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Simple Summary: Olivacine is a compound isolated from the bark of Aspidosperma olivaceum (a
tree found mainly in Southeastern Brazil) that shows multidirectional biological activity. The most
important of them is the antiproliferative effect, important in anticancer therapy. This article reviews
the literature on the results of research on olivacine and its derivatives carried out in cell laboratories,
in preclinical studies in animals and clinical trials in humans. The described activities of these
compounds were discussed by comparing the differences in their structure. The most important
finding of this review is that some olivacine derivatives exhibit greater anticancer activity than
doxorubicin (a commonly used anticancer drug).

Abstract: Olivacine and its derivatives are characterized by multidirectional biological activity.
Noteworthy is their antiproliferative effect related to various mechanisms, such as inhibition of
growth factors, enzymes, kinases and others. The activity of these compounds was tested on cell lines
of various tumors. In most publications, the most active olivacine derivatives exceeded the effects of
doxorubicin (a commonly used anticancer drug), so in the future, they may become the main new
anticancer drugs. In this publication, we present the groups of the most active olivacine derivatives
obtained. In this work, the in vitro and in vivo activity of olivacine and its most active derivatives
are presented. We describe olivacine derivatives that have been in clinical trials. We conducted a
structure–activity relationship (SAR) analysis that may be used to obtain new olivacine derivatives
with better properties than the available anticancer drugs.

Keywords: olivacine; pyridocarbazole; cytostatic; S16020; antitumor; in vitro; in vivo

1. Introduction

Pyridocarbazole derivatives, which are alkaloids, have become of interest to many
scientists due to their biological activity. The two alkaloids, olivacine and its ellipticine iso-
mer [1,2], showed marked antitumor activity [3,4]. Many laboratories worldwide are trying
to modify the structure of the heterocyclic system of pyridocarbazole to obtain analogs
with a better therapeutic index. Numerous publications on the subject indicate that the in-
troduction of substituents at the C-1, N-2, C-9, C-11 positions of the pyrido[4,3-b]carbazole
system will play a significant role in the pharmacological activity of the derivatives of the
alkaloids in question. In vitro studies have shown that hydroxylation of the C-9 position of
various ellipticine and olivacine derivatives increases cytostatic activity over the 9-methoxy
derivatives, caused by a greater affinity of the compound for DNA-increased stabilization
of the DNA–topo II complex. The mechanism of action and antitumor properties of oli-
vacine are similar to ellipticine and are considered DNA intercalation and topoisomerase
II inhibition [5–10]. The cytotoxic effect of ellipticine is also related to the impact on the
p53 protein [11,12]. Ellipticine is covalently inserted into the DNA on the metabolic side by
cytochrome P450 or peroxidase isoforms [13–21]. It should be emphasized that some oli-
vacine derivatives, such as the compound S16020, showed a broad spectrum of antitumor
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activity and greater activity compared to the ellipticine derivatives and doxorubicin [22–25].
The mechanism of olivacine and ellipticine action is similar, but more publications concern
ellipticine, which exhibits greater cytotoxicity than olivacine. However, research shows
that olivacine derivatives are less toxic to normal NHDF cells (normal human dermal
fibroblasts) than doxorubicin and ellipticine [26,27]. At the same time, it was observed that
olivacine derivatives had a stronger effect on the p53 protein (one of the most important
suppressors of tumor transformation) level than ellipticine. This article presents reports on
olivacine and the most active olivacine derivatives (tested in vitro and in vivo). Structure–
activity relationship (SAR) analysis may be used to obtain new olivacine derivatives with
better properties than the available anticancer drugs.

2. Olivacine

Olivacine 1 (1,5-dimethyl-6H-pyrido[4,3-b]carbazole) (guatambuinine) (Figure 1) is an
alkaloid and was isolated for the first time from the bark of Aspidosperma olivaceum [2]—a
tree found in Southeastern Brazil, Argentina, Paraguay and Bolivia [28]. Aspidosperma
olivaceum is a photophilous deciduous tree, reaching a height of 25 m and a trunk diameter
of 90 cm, with white flowers and fleshy fruit (drupe) [29]. Plants of the Aspidosperma order
have traditionally been used in Brazilian diagnostics to combat fever and other ailments.
The receptors behind these plants’ pharmacological action—anti-inflammatory, analgesic,
antibacterial—are primarily opposed by monoterpene indole alkaloids. Anti-malarial
extracts from these vegetation sources, traditionally obtained from bark decoctions, are
used in folk medicine during malaria [30].
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synthesis in E. coli bacteria than on DNA and RNA synthesis [33]. The interest in olivacine 
was due to the discovery in 1966 of its anticancer properties. The antitumor activity of 
olivacine prompted the development of new syntheses to prepare this alkaloid, as a large 
amount of the compound was needed for further biological tests [3]. To date, more than 
twenty methods of synthesizing olivacine have been described [34]. 

