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Abstract
While some autoimmune disorders remain extremely rare, others largely
predominate the epidemiology of human autoimmunity. Notably, these include
psoriasis, diabetes, vitiligo, thyroiditis, rheumatoid arthritis and multiple
sclerosis. Thus, despite the quasi-infinite number of "self" antigens that could
theoretically trigger autoimmune responses, only a limited set of antigens,
referred here as superautoantigens, induce pathogenic adaptive responses.
Several lines of evidence reviewed in this paper indicate that, irrespective of the
targeted organ (e.g. thyroid, pancreas, joints, brain or skin), a significant
proportion of superautoantigens are highly expressed in the synaptic
compartment of the central nervous system (CNS). Such an observation
applies notably for GAD65, AchR, ribonucleoproteins, heat shock proteins,
collagen IV, laminin, tyrosine hydroxylase and the acetylcholinesterase domain
of thyroglobulin. It is also argued that cognitive alterations have been described
in a number of autoimmune disorders, including psoriasis, rheumatoid arthritis,
lupus, Crohn's disease and autoimmune thyroiditis. Finally, the present paper
points out that a great majority of the "incidental" autoimmune conditions
notably triggered by neoplasms, vaccinations or microbial infections are
targeting the synaptic or myelin compartments. On this basis, the concept of an
immunological homunculus, proposed by Irun Cohen more than 25 years ago,
is extended here in a model where physiological autoimmunity against brain
superautoantigens confers both: i) a crucial evolutionary-determined advantage
via cognition-promoting autoimmunity; and ii) a major evolutionary-determined
vulnerability, leading to the emergence of autoimmune disorders in Homo

. Moreover, in this theoretical framework, the so calledsapiens
co-development/co-evolution model, both the development (at the scale of an
individual) and evolution (at the scale of species) of the antibody and T-cell
repertoires are coupled to those of the neural repertoires (i.e. the distinct
neuronal populations and synaptic circuits supporting cognitive and
sensorimotor functions). Clinical implications and future experimental insights
are also presented and discussed.
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Introduction
The role of auto-immune mechanisms in a large array of  
diseases continues to be extensively explored, and the identifica-
tion of new target autoantigens is still an active field of research.  
However, despite the quasi-infinite number of potential target  
autoantigens that bear human cells, the majority of our internal 
antigenic library somehow remains off-target. Indeed, while many 
orphan autoimmune diseases have been described, the landscape  
of human autoimmunity is dominated by a limited number of  
disorders that include psoriasis, diabetes, vitiligo, thyroiditis, 
rheumatoid arthritis and multiple sclerosis. Moreover, besides  
“idiopathic” autoimmunity, for which no causative event can 
be conclusively identified, it is worth noting that “incidental”  
autoimmunity, triggered by neoplasms (paraneoplastic syndromes), 
vaccination (autoimmune/autoinflammatory syndrome induced 
by adjuvants [ASIA])1 or microbial infections (post-streptococ-
cal glomerulonephritis and Guillain-Barre syndrome secondary 
to Campylobacter jejuni infection), does not affect all tissues and 
organs with an evenly distributed incidence. The great majority of 
such incidental autoimmune disorders clinically express as neuro-
logical pathologies and mainly target myelinic or neuronal autoan-
tigens. Overall, these observations indicate that, independently  
from the MHC haplotype of an individual, autoantigens are not 
equal with regard to their potential for autoimmunity. There are 
what could be called superautoantigens, and in particular neural 
superautoantigens, toward which TCR and antibody repertoires 
tend to be skewed in humans.

It is proposed here that the existence of such superautoantigens 
is shaped by physiological events that are associated with human 
brain development and functions. The theory of the immunological 
homunculus, proposed more than 25 years ago by Irun Cohen2,3, 
constitutes an ideal framework to explain the emergence of super-
autoantigens during evolution. The present paper firstly provides a 
brief description of the somatosensory homunculus, i.e. the brain 
cortical area that, by analogy-based reasoning, inspired the con-
cept of the immunological homunculus. Secondly, the immune and 
nervous systems are paralleled with regard to: i) the importance 
of self-generated inputs in the development of both somatosensory 
and immunological homunculi; and ii) the mechanisms driving a 
distorted representation of our body in both homunculi.

The somatosensory homunculus provides a distorted 
representation of our body
The somatosensory homunculus (Figure 1) essentially relates to  
the sense of touch and neural connections that are established 
between i) innervated skin territories where peripheral receptors 
for touch sensory inputs are located and ii) specific subareas of the 
brain cortex where neurons that integrate touch sensory input are 
located. The higher the density of sensory receptors in a given skin 
territory, the larger the surface covered by the corresponding cor-
tical subarea4,5. As a consequence, depending on their respective  
densities in sensory receptors, two skin territories covering  
quantitatively similar surfaces may be connected to cortical 
areas covering greatly different surfaces. In this anatomical and  
functional segmentation, so-called somatotopy, the topographical  

heterogeneity of skin territories with regard to the density of sen-
sory receptors is responsible for a distortion of our body repre-
sentation in the sensory cortex. For example, skin terminal nerves 
located in the thumb are connected to a much larger brain corti-
cal area than the terminal nerves innervating the whole trunk skin  
(Figure 1). From a functional point of view, this organization  
makes sense, since skin sensitivity needs to be highly efficient in 
anatomical territories requiring a finely tuned motor control, such 
as thumb, index, lips or tongue. Indeed, the acquisition of motor 
skills relies on bidirectional sensorimotor connections that allow 
motor and sensory activities to mutually fuel and integrate. The 
perception of our own motor activity, a process called sensory  
reafference (or sensory feedback), greatly participates in sculpt-
ing and refining motor programs6,7. Accordingly, in non-human 
primates, sensory loss in infancy profoundly alters the functional 
organization of the motor cortex8. Conversely, specific motor  
programs that are, in part, evolutionary-determined, instruct the 
use-dependent development of specific subareas of the sensory  
cortex. Principally, this was shown in experiments where sensory 
reafferences driven by early primitive motor activity were found 
to model the sensory cortex of rodents9. Finally, such feedback/ 
feedforward processes between sensory and motor neuronal  
networks also operate in conditions of post-developmental motor 
learning10–12.

