although observational findings do not
correspond to causality, it is possible that each factor is asso-
ciated with cognition in separate pathophysiological path-
ways. Their modifiable nature suggests the potential for each
risk factor as a separate target for intervention to reduce pa-
tients’ risk of cognitive impairment. Observational data from
studies of people with type 2 diabetes appear to support this
possibility (e.g. with associations of antihypertensive treat-
ment with reduced risk of dementia as an endpoint of cogni-
tive decline [30]) but current evidence from trials is limited
and inconclusive. In the Memory in Diabetes study of the
Action to Control Cardiovascular Risk in Diabetes
(ACCORD-MIND) trial, a trend was observed for decelerated
cognitive decline in the treatment arm that was subjected to
intensified glucose-lowering treatment [31]. However, some
evidence suggests that hypoglycaemia (a side effect of more
intensive therapy) may increase the rate of cognitive decline
[32–35], thereby potentially counteracting the beneficial ef-
fects of improved glycaemic control. Future trials comparing
glucose-lowering agents that cause different degrees of
hypoglycaemia may help to clarify this. Trials on smoking
cessation are complicated by confounding and are scarce even
in the general population, with a single study showing decel-
erated 2 year cognitive decline in people who successfully quit
smoking compared with those who were unsuccessful [36]. A
Cochrane review of randomised trials in the general popula-
tion concluded that antihypertensive therapy was of no benefit
in slowing cognitive decline [37] and in the ACCORD-MIND
study, intensive lowering of BP in people with type 2 diabetes
had no effect on cognitive decline [38].

The present findings are consistent with those of a number
of studies that have reported links of higher midlife or late-life
cholesterol, or of lower HDL-cholesterol, with lower late-life
cognitive function or with a steeper cognitive decline in peo-
ple with diabetes [11, 39, 40]. However, these studies did not
adjust for pre-morbid ability. Here, we found evidence for
reverse causality: lower pre-morbid ability predisposed partic-
ipants to a higher late-life level of cholesterol and to lower
late-life cognitive function, and so confounding of previous
cross-sectional (and potentially prospective) evidence is like-
ly. In line with the present null findings for prospective asso-
ciations of either cholesterol (without regard to lipid-lowering
treatment) or of presence of hypercholesterolaemia (partly de-
fined by use of lipid-lowering treatment), ACCORD-MIND
revealed no effect of addition of fenofibrate to simvastatin
therapy on 3 year cognitive decline [38].
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The prospective design and extensive clinical and cognitive
characterisation are clear strengths of the ET2DS. Adjustment
for estimated peak pre-morbid ability helped to counteract
potential reverse causality. The dropout of 22% over 4 years
was relatively high but acceptable considering the diabetic
status and age of the cohort. The associated survivor bias
favouring healthier individuals to attend follow-up is likely
to have led to an underestimate in effect sizes, so that associ-
ations may be stronger than reported here. Our overall results
are further strengthened by the use of historical data. Despite
data heterogeneity (historical data were available for between
1 and 65 readings), which may decrease the overall reliability
of our findings, the approach substantially reduced the influ-
ence of measurement error compared with single measure-
ment data. The calculation of a g factor allowed the analysis
of decline in overall cognitive function that was independent
of the specific test battery used to measure cognitive function
[41]. A resulting neglect of test-specific variance [42] was
partly offset by additional consideration of findings from in-
dividual cognitive tests. Multiple testing will have increased
the risk of type I statistical error and subgroup analysis by sex
will have reduced statistical power, limiting the reliability of
all findings and of those stratified by sex in particular. Repli-
cation in other cohorts with type 2 diabetes is therefore essen-
tial. Readers should also note that the category of accelerated
cognitive decline was specific to the current, predominantly
dementia-free cohort, and should not be mistaken for the pres-
ence of dementia. Finally, we did not consider the role of
treatment of vascular risk, and so potential moderation of risk
factor associations with cognitive decline by treatment cannot
be excluded. The contributions of insulin or risk factor trajec-
tories between baseline and year 4 follow-up to findings were
also not assessed; such analyses are currently planned as part
of future follow-up waves of the ET2DS.

Should associations of long-term exposure to vascular risk
with cognitive decline prove to be causal, the present findings
suggest that interventions targeting a range of vascular risk
factors (rather than single factors such as hyperglycaemia on-
ly) may be needed to help reduce the risk of cognitive impair-
ment in people who either have diabetes or who go on to
develop type 2 diabetes in older age. Our findings support
recent evidence that late-life cognitive change may be deter-
mined over the course of decades prior to the age at which
deficits typically occur [28].

Overall, we have provided strong observational evidence
showing that smoking history, higher BP and poorer
glycaemic control are independently associated with acceler-
ated late-life cognitive decline in people with type 2 diabetes.
Further research into the usefulness of each risk factor as a
target for intervention to reduce age-related cognitive decline
in this patient population is now warranted.
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