Olivacine derivatives that showed better anticancer activity have also begun to be 
synthesized. There are many possible ways to modify the olivacine structure by extending 
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Figure 1. Olivacine (guatambuinine).

A. olivaceum exhibits the anti-malarial effect on quinine-sensitive and quinine-resistant
clones of P. falciparum, reaching an IC50 value below 10 µg/mL [31]. Olivacine inhibits
the growth of P. falciparum in vitro (IC50 = 1.2 µM). Noteworthy is the lack of toxic effects
of olivacine even in administering high doses (up to 100 mg/kg/day) [32]. Research by
Touaty and Simon shows that olivacine affects the growth of E. coli. In vivo tests indicate
that low levels of olivacine have a much stronger effect on the inhibition of protein synthesis
in E. coli bacteria than on DNA and RNA synthesis [33]. The interest in olivacine was due
to the discovery in 1966 of its anticancer properties. The antitumor activity of olivacine
prompted the development of new syntheses to prepare this alkaloid, as a large amount
of the compound was needed for further biological tests [3]. To date, more than twenty
methods of synthesizing olivacine have been described [34].

Olivacine derivatives that showed better anticancer activity have also begun to be synthe-
sized. There are many possible ways to modify the olivacine structure by extending the side
chain at positions C-1, N-5, and C-9 and changing the elements in the pyridocarbazole skeleton.

3. The Most Active Olivacine Derivatives
3.1. Structure–Activity Relationship (SAR) Analysis In Vitro

Structure–activity relationships are based on the discovery that the biological and physico-
chemical activity of chemical compounds depends on the structure of molecules. Due to this
discovery, it can be expected that modification of molecules (replacement of one substituent
with another, reduction or enlargement of the molecule) may result in compounds showing
better activity or selectivity or will be characterized by better pharmacokinetics.
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After reviewing the literature, we chose the most active olivacine derivatives de-
scribed in Table 1. We compared compounds that were tested for in vitro cytotoxic activity
(IC50 µM ± SD) on mouse leukemia (cell line L1210), non-small-cell lung cancer (cell
line A549), and breast cancer (cell line MCF-7) cells. We can see how the anticancer ac-
tivity changes, thereby analyzing olivacine derivative structures using the SAR method
(Figure 2).