The somatosensory homunculus is initially shaped by self-
generated sensory inputs
For neuroscientists, the term “developmental plasticity” mainly 
refers to the generation of nascent neuronal networks, which during 
brain development recruit additional neurons and acquire a higher 
order of intra- and/or inter-network connectivity13,14. In this specific 
field of research, the visual cortex has offered a unique experi-
mental paradigm to analyze the impact of sensory inputs on the 
development of sensory neuronal networks. Thus, in cats, rodents 
and non-human primates, deprivation of visual inputs during early 
life stages hampers the formation of a fully functional neuronal  
circuitry in the visual cortex15–17. In addition, recent studies  
performed in congenitally blind vs sighted humans demonstrated 
that both the functionality and connectivity of the visual cortex  
are, in part, shaped by visual experience18. Finally, such an  
experience-dependent development of sensory neuronal networks 
was also demonstrated in the somatosensory cortex: trimming the 
whiskers of newborn rodents induces a partial deprivation of touch 
sensory inputs that is accompanied by profound developmental 
alterations of the somatosensory cortex19–21.

Importantly, it was demonstrated that sensory experience  
impacts on developmental plasticity during specific windows 
of time, so-called critical periods22,23, which vary depending on 
the sensory input considered. Moreover, besides the existence of  
critical periods defined by specific time frames of brain  
development, it is acknowledged that experience-dependent  
plasticity actually persists in the adult sensory cortices, although  
to a lower magnitude24,25. The most illustrative example is given 
by the cortical reorganization of somatosensory neurons that  
follows hand amputation in adults26,27.
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Figure 1. Representation of the somatosensory homunculus. The higher the density of sensory receptors in a given skin territory, the  
larger the surface covered by the corresponding cortical subarea that integrates inputs from this skin territory. In this anatomical and functional 
segmentation so-called somatotopy, the topographical heterogeneity of skin territories with regard to the density of sensory receptors  
is responsible for a distortion of our body representation in the sensory cortex. Thus, skin terminal nerves located in the thumb, lips or 
tongue are connected to a much larger brain cortical area than the terminal nerves innervating the whole trunk skin. The figure was obtained  
from Human Anatomy and Physiology, Chapter 14.2: Central Processing. OpenStax, Anatomy & Physiology. OpenStax CNX. Jul 30, 2014 
(http://cnx.org/contents/FPtK1zmh@6.27:KcreJ7oj@5/Central-Processing).

Recent findings show that in addition to exogenous inputs, self- 
generated inputs shape the somatosensory homunculus. In par-
ticular, as mentioned earlier, our own motor actions, conscious 
or unconscious, are a constant source of self-generated sensory 
inputs that reinforce the sensory neural circuitry. Thus, twitches, 
especially frequent in newborns during sleep, trigger robust sen-
sory reafference that shape the sensory cortex28. Moreover, twitches 
are not randomly generated and have been proposed to provide a 
sensorimotor experience that helps build motor synergies for goal-
directed wake movements, such as walking29,30. Lastly, that human 
fetuses perform synchronous and coordinated hand/mouth move-
ments despite general motor immaturity31 is thought to reflect an 
evolutionary-determined imprinting of such a motor behavior31. In 
this regard, one may consider that nascent motor programs, which 
will ultimately support the achievement of species-specific motor 

behaviors (e.g. hand grasping, complex language-related oral motor 
skills and walking), provide a whole of self-generated sensory 
inputs that shape a distorted somatosensory homunculus. Overall, 
the distorted perception of our own body complementary relies 
on both experience-dependent and experience-independent (i.e  
innate) mechanisms that, in turn, are indispensable to the effec-
tive development and refinement of major human-specific motor  
programs.

The immunological homunculus provides molecular 
support to physiological autoimmunity
The term “immunological homunculus” and the associated  
notion of physiological autoimmunity refers to the development  
of adaptive immune responses directed against self-generated  
inputs i.e. “self” antigens2,3,32. Strikingly, human newborns harbor 
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a non-maternally derived IgM repertoire that is directed toward 
autoantigens33–35. Given the sterile fetal environment, natural 
autoantibodies in newborns cannot result from mechanisms of 
cross-reactivity or molecular mimicry between “non-self” micro-
bial antigens and “self” antigens. Interestingly, such a self-directed 
antibody repertoire has been proposed to form what could be called 
a “stem repertoire” from which networks of reactive and cross- 
reactive antibodies are progressively generated35–38. In the same  
manner, the frequency of T cell receptors (TCRs) recognizing 
autoantigens is much more than predicted by the clonal selection 
theory. Indeed, the negative selection of auto-reactive T-cells via 
AutoImmune REgulator gene (AIRE)-dependent epithelial expres-
sion of autoantigens is far from constituting a stringent process. An 
abundance of molecular and cellular interactions that do not relate 
to clonal deletion prevent physiologically-generated auto-reactive 
T-cells to exert pathogenic effects39–41. Moreover, in-depth analysis 
of public TCRs (i.e. TCRs that are shared by a large population 
of individuals in a given species) has shown that “self” peptides 
are frequently recognized by such public TCRs and could even 
be their main targets42,43. Thus, there is now compelling evidence 
that, as initially proposed by Irun Cohen, physiological autoim-
munity does not only reflect incidental errors of the selection/ 
tolerance immune machinery, but fulfills major functions under 
normal or pathological conditions. Notably, these include two 
major functions: i) anti-tumoral immune responses targeted toward 
developmentally-expressed autoantigens, which are re-expressed 
during the tumoral process33,44; and ii) support to cognition via 
the finely-tuned intra-central nervous system (CNS) activation of  
T-cells directed against brain antigens45–48. In addition, physi-
ological autoimmunity against a specific set of “self” antigens may 
also prevent pathological autoimmunity against a distinct set of  
autoantigens. This was recently demonstrated in patients bearing 
AIRE mutations and exhibiting at the same time immune self-
reactivity, responsible for pathological autoimmunity, and immune 
self-reactivity, protecting from pathological autoimmunity49. 
Finally, another unexpected advantage conferred by physiological 
autoimmunity is to provide extended immune repertoires directed 
against “non-self” antigens. In point of fact, TCRs or antibodies 
directed against “self” antigens cross-react with a large range of 
“non-self” antigens, and physiological autoimmunity is essen-
tial for successfully tackling microbial infections. In particular,  
T-cell clones endowed with high reactivity against “self” antigens 
are major components of the adaptive immune response against  
infectious agents50–52. Thus, overall, the assumption that acquisition 
of an immunological homunculus represents a major educational 
step of the immune system development is now largely confirmed. 

