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Abstract

Coleoptera is themost species-rich insectorder, yet is currentlyunderrepresented ingenomicdatabases.Anassemblywasgenerated

for ca.1.7Gbgenomeof the leafbeetleGonioctenaquinquepunctatabyfirst assembling long-sequence reads (OxfordNanopore;6

27-fold coverage) and subsequently polishing the resulting assembly with short sequence reads (Illumina; 6 85-fold coverage). The

unusually large size (most Coleoptera species are associated with a reported size below 1 Gb) was at least partially attributed to the

presence of a large fraction of repeated elements (73.8%). The final assembly was characterized by an N50 length of 432 kb and a

BUSCO score of 95.5%. The heterozygosity rate was 6 0.6%. Automated genome annotation informed by RNA-Seq resulted in

40,568 predicted proteins, which is much larger than the typical range 17,000–23,000 predicted for other Coleoptera. However, no

evidence of a genome duplication was detected. This new reference genome will contribute to our understanding of genetic

variation in the Coleoptera. Among others, it will also allow exploring reproductive barriers between species, investigating intro-

gression in the nuclear genome, and identifying genes involved in resistance to extreme climate conditions.
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Introduction

With more than 340,000 described species, the order

Coleoptera has by far the highest number of species of all insect

orders (Hespenheide 2001; Mayhew 2002). This exceptional

species richness has been attributed to various causes, including

an adaptive radiation associated with multiple shifts to

specialized herbivory on a large diversity of angiosperm species

(Farrell 1998); horizontal transfers of plant cell wall-degrading

enzymes from bacteria and fungi (McKenna et al. 2019); and

an exceptionally low rate of extinction within the clade

Polyphaga (Smith and Marcot 2015). Despite this high species

richness, the number of beetle species for which a genome

assembly is currently available remains markedly lower than
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for other insect orders such as Hymenoptera or Diptera

(Thomas et al. 2020). Here, we present the first genome as-

sembly of G. quinquepunctata, a member of Chrysomelidae

(which is one of the largest beetle families and encompasses 6

35,000 described species; Hespenheide 2001).

A cold-tolerant insect with a widespread but fragmented

distribution across Europe, G. quinquepunctata can be used

as a model to study the impact of climate variation that oc-

curred at the end of the Pleistocene. Although it is well dif-

ferentiated from its sister species Gonioctena intermedia, both

species display parapatric distributions, sharing a portion of

their range mainly inside the Alps. It was shown that both

species occasionally hybridize where they meet and that as a

consequence, introgression of the mitochondrial genome has

occurred multiple times from G. quinquepunctata to G. inter-

media (Quinzin and Mardulyn 2014).

Our new assembly, the 15th among beetles and the 5th

among chrysomelids, provides an important resource for

studying the evolution of the range of this cold-tolerant spe-

cies in response to past climate changes, and for studying its

mechanism of speciation at the genome level. This paves the

way for comparing genomic variation within and between

Gonioctena species, allowing to identify regions of strong dif-

ferentiation that have potentially played a role in the emer-

gence of reproductive barriers between the two species and

to characterize the amount of introgression between them.

Results and Discussion

Genome Characteristics Estimation

Prior to assembling the genome of G. quinquepunctata, we

used k-mer-based approaches to estimate its size. We found it

to be �1.7 Gb (GenomeScope: 1.56, kmercountexact: 1.9),

which is larger than that of most Coleoptera species, reported

to be below 1 Gb (Petitpierre et al. 1993; Hanrahan and

Johnston 2011). The heterozygosity rate was estimated at

ca. 0.6% using both GenomeScope and kmercountexact.

Genome Assembly and Gene Prediction

Based on the genome size estimate above, the 46 Gb of

Nanopore reads and 145 Gb of Illumina paired-end reads

we generated from a single individual correspond to, respec-

tively, a 27-fold and an 87-fold coverage of the genome. The

percentage of 1,658 single-copy orthologs from the Insecta

data set was 53.4% in the raw contigs then 60.7% after the

first polishing step and 96% after the second one. The as-

sembly consisted of 24.7 million contigs, with a total length of

1.9 Gb and an N50 length of 359 kb. Running Purge Haplotigs

decreased the number of contigs to 10 million and the length

of the assembly to 1.7 Gb, whereas its N50 reached 432 kb.