From the literature studies listed in Table 1, we can see that the cytotoxicity of olivacine
1 IC50 against L1210 tumor cells (murine leukemia) is 2.03 µM. At compound 3, where the
carbon at C-3 has been replaced with a nitrogen atom, the antitumor activity is comparable,
IC50 = 1.79 µM (L1210), IC50 = 4.5 µM (MCF-7), to olivacine 1 activity. By introducing a
hydroxyl moiety at the C-9 position of olivacine 1, the activity increases to IC50 = 0.06 µM
(L1210) for 9-hydroxyolivacine 2. Based on Table 1, which describes the most active
olivacine derivatives synthesized and described in the literature, it can be stated that
the hydroxyl group significantly increases the antitumor activity because as many as 17
derivatives out of 29 described in Table 1 have this grouping. There is also a methoxy
moiety (six compounds) at the C-9 position. However, it is this group that lowers the
activity. Compound 4 (pazellipticine) has nitrogen deposited in place of carbon C-9; its
activity is comparable to that of 9-hydroxyolivacine 2, but here an increase in activity can
be expected after introducing the ((diethylamino)propyl)amine moiety at the C-1 position.
The importance of the hydroxyl group in the C-9 position can be seen in the activity of
compounds 6 and 7. Both compounds have a ((diethylamino)propyl)amino substituent in
the C-1 position, differing only in structure with the substituent in C-9. Compound 6 has
a hydroxyl group and IC50 = 0.02 µM (L1210) activity, and compound 7 has a hydroxyl
group at the C-9 position and activity of IC50 = 1 µM (L1210). The best antitumor activity
was shown by compound 9, known in the literature as S16020, IC50 = 0.0041 µM (L1210),
IC50 = 0.030 µM (A549), IC50 = 0.075 µM (MCF-7). This relationship has been demonstrated
in clinical trials. Because its activity was exceptional, its derivatives were synthesized.
Compound 8, known in the literature as S30972-1, was obtained, with IC50 = 0.019 µM
against L1210. Its structure differs from S16020 with a substituent at position C-9. Instead
of a hydroxyl group at the C-9 position, it has pentanedioic acid; its IC50 = 0.019 µM
against L1210 and is one order lower than S16020. Compound 11 was also obtained, a
methylcarbamoyloxymethyl substituent in the C-9 position and an IC50 = 1.25 µM against
A549. It can be seen that replacing the hydroxyl group at the C-9 position with another
group reduces the antitumor activity. S16020 derivatives were also obtained, which had a
phenyl introduced between the pyrido[4,3-b]calbazole moiety in the C-1 position and the
((dimethylamino)ethyl)carbamoyl moiety. Compound 19 has IC50 = 7.15 µM against L1210,
IC50 = 8.19 µM against A549, and compound 20 has IC50 = 6.08 µM (L1210), IC50 = 8.25 µM
(A549). It can be seen that the introduction of phenol caused a decrease in anticancer
activity. Also introduced in this position was pyridine (compound No 23) IC50 = 0.05 µM
(L12010), IC50 = 0.095 µM (A549), IC50 = 0.23 µM (MCF-7), whose activity turned out
to be very interesting. Compounds were also synthesized, which in the C-9 position of
the pyrido[4,3-b]carbazole had a hydroxyl group, and in the C-1 position had pyridine,
but no ((dimethylamino)ethyl)carbamoyl group; activity for compound 24, IC50 = 0.9 µM
(L1210), IC50 = 5.03 µM (A549), and for compound 26, IC50 = 0.8 µM (L1210), shows a
decrease in biological activity here. S16020 has also been modified to introduce nitrogen
in place of carbon at the C-2 and C-4 positions. For compound 15, IC50 = 0.010 µM
(L1210). Nitrogen was introduced into compound 16 at the C-1 and C-4 positions, and the
((dimethylamino)ethyl)carbamoyl moiety was placed at the C-2 position. The activity for
compound 16 was IC50 = 0.33 µM (L1210). Cytotoxicity turned out to be very interesting,
especially for compound 15. Among the most active olivacine derivatives described in
Table 1, as many as 21 have a methyl group in the C-6 position, and one compound, No. 25,
has in the C-6 position dimethylaminoethyl, with IC50 = 1.5 µM (L1210), IC50 = 2.12 µM
(A549). Compound 24, comparable to compound 25, having a methyl substituent in the
C-6 position, has IC50 = 0.9 µM (L1210), IC50 = 5.03 µM, (A549).
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Table 1. In vitro and in vivo biological activity of compounds.

No. Compound Structure

In Vitro
Cell Lines

IC50 µM ± SD
In Vivo

Reference
Number

L1210 A549 MCF-7
Dose

mg/kg
(Cell Lines)

Therapeutic Effect %

1 1,5-dimethyl-6H-pyrido[4,3-b]carbazole
olivacine

Biology 2021, 10, x FOR PEER REVIEW 4 of 15 
 

 

in clinical trials. Because its activity was exceptional, its derivatives were synthesized. 
Compound 8, known in the literature as S30972-1, was obtained, with IC50 = 0.019 µM 
against L1210. Its structure differs from S16020 with a substituent at position C-9. Instead 
of a hydroxyl group at the C-9 position, it has pentanedioic acid; its IC50 = 0.019 µM against 
L1210 and is one order lower than S16020. Compound 11 was also obtained, a methylcar-
bamoyloxymethyl substituent in the C-9 position and an IC50 = 1.25 µM against A549. It 
can be seen that replacing the hydroxyl group at the C-9 position with another group re-
duces the antitumor activity. S16020 derivatives were also obtained, which had a phenyl 
introduced between the pyrido[4,3-b]calbazole moiety in the C-1 position and the ((dime-
thylamino)ethyl)carbamoyl moiety. Compound 19 has IC50 = 7.15 µM against L1210, IC50 = 