The immunological homunculus is shaped by a limited 
set of superautoantigens, toward which adaptive immune 
responses confer an evolutionary advantage
An important conclusion that needs to be drawn from the  
concept of immunological homunculus is that autoimmunity is by 
essence a physiological process that is required for the harmonious 
maintenance of our tissues and the fine adaptation of the human 
species to its environment. Accordingly, physiological autoimmune 
responses against superautoantigens should provide an evolution-
ary advantage to the human species. Indeed, when providing a dis-
torted representation of our body, the somatosensory homunculus  

skews the focus of our perceptive competencies toward skin  
territories that are essential to the execution of major motor func-
tions in humans, for example walking upright, hand grasping 
and speech. Similarly, one may propose that the immunological 
homunculus skews the focus of “self”-directed adaptive immunity  
toward a specific set of autoantigens that, in humans, repre-
sent functionally important targets of physiological autoimmu-
nity. Logically, in humans and other species endowed with a 
developed neo-cortex (the brain area supporting cognitive func-
tions, arising from the most recent evolutionary changes), brain-
derived autoantigens should represent a major share of such a 
set of superautoantigens. Supporting this view, physiological 
mechanisms of cognition-promoting autoimmunity have been 
now extensively demonstrated in rodents. In particular, myelin- 
specific T-cell clones were shown to robustly stimulate neuro-
genesis in vivo via the synthesis of neurotrophic factors that are  
captured in situ by neural progenitors53,54. Conversely, T-cell 
deficient mice harbor profound cognitive alterations that can be  
reversed by adoptive transfer of CD4+ T-cells55,56. Interestingly, the 
cognition-promoting activity of T-cells was shown to specifically 
rely on a sub-population of memory T-cells recognizing brain-
derived antigens and exhibiting homing properties toward menin-
ges, choroid plexus and cervical lymph nodes (i.e. the regional 
lymph nodes draining cerebrospinal fluid)48,57,58.

Most importantly, the notion of physiological autoimmunity  
suggests that pathological autoimmunity may not result from the  
de novo emergence of pathogenic autoreactive clones, but from  
pre-existing autoreactive clones that have acquired abnormal func-
tional properties2,44,59. In this regard, pathogenic autoimmunity 
and physiological autoimmunity should be expected to share the  
same preferential targets i.e. superautoantigens. Exposed below 
are several lines of evidence indicating that a major source of  
superautoantigens, targeted by both physiological and pathologi-
cal autoimmunity, is provided by the CNS.

The CNS is a major source of superautoantigens
Antigenic compartments formed by myelin and synapses 
exhibit specific immunogenic properties
There are two categories of properties that confer a high immuno-
genic potential to myelin-derived and synapse-derived antigens:

1) Abundance and high renewal rate: While abundance (amount 
of antigen) is an important factor that determines our immune sys-
tem’s ability to see and react against an antigen, the renewal rate 
of an antigen is likely to be at least as important. In most cases, 
renewal implies degradation by the phagocytic system, which is an 
indispensable step to antigen presentation by mononuclear phago-
cytes. Conversely, a highly abundant antigen that is poorly renewed 
may be predicted to be poorly immunogenic. In this view, two cat-
egories of brain antigens fulfills the criteria of being both abundant 
and highly renewed: synapse-derived and myelin-derived antigens. 
Indeed, synapses are highly dynamic structures that are constantly 
submitted to a remodeling process supporting the generation and 
maintenance of operative and adapted neuronal networks. Neurons 
represent roughly half of all CNS cells and, depending on the brain 
area considered, each human neuron bears ~100,000 synaptic con-
nections (as inferred from electron microscopy analyses of cortical 
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samples)60. In addition, the synaptic circuitry in humans is highly 
plastic until at least the third decade, which translates into a high rate 
of both de novo formation and elimination of synapses61. Similarly, 
myelin (as assessed by measures of white matter volume) occu-
pies nearly 25% of the total human brain volume62 and was recently 
shown to be renewed at a very high rate in the steady state63.