Purge Haplotigs also decreased the number of k-mers repre-

sented twice in the assembly (supplementary fig. 1,

Supplementary Material online), while slightly decreasing

the k-mer completeness from 96.25% to 95.69%. The final

assembly contained 95.5% complete, 2.2% fragmented, and

2.3% missing orthologs (table 1).

A total of 73.8% of the assembly was identified as com-

posed of repeated regions, which is higher than the 64%

identified for Callosobruchus maculatus (Sayadi et al. 2019)

and the 58% for Ophraella communa (Bouchemousse et al.

2020). A high proportion of the repetitive elements identified

in the genomes of the latter two species (54% for C. maculatus

and 68% for O. communa) could not be classified, which the

authors of these studies interpreted as possibly reflecting long

evolutionary distances to previously known repeats. This value

was lower (42%) for G. quinquepunctata, but still represents a

large amount (table 1).

The annotation pipeline identified 39,463 coding genes

and 41,598 proteins. After all proteins with missing start or

stop codons were removed, these values decreased slightly to

38,493 and 40,568. We were able to annotate 19,357

(47.7%) of these proteins by reference to the Swiss-Prot

and InterPro databases. Among the 31,981 (78.8%) proteins

that had strong matches against the NCBI NR database,

26,176 (82%) of them were mapped to beetle proteins

(with 13,179 [41%] matches to Leptinotarsa decemlineata,

3,458 [11%] to Anoplophora glabripennis and 2,618 [8%]

to Diabrotica virgifera virgifera). Bacteria and virus proteins

matched, respectively, 144 and 41 proteins predicted for G.

Table 1

Summary of Assembly Statistics

Assembly Size (Mb) 1,732

Number of contigs 10,033

Number of contigs >50 k 5,755

Longest contig (Mb) 3.03

Contig N50 4,32,124

N (%) 0

GC (%) 34.61

BUSCO Complete (%) 95.5

Complete duplicated (%) 2

Fragmented (%) 2.2

Missing (%) 2.3

Repetitive elements Total (%) 66.09

SINEs (%) 0

LINEs (%) 13.76

LTR (%) 4.9

DNA transposons (%) 11.98

Unclassified (%) 42.22

Annotation Predicted genes 38,493

Predicted proteins 40,568

Functionally annotated 19,357

Mean gene length 15,141

Mean exon length 267

Mean intron length 6,479

Exons per gene 3.53

Introns per gene 2.53
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quinquepunctata (for a total of 0.6%), suggesting a very low-

level bacterial contamination.

The number of predicted proteins (40,568) is much larger

than the range 17,000–23,000 predicted for other Coleoptera

(Cunningham et al. 2015; Vega et al. 2015; Meyer et al. 2016;

Evans et al. 2018; Schoville et al. 2018; Sayadi et al. 2019;

Herndon et al. 2020), with the exception of the recently pub-

lished genome of O. communa (Bouchemousse et al. 2020)

that was associated with an even higher number of predicted

proteins (75,642). The authors of this study considered this un-

usually high number of predicted proteins as a probable over-

estimation resulting from the high number of transposable

elements found in this genome, many of which were not cur-

rently included in the database. Many of these predicted pro-

teins may have therefore been undetected transposons.

Because the proportion of repetitive elements is even higher

in the genome of G. quinquepunctata, a similar hypothesis

can be proposed. We investigated the alternate possibility

that the genome of G. quinquepunctata was actually polyploid,

but MCScanX detected only 22 collinear genes, which did not

provide any evidence in support of this hypothesis.

Phylogenetic Analysis

Orthofinder sorted 36,936 (91%) of the 40,568 proteins pre-

dicted for G. quinquepunctata into 12,978 orthogroups. This

was the highest number of orthogroups identified of all spe-

cies included in the analysis and represents 49.5% of the total

number of orthogroups. In total, 1,471 (11.3%) of the

orthogroups identified in the genome of G. quinquepunctata

were species-specific and included 9,095 genes. Among all

predicted genes, 7,367 (18.1%) were identified as single copy

(i.e. present only once in their orthogroup). The phylogeny

estimated (fig. 1) from the 52 single-copy genes found in

every one of the 15 compared species is fully compatible

with that of more comprehensive phylogenetic studies of

the Coleoptera (e.g., McKenna et al. 2019).