8.19 µM against A549, and compound 20 has IC50 = 6.08 µM (L1210), IC50 = 8.25 µM (A549). 
It can be seen that the introduction of phenol caused a decrease in anticancer activity. Also 
introduced in this position was pyridine (compound No 23) IC50 = 0.05 µM (L12010), IC50 

= 0.095 µM (A549), IC50 = 0.23 µM (MCF-7), whose activity turned out to be very interest-
ing. Compounds were also synthesized, which in the C-9 position of the pyrido[4,3-b]car-
bazole had a hydroxyl group, and in the C-1 position had pyridine, but no ((dimethyla-
mino)ethyl)carbamoyl group; activity for compound 24, IC50 = 0.9 µM (L1210), IC50 = 5.03 
µM (A549), and for compound 26, IC50 = 0.8 µM (L1210), shows a decrease in biological 
activity here. S16020 has also been modified to introduce nitrogen in place of carbon at 
the C-2 and C-4 positions. For compound 15, IC50 = 0.010 µM (L1210). Nitrogen was intro-
duced into compound 16 at the C-1 and C-4 positions, and the ((dimethylamino)ethyl)car-
bamoyl moiety was placed at the C-2 position. The activity for compound 16 was IC50 = 

0.33 µM (L1210). Cytotoxicity turned out to be very interesting, especially for compound 
15. Among the most active olivacine derivatives described in Table 1, as many as 21 have 
a methyl group in the C-6 position, and one compound, No. 25, has in the C-6 position 
dimethylaminoethyl, with IC50 = 1.5 µM (L1210), IC50 = 2.12 µM (A549). Compound 24, 
comparable to compound 25, having a methyl substituent in the C-6 position, has IC50 = 

0.9 µM (L1210), IC50 = 5.03 µM, (A549). 

Table 1. In vitro and in vivo biological activity of compounds. 

No. Compound Structure 

In Vitro  
Cell Lines 

IC50 µM ± SD 
In Vivo 

Reference 
Number 

L1210 A549 MCF-7 

Dose 
mg/kg 
(Cell 

Lines) 

Therapeu-
tic Effect % 

1 
1,5-dimethyl-6H-pyr-

ido[4,3-b]carbazole 
olivacine 

 

2.03   

250 
(L2110) 

84.0 
(L1220) 

35 
(ILS) 

141 (T/C) 

[35] 
 

[3] 

2 

9-hydroxy-1,5-dime-
thyl-6H-pyrido[4,3-

b]carbazole 
9-hydroxyolivacine  

0.06     [35] 

3 
1,5-dimethyl-6H-pyri-

dazino[4,3-b]carba-
zole 

 

1.79  4.50   [24] 

2.03

250
(L2110)

84.0
(L1220)

35
(ILS)

141 (T/C)

[35]

[3]

2
9-hydroxy-1,5-dimethyl-6H-pyrido[4,3-

b]carbazole
9-hydroxyolivacine

Biology 2021, 10, x FOR PEER REVIEW 4 of 15 
 

 

in clinical trials. Because its activity was exceptional, its derivatives were synthesized. 
Compound 8, known in the literature as S30972-1, was obtained, with IC50 = 0.019 µM 
against L1210. Its structure differs from S16020 with a substituent at position C-9. Instead 
of a hydroxyl group at the C-9 position, it has pentanedioic acid; its IC50 = 0.019 µM against 
L1210 and is one order lower than S16020. Compound 11 was also obtained, a methylcar-
bamoyloxymethyl substituent in the C-9 position and an IC50 = 1.25 µM against A549. It 
can be seen that replacing the hydroxyl group at the C-9 position with another group re-
duces the antitumor activity. S16020 derivatives were also obtained, which had a phenyl 
introduced between the pyrido[4,3-b]calbazole moiety in the C-1 position and the ((dime-
thylamino)ethyl)carbamoyl moiety. Compound 19 has IC50 = 7.15 µM against L1210, IC50 = 