2) Inflammation-associated development and function: Microglial 
cells, brain-resident macrophages, play key regulatory functions 
during brain development and are currently considered as the main 
“architects” of nascent neuronal circuits64. Such a unique function 
stands on the ability of microglia to exert finely tuned phagocytic 
activity and to synthesize a large range of cytokines, which not 
only control neuronal cell fate, but also the formation, selection, 
maintenance and remodeling of interneuronal synapses. Thus, 
during brain development, microglia successively engage distinct 
activation programs that are in close synchrony with the stepwise 
establishment and maturation of neuronal circuits65. Moreover, 
in the mature brain, microglia constantly operate a complement-
dependent phagocytosis of poorly-active synapses, thus prevent-
ing inappropriate connectivity. Lastly, several lines of evidence  
indicate that specific inflammatory cytokines regulate synaptic 
activity and function under physiological conditions66. TNF-alpha 
secreted by glial cells preserves the efficacy of excitatory synapses67, 
and IFN-γ is a key molecular support for excitatory synapses68 and 
neuronal circuitry involved in social behavior69. With regard to 
the myelin compartment, it is also worth noting that myelination 
of axons is a highly dynamic process that is coupled to synaptic 
activity70–74, and thus indirectly linked to physiological inflamma-
tion. In addition, microglia exert direct effects on the development 
and myelinating functions of oligodendrocytes (the myelin-form-
ing cells) via the synthesis of H-ferritin75 and M2-type cytokines76. 
Overall, the formation, maintenance and plasticity of two major 
brain molecular compartments, namely myelin and interneuronal 
synapses, involve a set of exquisitely-controlled immune mecha-
nisms. In this regard, physiological inflammation appears to be 
required to ensure proper CNS functions66. In addition, while 
inflammatory mechanisms are now recognized in shaping brain 
development in rodents and humans, a major distinctive feature of 
the human brain is the duration of its development over a period of 
time that extends from early embryonic stages until adolescence77 
and beyond78. Indeed, the acquisition of a fully-operative neuronal 
circuitry supporting primary human-specific brain skills (regarding 
emotional, cognitive and sensory-motor functions) is a decade-long 
process that is intimately associated to myelination78. Along this 
line, the proliferation of neuronal progenitors and their differentia-
tion into cortical neurons, usually designated by the term “cortico-
genesis”, was shown to be much slower and complex in humans 
compared to rodents79. Thus, besides development and maturation, 
adult synaptic plasticity, allowing the constant remodeling of syn-
aptic connections in order to maintain, extend and/or reorganize 
neuronal circuits, is likely responsible for a massive exposure of the 
immune system to synapse- and myelin-related antigens through-
out life. The recent demonstration of a rich lymphatic vasculature, 
which drains brain antigens to cervical lymph nodes80,81, further 
supports this view.

Non-CNS autoimmune disorders target CNS antigens
While CNS autoimmune diseases are generally relatively infre-
quent, many autoantigens identified in non-CNS autoimmune 
pathologies are enriched in the synaptic fraction of the develop-
ing and/or mature brain. Below is a non-exhaustive list of such  
autoantigens:

1) GAD65: Glutamate decarboxylase 65 (GAD2), considered the 
main autoantigen in diabetes type I82, is a synaptic enzyme that 
catalyzes γ-aminobutyric acid (GABA) synthesis from glutamate. 
Its synaptic expression in inhibitory terminals (i.e. axon terminals 
from neurons transmitting inhibitory inputs) is indispensable to the 
effective functioning of the GABAergic system (all neurons for 
which the primary neurotransmitter is GABA)83.

2) AchR: Myasthenia gravis is mediated by autoantibodies target-
ing the AchR (acetylcholine receptor) on the post-synaptic mem-
brane of the neuromuscular junction84. However, acetycholine is 
also a key neurotransmitter in the CNS, and AchR-mediated syn-
aptic transmission is essential in crucial cognitive functions, such 
as memory85.

3) HSPA5 and other heat shock proteins: The human stress protein, 
HSPA5 (also known as BIP or GRP78), belonging to the heat shock 
protein family A (HSP70), is one of the autoantigens involved in the 
pathophysiology of rheumatoid arthritis86,87. It is also a major com-
ponent of the synaptic glutamate receptor complex88. Similarly, the 
heat shock protein HSP60, a predominant target of physiological 
autoimmunity89, is abundantly expressed in axon terminals90, and 
mutations in the HSP60 gene result in a human disorder affecting 
motor neurons (autosomal recessive spastic paraplegia 13)91.

4) Small nuclear ribonucleoproteins: Small nuclear ribonucleopro-
teins (snRNPs) are core components of the spliceosome machin-
ery and the main autoantigens toward which anti-ribonucleotide 
antibodies are directed in systemic lupus erythematous (SLE) and 
Sjögren’s syndrome92. In neurons, specific families of mRNAs are 
exported toward axon terminals and synapses in structures called 
RNA granules or ribonucleoprotein particles. Such structures are 
essential to the proper trafficking of specific mRNA species at 
distance from the soma and their local translation in the synaptic 
compartment93. Mutations or deletions in genes coding for RNA-
binding proteins (RBPs) are involved in numerous inherited CNS 
disorders94, including fragile-X mental retardation95, spinal muscu-
lar atrophy and spinocerebellar ataxia96, as well as familial forms 
of the following neurological conditions: autism97,98; amyotrophic 
lateral sclerosis99; and fronto-temporal lobar degeneration100. The 
whole spectrum of RNAs and proteins that are complexed to such 
neuronally-expressed RBPs is currently extensively explored by 
systemic approaches94,101 and include several snRNPs targeted by 
autoantibodies in SLE or Sjögren’s syndrome. These snRNPS com-
prise of the La autoantigen Ssb, which binds FRMP (fragile X 
mental retardation protein)101, the U1 snRNP, which interacts with 
SMN (survival of motor neurons)102, and the small non-coding 
RNA called Y RNA, a component of Ro60 ribonucleoprotein parti-
cle, which binds neuronal ELAV-like protein103. Finally, ribosomal  
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proteins are themselves targeted by both pathological autoimmunity 
in SLE patients104 and physiological autoimmunity in healthy indi-
viduals105. Again, synapses are specifically enriched in ribosomes 
and allow crucial synaptic proteins to be synthesized in a timely 
manner106,107.