Materials and Methods

Insect sampling, DNA and RNA Extraction, Sequencing

Sampling of G. quinquepunctata was conducted in the Vosges

mountains (France), where its sister species G. intermedia is

absent (P.M.’s unpublished observations), to avoid collecting

hybrid individuals. DNA extraction was performed on a single

pupa collected on 14 May 2018 in the vicinity of the “Col

d’Urbeis” (48.330N, 7.174 E), using the Qiagen kit Genomic-

tip 20/G following manufacturer’s protocol.

About 1.5mg of genomic DNA was sent to Genewiz

(www.genewiz.com) for library preparation and DNA se-

quencing on an Illumina HiSeq 2500 platform, which resulted

in 145.1 Gb of data (approximately 290 million pairs of PE

reads 2� 250 b). An additional 1.3mg was used for

Nanopore library preparation and sequencing. Five libraries

were prepared using the SQK-LSK109 Nanopore kit.

Sequencing was performed on a MinION sequencer with

five flow cells version 9.4, generating 46.3 Gb of data (4.4

million reads with lengths ranging from 31 to 144,886 bp).

RNA was extracted from four individuals at different devel-

opmental stages (all collected on 19 June 2018), using the

Qiagen RNeasy Mini kit following the manufacturer’s proto-

col: one adult male and one fourth-instar larva collected in the

vicinity of “Grand Ballon” (47.90 N, 7.103 E), one pupa col-

lected in the vicinity of “Le Breitfirst” (47.95 N, 7.023 E), as

well as one adult collected in the vicinity of “Col d’Urbeis”

(same coordinates as before). The RNA extracts were sent to

Eurofins Genomics (www.eurofinsgenomics.eu) for library

preparation and RNA sequencing on an Illumina HiSeq 2500

platform, which resulted in 51.2 Gb of data (a total of 177

million pairs of PE reads [2� 150 pb]).

Genome Assembly

Genome size and heterozygosity were estimated using

GenomeScope (online version) v.2.0 (Vurture et al. 2017;

Ranallo-Benavidez et al. 2020) and the kmercountexact tool

of BBTools v.37.55 (https://sourceforge.net/projects/bbmap/)

with a k-mer size of 31 for both programs. GenomeScope

was run on a k-mer spectrum computed using Jellyfish

v.2.3.0 (Marçais and Kingsford 2011) with the option -C to

count canonical k-mers.

The genome of G. quinquepunctata was assembled using

wtdbg2 v.2.5 (Ruan and Li 2020), a long-read assembler that

does not require much resources (Guiglielmoni et al. 2021),

with the following parameters: -x ont -g 1.5 g -t 16. A con-

sensus was obtained using wtpoa-cns then polished using the

same tool after aligning the Nanopore sequences on the con-

tigs using minimap2 v.2.17 (Li 2018) and processing the out-

put using SAMtools v.1.9 (Li et al. 2009; Li 2011). It was then

polished once by running wtpoa-cns on the Illumina paired-

end sequences aligned on the contigs using bwa v.0.7.17-

r1188 (Li and Durbin 2009), following wtdbg2’s

README.md file. Prior to the polishing step, the adapter

sequences were trimmed from the Illumina reads using

BBDuk of BBTools v.35.80 with the options minlen¼ 100

ktrim¼r k¼ 25 mink¼ 11 hdist¼ 1 tpe tbo –ordered.

Duplicated regions were removed from the resulting as-

sembly using Purge Haplotigs (Roach et al. 2018). The ab-

sence of cloning vector and synthetic sequences (adapters,

linkers, and primers) in the curated contigs was checked by

comparing them to the UniVec database (https://www.ncbi.

nlm.nih.gov/tools/vecscreen/univec/) using BLAST as specified

on the VecScreen page (https://ftp.ncbi.nlm.nih.gov/pub/

UniVec/) and manually corrected. The resulting assembly

was evaluated using QUAST v.5.0.2 (Gurevich et al. 2013)

and BUSCO v.3.1.0 (Sim~ao et al. 2015) using the database
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insecta_odb9 comprising 1,658 core genes. K-mer spectra

plots and k-mer completeness were generated using KAT

v.2.4.2 (Mapleson et al. 2017) on the Illumina sequences

with default parameters.

Genome Annotation and Phylogenetic Analysis

Prior to annotating the genome, a species-specific repeat li-

brary was built using RepeatModeler v.2.0.1 (Flynn et al.