8.19 µM against A549, and compound 20 has IC50 = 6.08 µM (L1210), IC50 = 8.25 µM (A549). 
It can be seen that the introduction of phenol caused a decrease in anticancer activity. Also 
introduced in this position was pyridine (compound No 23) IC50 = 0.05 µM (L12010), IC50 

= 0.095 µM (A549), IC50 = 0.23 µM (MCF-7), whose activity turned out to be very interest-
ing. Compounds were also synthesized, which in the C-9 position of the pyrido[4,3-b]car-
bazole had a hydroxyl group, and in the C-1 position had pyridine, but no ((dimethyla-
mino)ethyl)carbamoyl group; activity for compound 24, IC50 = 0.9 µM (L1210), IC50 = 5.03 
µM (A549), and for compound 26, IC50 = 0.8 µM (L1210), shows a decrease in biological 
activity here. S16020 has also been modified to introduce nitrogen in place of carbon at 
the C-2 and C-4 positions. For compound 15, IC50 = 0.010 µM (L1210). Nitrogen was intro-
duced into compound 16 at the C-1 and C-4 positions, and the ((dimethylamino)ethyl)car-
bamoyl moiety was placed at the C-2 position. The activity for compound 16 was IC50 = 

0.33 µM (L1210). Cytotoxicity turned out to be very interesting, especially for compound 
15. Among the most active olivacine derivatives described in Table 1, as many as 21 have 
a methyl group in the C-6 position, and one compound, No. 25, has in the C-6 position 
dimethylaminoethyl, with IC50 = 1.5 µM (L1210), IC50 = 2.12 µM (A549). Compound 24, 
comparable to compound 25, having a methyl substituent in the C-6 position, has IC50 = 

0.9 µM (L1210), IC50 = 5.03 µM, (A549). 

Table 1. In vitro and in vivo biological activity of compounds. 

No. Compound Structure 

In Vitro  
Cell Lines 

IC50 µM ± SD 
In Vivo 

Reference 
Number 

L1210 A549 MCF-7 

Dose 
mg/kg 
(Cell 

Lines) 

Therapeu-
tic Effect % 

1 
1,5-dimethyl-6H-pyr-

ido[4,3-b]carbazole 
olivacine 

 

2.03   

250 
(L2110) 

84.0 
(L1220) 

35 
(ILS) 

141 (T/C) 

[35] 
 

[3] 

2 

9-hydroxy-1,5-dime-
thyl-6H-pyrido[4,3-

b]carbazole 
9-hydroxyolivacine  

0.06     [35] 

3 
1,5-dimethyl-6H-pyri-

dazino[4,3-b]carba-
zole 

 

1.79  4.50   [24] 

0.06 [35]

3 1,5-dimethyl-6H-pyridazino[4,3-
b]carbazole

Biology 2021, 10, x FOR PEER REVIEW 4 of 15 
 

 

in clinical trials. Because its activity was exceptional, its derivatives were synthesized. 
Compound 8, known in the literature as S30972-1, was obtained, with IC50 = 0.019 µM 
against L1210. Its structure differs from S16020 with a substituent at position C-9. Instead 
of a hydroxyl group at the C-9 position, it has pentanedioic acid; its IC50 = 0.019 µM against 
L1210 and is one order lower than S16020. Compound 11 was also obtained, a methylcar-
bamoyloxymethyl substituent in the C-9 position and an IC50 = 1.25 µM against A549. It 
can be seen that replacing the hydroxyl group at the C-9 position with another group re-
duces the antitumor activity. S16020 derivatives were also obtained, which had a phenyl 
introduced between the pyrido[4,3-b]calbazole moiety in the C-1 position and the ((dime-
thylamino)ethyl)carbamoyl moiety. Compound 19 has IC50 = 7.15 µM against L1210, IC50 = 

8.19 µM against A549, and compound 20 has IC50 = 6.08 µM (L1210), IC50 = 8.25 µM (A549). 
It can be seen that the introduction of phenol caused a decrease in anticancer activity. Also 
introduced in this position was pyridine (compound No 23) IC50 = 0.05 µM (L12010), IC50 