5) Basement membrane proteins: Autoimmunity against collagen 
IV and laminins, two major components of basement membranes, 
is responsible for the development of anti-glomerular basement 
membrane glomerulonephritis, Goodpasture’s disease108 and sev-
eral autoimmune skin disorders109. Recent evidence indicates that 
synapses are embedded in a extracellular matrix microenviron-
ment, in which collagen IV and laminins are not only abundant,  
but critically involved in synapse morphogenesis and synaptic 
remodeling110–113.

6) Tyrosine hydroxylase: Vitiligo is a frequent autoimmune  
disease characterized by an immune-mediated destruction of 
melanocytes leading to skin depigmentation114. Interestingly, 
the biochemical pathways allowing the synthesis of melanin and 
dopamine respectively present major similarities115,116, and the 
intra-CNS grafting of melanocytes was recently proposed as a 
therapeutic approach for Parkinson’s disease, a neurodegenerative 
disorder affecting dopaminergic neurons115. In this regard, tyrosine 
hydroxylase, a major enzyme of the dopamine synthesis pathway 
in neurons is also essential to melanin synthesis and is targeted by 
autoantibodies in vitiligo117,118. Also, the melanin-concentrating 
hormone receptor 1 (MCHR1), another identified autoantigen in 
vitiligo119, is expressed by a subpopulation of CNS neurons and its 
ligand, MCH, is indeed a neuropeptide regulating energy balance, 
sleep and mood120,121.

7) Thyroglobulin and acetylcholinesterase: Thyroglobulin (TG) 
and thyroid peroxidase (TPO) are the two main thyroid autoanti-
gens targeted in Hashimoto’s disease122. While anti-TPO antibod-
ies have been shown to bind a subpopulation of astrocytes123, it is 
worth noting that anti-TG autoantibodies recognize an acetylcho-
linesterase domain that is essential to both the immunogenicity of  
TG124–126 and its function127,128. Thus, cross-reactivity between 
TG and acetylcholinesterase, a target autoantigen in Myasthenia  
gravis, was proposed as a mechanism of ocular muscle dysfunc-
tion in Hashimoto’s disease124. As mentioned earlier, the cholin-
ergic system, essentially supported by functional interactions  
between acetylcholine, acetylcholinesterase and AchR, is crucial  
to the execution of major cognitive tasks, such as learning and 
memory.

Cognitive alterations are frequently observed in patients 
suffering from non-CNS autoimmune diseases
Subclinical cognitive alterations, as well as psychiatric symptoms, 
are observed in a large array of non-CNS autoimmune diseases. 
Interestingly, specific antibody signatures have been shown to be 
associated with such neurological or psychiatric manifestations, 
which argues against a non-specific inflammatory process that 
would essentially involve innate immune mechanisms. Below is a 
list of the main non-CNS autoimmune disorders that may associate 
with cognitive and/or psychiatric symptoms:

1) SLE and Sjögren’s syndrome: Besides purely neuropsychiatric 
forms of SLE, subtle to major cognitive alterations were demon-
strated in up to 20% of SLE patients129. Cognitive clinical signs in 
SLE are accompanied with high titers of anti-N-methyl-D-aspartate  
receptor (NMDA; also named NR2 glutamate receptor) and/or 
anti-ribosomal antibodies130,131. Similarly, cognitive dysfunctions 
along with brain structural alterations, detectable by magnetic  
resonance imaging (MRI), were reported in up to 65% patients  
suffering from primary Sjögren’s syndrome132–134. As in SLE 
patients, a correlation was observed between titers of anti-NR2 
antibodies (in the serum or cerebrospinal fluid) and clinical sores  
of cognitive dysfunction130,135.

2) Hashimto’s thyroiditis: Hashimoto’s encephalopathy, also  
known as steroid-responsive encephalopathy associated with 
autoimmune thyroiditis (SREAT), is a rare condition in which 
anti-TPO antibodies are involved136. However, apart from SREAT, 
autoimmune thyroiditis (AIT) patients who are in an euthyroid 
state, suffer from mild to severe cognitive alterations correlating 
with serum levels of anti-thyroid antibodies, in particular anti-TPO 
and anti- TG antibodies137,138.

3) Rheumatoid arthritis: While the rate of motor or sensory  
neurological symptoms is relatively low in rheumatoid arthritis 
(RA) patients, the incidence of mood disorders is estimated to 
reach up to 70%139. Moreover, in independent studies, mild cogni-
tive deficits were demonstrated in more than 70% of RA patients 
and were associated with MRI or biological signs of altered CNS 
tissue integrity140,141.

4) Psoriasis: Psoriasis is a chronic skin disorder that may also tar-
get joints, and for which several candidate autoantigens have been 
identified142, including, surprisingly, the melanocytic autoantigen 
ADMTSL5143. The impact of psoriasis plaques on self-esteem 
and mood is well-described and the role of psychological stress 
as a trigger of psoriasis recurrence is also robustly documented144.  
However, measurable signs of subtle cognitive impairment are  
also observed in psoriasis patients145,146, even during the early phases 
of the disease145.

5) Crohn’s disease: Inflammatory bowel diseases, including  
Crohn’s disease (CD), associate with distinct profiles of circulat-
ing autoantibodies directed notably against glycans, GP2 and  
GM-CSF147. While glycans were shown to be specifically enriched 
in synapses148,149, the intra-CNS expression of GP2 and GM-CSF 
in the developing or mature brain is still lacking. However, two 
recent MRI studies performed in CD patients demonstrated marked  
structural brain alterations150,151 that correlated with cognitive  
dysfunction150.