(a)

(c)

(b)

FIG. 1..— Comparison of the genome characteristics of G. quinquepunctata with those of four other species of chrysomelid beetles (in bold), of nine

other beetle species and one outgroup (Bombyx mori). A maximum-likelihood phylogenetic tree was estimated for these species from an amino-acid

alignment of the 52 single-copy proteins found in all 15 genomes. 1a: Assembly lengths, in Mb. 1b: Total number of predicted proteins (in green), number of

predicted single-copy proteins (in yellow) and number of predicted species-specific proteins (in red). 1c: ML tree; bootstrap support values indicated along

interior branches.

Lukicheva et al. GBE

4 Genome Biol. Evol. 13(7): doi:10.1093/gbe/evab134 Advance Access publication 11 June 2021



2020) with the option -LTRStruct. This library, in combination

with the Repbase library (RepeatMasker edition 20181026,

Bao et al. 2015) was used to search and mask repeats in

the genome using RepeatMasker v.4.1.1 (Smit et al. 2013–

2015). RepeatMasker was run with the following options: -e

ncbi -xsmall -poly -html -gff -source -frag 6000000.

The masked G. quinquepunctata reference assembly was

then annotated with BRAKER2 v.2.1.5 (Stanke et al. 2008;

Hoff et al. 2016, 2019; Brůna et al. 2021) using the RNA-Seq

library as evidence. RNA-Seq data were filtered following the

protocol described in Freedman and Weeks (2020) and

mapped to the G. quinquepunctata reference assembly using

HISAT2 v.2.1.0 (Kim et al. 2015, 2019). The resulting SAM file

was sorted using SAMtools v.1.9. BRAKER2 was run with the

–bam, –softmasking, and –gff3 parameters, using DIAMOND

v.2.0.7.145 (Buchfink et al. 2015), SAMtools v.1.9 and

Augustus v.3.3.3 (Stanke et al. 2006).

The genes predicted were annotated by comparing

them to the Swiss-Prot and NR databases (downloaded in

March 2021) using BLASTP v.2.9.0þ (Altschul et al. 1990;

Camacho et al. 2009) and selecting the best hits with e-

values below 10�5. A second annotation was performed

using InterProScan v.5.50-84.0 (Jones et al. 2014) with de-

fault parameters. The InterProScan results were then fil-

tered to remove all matches with e-value greater than

10�5 and the match with the lowest e-value was kept for

each gene.

A phylogenetic analysis to search for orthologous genes

was conducted using OrthoFinder v.2.5.2 (Emms and Kelly

2015, 2019), comparing the predicted genes found in G.

quinquepunctata to those of four other species of chrysomelid

beetles: C. maculatus (Sayadi et al. 2019), Diabrotica virgifera

virgifera (NCBI, BioProject: PRJNA432972), L. decemlineata

(Cunningham et al. 2015), and O. communa

(Bouchemousse et al. 2020); of nine other beetle species:

Aethina tumida (Evans et al. 2018), Agrilus planipennis

(NCBI, BioProject: PRJNA230921), A. glabripennis (McKenna

et al. 2016), Dendroctonus ponderosae (Keeling et al. 2013),

Hypothenemus hampei (Vega et al. 2015), Nicrophorus ves-

pilloides (Cunningham et al. 2015), Onthophagus taurus

(NCBI, BioProject: PRJNA167478), Oryctes borbonicus

(Meyer et al. 2016), and Tribolium castaneum (Herndon et

al. 2020); and of Bombyx mori (Kawamoto et al. 2019) as

an outgroup (fig. 1 and supplementary table 1,

Supplementary Material online). Once genes were sorted in

orthogroups and single-copy genes were identified, we in-

ferred a species tree from all 52 single-copy genes that

were present in every 15 species. Alignments of protein

sequences were conducted using MUSCLE v.3.8.31 (Edgar

2004) then concatenated into a single data set using

FASconCAT-G v.1.04 (Kück and Meusemann 2010). The

best-fit partitioning scheme and the best model for each par-

tition were selected using ModelFinder (Kalyaanamoorthy et

al. 2017) with options -m TESTMERGEONLY -mset mrbayes -

rcluster 10, then a maximum-likelihood tree search was per-

formed using IQ-TREE v.2.0.6 (Nguyen et al. 2015) with ultra-

fast bootstrapping (Hoang et al. 2018) and with Shimodaira–

Hasegawa approximate likelihood ratio tests.

The possibility that this genome may have undergone a

whole-genome duplication was tested using MCScanX

(Wang et al. 2012) downloaded from https://github.com/

wyp1125/MCScanX on March 27, 2021.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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