= 0.095 µM (A549), IC50 = 0.23 µM (MCF-7), whose activity turned out to be very interest-
ing. Compounds were also synthesized, which in the C-9 position of the pyrido[4,3-b]car-
bazole had a hydroxyl group, and in the C-1 position had pyridine, but no ((dimethyla-
mino)ethyl)carbamoyl group; activity for compound 24, IC50 = 0.9 µM (L1210), IC50 = 5.03 
µM (A549), and for compound 26, IC50 = 0.8 µM (L1210), shows a decrease in biological 
activity here. S16020 has also been modified to introduce nitrogen in place of carbon at 
the C-2 and C-4 positions. For compound 15, IC50 = 0.010 µM (L1210). Nitrogen was intro-
duced into compound 16 at the C-1 and C-4 positions, and the ((dimethylamino)ethyl)car-
bamoyl moiety was placed at the C-2 position. The activity for compound 16 was IC50 = 

0.33 µM (L1210). Cytotoxicity turned out to be very interesting, especially for compound 
15. Among the most active olivacine derivatives described in Table 1, as many as 21 have 
a methyl group in the C-6 position, and one compound, No. 25, has in the C-6 position 
dimethylaminoethyl, with IC50 = 1.5 µM (L1210), IC50 = 2.12 µM (A549). Compound 24, 
comparable to compound 25, having a methyl substituent in the C-6 position, has IC50 = 

0.9 µM (L1210), IC50 = 5.03 µM, (A549). 

Table 1. In vitro and in vivo biological activity of compounds. 

No. Compound Structure 

In Vitro  
Cell Lines 

IC50 µM ± SD 
In Vivo 

Reference 
Number 

L1210 A549 MCF-7 

Dose 
mg/kg 
(Cell 

Lines) 

Therapeu-
tic Effect % 

1 
1,5-dimethyl-6H-pyr-

ido[4,3-b]carbazole 
olivacine 

 

2.03   

250 
(L2110) 

84.0 
(L1220) 

35 
(ILS) 

141 (T/C) 

[35] 
 

[3] 

2 

9-hydroxy-1,5-dime-
thyl-6H-pyrido[4,3-

b]carbazole 
9-hydroxyolivacine  

0.06     [35] 

3 
1,5-dimethyl-6H-pyri-

dazino[4,3-b]carba-
zole 

 

1.79  4.50   [24] 1.79 4.50 [24]

4

10-{[3-(diethylamino)propyl]amino}-6-
methyl-5H-pyrido[3′4′ :4,5]pyrrolo[2,3-

g]isoquinoline
Pazellipticine (PZN)

Biology 2021, 10, x FOR PEER REVIEW 5 of 15 
 

 

4 

10-{[3-(diethyla-
mino)propyl]amino}-

6-methyl-5H-pyr-
ido[3′4′:4,5]pyr-

rolo[2,3-g]isoquino-
line 

Pazellipticine (PZN) 
 

0.02   20 
(L1210) 

85 
(ILS) [36] 

5 

1-{[3-(diethyla-
mino)propyl]amino}-
9-methoxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole  

5   15 
(L1210) 

24.6 
(ILS) 

[36] 

6 

1-{[3-(diethyla-
mino)propyl]amino]}-
9-hydroxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole 
1-{[3-(diethyla-

mino)propyl]amino}-
5-methyl-6H-pyr-

ido[4,3-b]carbazol-9-
ol 

 

0.02   5 
(L1210) 

49.5 
(ILS) 

[37] 

7 

1-{{[3-(diethyla-
mino)pro-

pyl]amino}methyl}-9-
methoxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole 
 

1   
20 
10 

(L1210) 

21 
16 

(ILS) 
[38] 

8 

Pentanedioic acid 
mono{1-[2-(dimethyl-

amino)ethyl]car-
bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazol-9-yl] ester 
dihydrochloride 

S 30972-1 
, 2 HCl 

0.019   
160-320 

80 
(P388) 

246->590  
427->582 

(T/C) 
[39] 

9 

9-hydroxy-1-{[2-(di-
methyla-

mino)ethyl]car-
bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazole 

 

0.0041 ± 
0.0006   

90 
(P388) 

238 
(T/C)  [40] 

9-hydroxy-5,6-dime-
thyl-6H-pyrido[4,3-
b]carbazole-1-N-[2-

(dimethyla-
mino)ethyl]carbox-

amides 
S16020 

0.0084 ± 
0.0007 

0.030 ± 
0.004 

0.075 ± 
0.011 

120 
80 

(P388) 