Myelin and synapses are by far the most frequently 
targeted compartments in CNS autoimmune disorders
Besides multiple sclerosis, during which one or several myelin 
autoantigens are targeted152, a flurry of rare CNS autoimmune  
disorders, notably including paraneoplastic syndromes (PNS), have 
been characterized in the past decade. Interestingly, not only do a 
great majority of PNS have a purely neurological expression, but 
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autoantigens in PNS were found to derive essentially from the syn-
aptic compartment153. Moreover, other CNS autoimmune disorders 
not associated with neoplasms also target synaptic proteins, and the 
term “autoimmune synaptopathies” has been proposed to designate 
such pathologies153. The following is a non-exhaustive list of the 
synaptic autoantigens currently identified: GAD65 (glutamic acid 
decarboxylase)154; NMDAR (N-methyl-D-aspartate receptor)155; 
AMPAR (α-amino-3-hydrozy-5-methyl-4-isoxazolepropionic  
acid receptor)156; Caspr2 (contactin-associated protein-like 2)157;  
LGI-1 (leucine-rich glioma-inactivated protein 1)158; GABA-B 
receptor (γ-aminobutyric acid receptor B)159; GABA-A receptor  
(γ-aminobutyric acid receptor A)160; mGluR5 (metabotropic gluta-
mate receptor 5)161; GlyR (glycine receptor)162; NRXN3 (neurexin-
3α)163; AMPH (amphiphysin)164.

On the “co-evolution” of the immune and nervous 
systems
As shown above, a high number of antigens targeted in CNS or 
non-CNS autoimmune diseases belong either to the myelin or 
synaptic compartments. Even though such target autoantigens are 
evidently also expressed in non-CNS locations, the important ques-
tions arising from such an observation are why and how the human 
immune repertoires are skewed toward brain superautoantigens. As 
discussed earlier, both anti-tumoral immunity and maintenance of 
tissue integrity are essential functions that can be assigned to physi-
ological autoimmunity59,165. Nevertheless, these functions do not 
appear to afford an evolutionary advantage to humans over other 
species endowed with an adaptive immune system. One may con-
sider that the human species is indeed essentially characterized by 
a particular ability to operate complex cognitive tasks and perform 
exquisitely precise motor programs. On this basis, it can be hypoth-
esized that CNS-derived autoantigens are major targets of physi-
ological immunity in humans. Moreover, at the scale of evolution, 
physiological autoimmunity against CNS auto-antigens may reflect 
not only the development of fine cognitive and motor functions in a 
given species, but the extent to which support to these functions is 
afforded by adaptive immunity in this species.

From symbiosis to phylosymbiosis
Interactions between humans and their gut microbiota is an  
illustrative example of what could be termed an immune-mediated 
symbiotic relationship. On one hand, gut microbiota constantly 
stimulate the adaptive immune system and shape T-cell and  
antibody repertoires, thus expanding, through cross-reactivity, 
the diversity of adaptive immune responses. In turn, the adaptive 
immune system tightly controls the composition of gut micro-
biota and favors the development and maintenance of a long-
lasting commensal flora, which is benefitial to the host. Immune 
response against gut microbiota fluctuates over time and serum 
antibody titers against microbiota-derived antigens are submitted 
to variations, determined by epitope-specific clonal expansion and  
dominance166. Thus, more generally, the commensal flora resid-
ing in the skin, gut, lungs and urogenital tract permanently stimu-
lates, shapes and modulates our whole immune repertoire167–169. In  
this state of “immunity by equilibrium”169, populations of Tregs,  
deriving either from the thymus or peripherally-generated, play a 
crucial role in the neonatal development of tissue-specific tolerance 
toward symbiotic flora components170–174. While symbiosis corre-

sponds to a process of co-development and mutual support between 
species, co-evolution is defined by mutual selective pressure exerted 
by two species to the benefits of both species. Interestingly, the 
term phylosymbiosis was recently proposed to depict the parallel 
demonstrated between the phylogeny of host-associated microbial 
communities and the phylogeny of species hosting these distinct 
communities175. Of note, phylosymbiosis appears to be essentially 
mediated by the immune system of the host175. In this regard,  
host/microbiota symbiotic interactions could be considered as 
resulting from a process of immune-mediated co-evolution of 
organisms.

From co-development to co-evolution
By analogy with the notions of phylosymbiosis and co-evolution, it 
is proposed below that the immune and nervous systems not only 
co-develop at the scale of an individual, but have co-developed dur-
ing evolution. This idea essentially stems from the crucial demon-
stration that human newborns harbor an IgM antibody repertoire 
directed against autoantigens34,35,38. Obviously, and as previously 
mentioned, since the amnion forms a sterile environment, cross-
reactivity against microbiota-derived antigens cannot explain such 
an observation. Interestingly, while the full array of autoantigens 
targeted by IgM in newborns remains to be identified, many of 
the currently known targeted autoantigens are components of the 
myelin or synaptic compartments. These include: GAD65, MOG 
and acetylcholinesterase (cf supra); HSP60, a mitochondrial chap-
eronin whose genetically-determined alterations lead to a familial 
form of motor neuron disease176 (cf supra); myosin, a protein whose 
brain isoform is abundantly expressed in synapses177,178; galectin-1 
and -3, two neuronally expressed molecules that bind to the syn-
aptic RNA-binding protein SMN (Survival Motor Neuron)179,180; 
B2-microglobulin, a key immune molecule also required for proper 
CNS development and plasticity181.

These observations suggest that the developing CNS provides 
a highly diverse array of autoantigens that may stimulate and 
somehow educate effector T and B cells during the prena-
tal period. The main advantage conferred to the host by such an 
educational process would be a pre-natal expansion of memory  
lymphocytes, which, through cross-reactivity, would provide 
a larger immune coverage against infectious agents (including  
pathological microbiota).

Beyond development, it is also suggested that throughout the  
lifetime of an individual, brain-derived autoantigens may constantly 
shape the repertoire of memory lymphocytes and provide tonic sig-
nals for the survival and self-renewal of naïve lymphocytes182–184. 
As shown above, synaptic remodeling and myelin renewal are two 
major hallmarks of physiological neural functions during the life 
span of an individual. In particular, the learning-mediated establish-
ment of new neuronal circuits, their selection and maintenance or 
elimination implies a constant adjustment of our neural repertoires 
(neural repertoires being defined here as all neuronal populations 
and synaptic circuits available for cognitive or sensorimotor tasks at 
a given time). Not only will the brain continue to develop and matu-
rate until early adulthood, but cognitive and sensori-motor func-
tions in the mature CNS are inherently-linked to the plasticity of 
synapses and myelin sheaths. Overall, one may propose that, simi-
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larly to microbiota, the CNS constantly fuels the immune system 
with antigens that shape and modulate our T- and B-cell repertoires. 
Conversely, the CNS-instructed diversification of our immune rep-
ertoires may ensure that essential synaptic circuits are reinforced by 
cognition-promoting autoreactive lymphocytes. Thus, at the scale 
of an individual, the acquisition and maintenance of the immune 
and neural repertoires may be somehow coupled via a process of 
mutual development and support.

What about evolution? It is proposed here that such a coupling 
of immune and neural repertoires may have been a driving force 
of evolution. In this theoretical model, the nervous and immune  
systems would have been submitted to a co-evolution-like process, 
consisting of a mutual selective pressure exerted by both systems  
to the benefits of the host. On one hand, through cognition- 
promoting immunity, the evolutionary-determined emergence 
and diversification of adaptive immunity would have provided  
support to new neural repertoires. At the same time, the evolu-
tionary-determined diversification of neural repertoires would 
have promoted new immune repertoires (and a subsequent larger 
ability to tackle infections) via exposure to a larger array of  
CNS-derived antigens. Accordingly, it may be predicted that among 
species endowed with an adaptive immune system: i) Diversity  
of the germline-encoded and realized (mature) immune reper-
toires parallels the diversity exhibited by the neural repertoire;  
ii) cognition-promoting autoimmunity is quantitatively and quali-
tatively scaled to the level of complexity that each species exhib-
its with regard to cognitive functions; and iii) genes involved in  
the diversification of both immune and neural repertoires have  
had a major evolutionary impact. Importantly, this model would 
explain why the realized human TCR repertoire overcomes the  
one of rodents by a factor of 10185.

Critical points and limitations of the co-development/co-
evolution model
Co-development and co-evolution processes may also link the 
immune system to non-CNS organs: The theoretical model dis-
cussed above may be considered as neurocentric. Indeed, the  
concept of protective autoimmunity likely applies also to non- 
CNS organs, and the CNS is not the only source of superautoan-
tigens. Thus, in addition to synaptic and myelin antigens, other  
families of autoantigens are: i) highly renewed, ii) abundantly 
exposed to the immune system, iii) involved in crucial organ- 
specific functions, and iv) expressed in a context of physiologi-
cal inflammation. Evolutionary-determined adaptive immune  
responses against such non-CNS superautoantigens may provide  
a large range of functional benefits that do not relate to the CNS.  
As shown below, some of these may be species-specific (for  
instance, provide trophic support to organs that are essential to 
the survival and adaptation of a given species), while others may 
be shared between species (for instance, fighting against cancer 
cells).

Species-restricted vs inter-species superautoantigens: The  
advantages conferred to the host by an adaptive immune response 
directed against a superautoantigen may persist across evolution.  
In particular, one could anticipate that a substantial share of  
public TCRs are directed against two categories of superautoanti-
gens: species-restricted and inter-species superautoantigens.

1) Species-restricted superautoagntigens: The choice of the term 
“species-restricted” refers to the notion that such antigens are not 
necessarily expressed in a species-specific manner. By contrast, 
the adaptive response mounted against these antigens is species-
specific and confers a species-specific evolutionary advantage 
to the host. Notably, this may be the case for a group of brain-
derived antigens that could have emerged as superautoantigens in  
Homo sapiens.

2) Inter-species superautoantigens: These antigens are not only 
expressed across distinct (or all) species endowed with an adaptive 
immune response, but the T-cell response mounted against these 
antigens confer an evolutionary advantage that is shared between 
such species.

Natural antibodies directed against CNS antigens may exert only 
an indirect effect on neural repertoires: Previous studies showed 
that CNS-directed antibodies can be detected in the blood in a 
large range of the healthy population186,187. However, antibodies 
do not or only poorly cross the blood-brain barrier, and cognition- 
promoting autoimmunity was demonstrated to rely on T-cells 
rather than autoantibodies54–56,188. Thus, while T-cells and neural 
repertoires may be mutually supportive, only a one-way functional  
connection may link the antibody and neural repertoires. On the 
one hand, exposure of brain antigens to the immune system would  
benefit the host via an expansion/diversification of both the anti-
body and TCR repertoires, while on the other hand, only “self”-
reactive T-cells (but not autoantibodies) would provide support 
to neural repertoires. Another explanation, not exclusive from the 
former one, would be that natural autoantibodies directed against 
CNS antigens participate in the afferent phase of T-cell mediated 
cognition-promoting immune responses. Engulfment of CNS-
derived antigens opsonized or captured by secreted antibodies or, 
for B-cells, by membrane-bound immunoglobulins, may indeed  
result in antigen presentation to T-cells, notably in cervical lymph 
nodes.