301 
>631 
(T/C) 

[41] 

0.02 20
(L1210)

85
(ILS) [36]

5
1-{[3-(diethylamino)propyl]amino}-9-

methoxy-5-methyl-6H-pyrido[4,3-
b]carbazole

Biology 2021, 10, x FOR PEER REVIEW 5 of 15 
 

 

4 

10-{[3-(diethyla-
mino)propyl]amino}-

6-methyl-5H-pyr-
ido[3′4′:4,5]pyr-

rolo[2,3-g]isoquino-
line 

Pazellipticine (PZN) 
 

0.02   20 
(L1210) 

85 
(ILS) [36] 

5 

1-{[3-(diethyla-
mino)propyl]amino}-
9-methoxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole  

5   15 
(L1210) 

24.6 
(ILS) 

[36] 

6 

1-{[3-(diethyla-
mino)propyl]amino]}-
9-hydroxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole 
1-{[3-(diethyla-

mino)propyl]amino}-
5-methyl-6H-pyr-

ido[4,3-b]carbazol-9-
ol 

 

0.02   5 
(L1210) 

49.5 
(ILS) 

[37] 

7 

1-{{[3-(diethyla-
mino)pro-

pyl]amino}methyl}-9-
methoxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole 
 

1   
20 
10 

(L1210) 

21 
16 

(ILS) 
[38] 

8 

Pentanedioic acid 
mono{1-[2-(dimethyl-

amino)ethyl]car-
bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazol-9-yl] ester 
dihydrochloride 

S 30972-1 
, 2 HCl 

0.019   
160-320 

80 
(P388) 

246->590  
427->582 

(T/C) 
[39] 

9 

9-hydroxy-1-{[2-(di-
methyla-

mino)ethyl]car-
bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazole 

 

0.0041 ± 
0.0006   

90 
(P388) 

238 
(T/C)  [40] 

9-hydroxy-5,6-dime-
thyl-6H-pyrido[4,3-
b]carbazole-1-N-[2-

(dimethyla-
mino)ethyl]carbox-

amides 
S16020 

0.0084 ± 
0.0007 

0.030 ± 
0.004 

0.075 ± 
0.011 

120 
80 

(P388) 

301 
>631 
(T/C) 

[41] 

5 15
(L1210)

24.6
(ILS) [36]
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Table 1. Cont.

No. Compound Structure

In Vitro
Cell Lines

IC50 µM ± SD
In Vivo

Reference
Number

L1210 A549 MCF-7
Dose

mg/kg
(Cell Lines)

Therapeutic Effect %

6

1-{[3-(diethylamino)propyl]amino]}-9-
hydroxy-5-methyl-6H-pyrido[4,3-

b]carbazole
1-{[3-(diethylamino)propyl]amino}-5-
methyl-6H-pyrido[4,3-b]carbazol-9-ol

Biology 2021, 10, x FOR PEER REVIEW 5 of 15 
 

 

4 

10-{[3-(diethyla-
mino)propyl]amino}-

6-methyl-5H-pyr-
ido[3′4′:4,5]pyr-

rolo[2,3-g]isoquino-
line 

Pazellipticine (PZN) 
 

0.02   20 
(L1210) 

85 
(ILS) [36] 

5 

1-{[3-(diethyla-
mino)propyl]amino}-
9-methoxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole  

5   15 
(L1210) 

24.6 
(ILS) 

[36] 

6 

1-{[3-(diethyla-
mino)propyl]amino]}-
9-hydroxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole 
1-{[3-(diethyla-

mino)propyl]amino}-
5-methyl-6H-pyr-

ido[4,3-b]carbazol-9-
ol 

 

0.02   5 
(L1210) 

49.5 
(ILS) 

[37] 

7 

1-{{[3-(diethyla-
mino)pro-

pyl]amino}methyl}-9-
methoxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole 
 

1   
20 
10 

(L1210) 

21 
16 

(ILS) 
[38] 

8 

Pentanedioic acid 
mono{1-[2-(dimethyl-

amino)ethyl]car-
bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazol-9-yl] ester 
dihydrochloride 

S 30972-1 
, 2 HCl 

0.019   
160-320 

80 
(P388) 

246->590  
427->582 

(T/C) 
[39] 