Natural autoantibodies and “self”-reactive T-cells may provide 
two separate arms of protective autoimmunity: Although this 
point remains to be experimentally explored, one may anticipate 
that autoantibodies and “self”-reactive T-cells are targeting distinct 
(yet partially overlapping) groups of superautoantigens. T-cells and 
antibody repertoires would thus provide distinct and complemen-
tary facets of protective autoimmunity. One may suggest that for 
some (or possibly many) natural autoantibodies, an essential func-
tion is to somehow scavenge and buffer proteins that are renewed 
or exposed at a high rate in the blood. Supporting this view, spleen 
marginal zone B-cells, whose hosting tissue is directly plugged 
on the blood stream, are considered as a major source of natural 
autoantibodies189,190.

Clinical implications
Autoimmunity viewed as a neurodevelopmental disorder
The assumption that immune and neural repertoires are mutually 
supportive during developmental and post-developmental periods 
has potentially important clinical implications. In particular, if 
brain development, from the prenatal period to early adulthood, has 
a major impact on the acquisition and maintenance of immune rep-
ertoires, an endogenous neural origin of pathological autoimmunity 
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may be envisioned. The window of time and immune context dur-
ing which brain superautoantigens are initially exposed could be a 
major determinant of the diversity of the T-cell repertoire. In other 
words, a proper exposure to brain superautoantigens would deter-
mine the generation, maintenance and expansion of T-cells that not 
only recognize brain superautoantigens, but harbor a phenotype and 
functional profile that are ideally suited to support neural repertoires 
(i.e. ad hoc homing properties and ad hoc profiles of cytokines  
and neurotrophic factors). Similar principles may apply to B 
cells and natural autoantibodies, with the limitations discussed  
previously. 

Several elements of the literature support the notion that  
neural and immune repertoires mutually develop in humans. 
Cognitive and behavioral alterations are observed in children 
suffering from several categories of genetically-determined  
immunodeficiencies. These include severe combined immunodefi-
ciencies191 and the Di Georges syndrome, which associates thymic 
hypoplasia, cognitive deficits192 and psychiatric manifestations, 
such as autism and schizophrenia193. Conversely, complex immune 
alterations have been reported in patients suffering from the two 
most frequent neuropsychiatric and neurodevelopmental human  
disorders: autism and schizophrenia. Schizophrenia is associ-
ated with a higher incidence of autoimmune disorders, including 
Grave’s disease, psoriasis and celiac disease194. Moreover, a number 
of studies have demonstrated a large range of immune alterations in 
the blood of schizophrenic patients195,196. Also, the high incidence 
of autoimmune disorders in autistic patients and their siblings has 
suggested that autoimmune mechanisms may be involved in the 
pathophysiology of autism197. However, in accordance with the 
co-development/co-evolution model, another explanation could 
be that the neurodevelopmental alterations characterizing autism 
and schizophrenia are the cause rather than the consequence of  
profound alterations of the immune repertoires, which may lead to 
pathological autoimmunity in a subgroup of these patients.

Interestingly, genome-wide association studies also provide  
important support to the co-development/co-evolution model. 
Indeed, as discussed earlier, this model predicts that genes involved 
in the diversification of both immune and neural repertoires 
have had a major evolutionary impact. Accordingly, there is now  
compelling evidence that genetic susceptibility to autism and  
schizophrenia is conferred, for some parts, by immune-related 
genes, including HLA genes198–201.

Immune repertoires under the grip of the CNS
Besides periods of co-development and co-maturation, it is pro-
posed that neural and immune repertoires mutually fuel each 
other during the whole life of an individual. Considering that 
CNS-derived antigens, similarly to microbiota-derived anti-
gens, constantly shape immune repertoires, implies that mental  
state, learning tasks, cognitive activities and/or the execution of 

sensori-motor programs could exert major and specific effects 
on immune repertoires. Stress-induced alterations of the immune 
response is now extensively documented and is known to rely 
on two main pathways: the hypothalamus-pituitary-adrenal axis 
and the autonomic nervous system (ASN) pathway202,203. Recently, 
the brain reward system was also shown to deeply impact immune 
responses via signaling through the ASN204. CNS-derived super-
autoantigens and their instructing roles on immune repertoires  
could thus provide another mechanism of brain-induced immu-
nomodulation. More generally, demonstrating that neural and 
immune repertoires are functionally coupled could pave the way 
to innovative therapeutic strategies based on the control of adaptive 
immune responses by cognitive and/or sensorimotor tasks.

Experimental insights
The assessment of immune repertoires by system biology 
approaches34,36,43,205 should allow the determination of whether 
or not cognitive activities, sensori-motor tasks and mental state 
directly impact immune repertoires. In particular, immune rep-
ertoires should be explored in experimental settings known to  
induce an increased synaptic plasticity in rodents (notably via 
enrichment of the environment). Similarly, murine genetic mod-
els of schizophrenia or autism should be investigated with regard 
to alterations of immune repertoires (this should be performed 
only if immune alterations are not expected to occur as a direct  
consequence of a given genetic manipulation). The same strat-
egy could be also applied to murine models of mood disorders.  
Of note, recently-developed technologies, such as optogenetics 
and chemicogenetics, are currently being harnessed to unravel 
new links between the brain and immune system206. Such innova-
tive approaches should allow to precisely determine the impact  
exerted by the activation of specific synaptic circuits on: i) the 
peripheral T- and B-cell repertoires; and ii) the exposure of spe-
cific CNS antigens, notably via their draining to cervical lymph 
nodes. Finally, a global analysis of immune repertoires should be 
performed in human patients suffering from autism, schizophrenia 
or mood disorders. Notably, one may anticipate that qualitative 
or quantitative alterations of public TCRs may occur under these  
clinical conditions.
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