9 

9-hydroxy-1-{[2-(di-
methyla-

mino)ethyl]car-
bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazole 

 

0.0041 ± 
0.0006   

90 
(P388) 

238 
(T/C)  [40] 

9-hydroxy-5,6-dime-
thyl-6H-pyrido[4,3-
b]carbazole-1-N-[2-

(dimethyla-
mino)ethyl]carbox-

amides 
S16020 

0.0084 ± 
0.0007 

0.030 ± 
0.004 

0.075 ± 
0.011 

120 
80 

(P388) 

301 
>631 
(T/C) 

[41] 

0.02 5
(L1210)

49.5
(ILS) [37]

7

1-{{[3-
(diethylamino)propyl]amino}methyl}-9-

methoxy-5-methyl-6H-pyrido[4,3-
b]carbazole
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4 

10-{[3-(diethyla-
mino)propyl]amino}-

6-methyl-5H-pyr-
ido[3′4′:4,5]pyr-

rolo[2,3-g]isoquino-
line 

Pazellipticine (PZN) 
 

0.02   20 
(L1210) 

85 
(ILS) [36] 

5 

1-{[3-(diethyla-
mino)propyl]amino}-
9-methoxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole  

5   15 
(L1210) 

24.6 
(ILS) 

[36] 

6 

1-{[3-(diethyla-
mino)propyl]amino]}-
9-hydroxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole 
1-{[3-(diethyla-

mino)propyl]amino}-
5-methyl-6H-pyr-

ido[4,3-b]carbazol-9-
ol 

 

0.02   5 
(L1210) 

49.5 
(ILS) 

[37] 

7 

1-{{[3-(diethyla-
mino)pro-

pyl]amino}methyl}-9-
methoxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole 
 

1   
20 
10 

(L1210) 

21 
16 

(ILS) 
[38] 

8 

Pentanedioic acid 
mono{1-[2-(dimethyl-

amino)ethyl]car-
bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazol-9-yl] ester 
dihydrochloride 

S 30972-1 
, 2 HCl 

0.019   
160-320 

80 
(P388) 

246->590  
427->582 

(T/C) 
[39] 

9 

9-hydroxy-1-{[2-(di-
methyla-

mino)ethyl]car-
bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazole 

 

0.0041 ± 
0.0006   

90 
(P388) 

238 
(T/C)  [40] 

9-hydroxy-5,6-dime-
thyl-6H-pyrido[4,3-
b]carbazole-1-N-[2-

(dimethyla-
mino)ethyl]carbox-

amides 
S16020 

0.0084 ± 
0.0007 

0.030 ± 
0.004 

0.075 ± 
0.011 

120 
80 

(P388) 

301 
>631 
(T/C) 

[41] 

1
20
10

(L1210)

21
16

(ILS)
[38]

8

Pentanedioic acid mono{1-[2-
(dimethylamino)ethyl]carbamoyl}-5,6-

dimethyl-6H-pyrido[4,3-b]carbazol-9-yl]
ester dihydrochloride

S 30972-1
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4 

10-{[3-(diethyla-
mino)propyl]amino}-

6-methyl-5H-pyr-
ido[3′4′:4,5]pyr-

rolo[2,3-g]isoquino-
line 

Pazellipticine (PZN) 
 

0.02   20 
(L1210) 

85 
(ILS) [36] 

5 

1-{[3-(diethyla-
mino)propyl]amino}-
9-methoxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole  

5   15 
(L1210) 

24.6 
(ILS) 

[36] 

6 

1-{[3-(diethyla-
mino)propyl]amino]}-
9-hydroxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole 
1-{[3-(diethyla-

mino)propyl]amino}-
5-methyl-6H-pyr-

ido[4,3-b]carbazol-9-
ol 

 

0.02   5 
(L1210) 

49.5 
(ILS) 

[37] 

7 

1-{{[3-(diethyla-
mino)pro-

pyl]amino}methyl}-9-
methoxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole 
 

1   
20 
10 

(L1210) 

21 
16 

(ILS) 
[38] 

8 

Pentanedioic acid 
mono{1-[2-(dimethyl-

amino)ethyl]car-
bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazol-9-yl] ester 
dihydrochloride 

S 30972-1 
, 2 HCl 

0.019   
160-320 

80 
(P388) 

246->590  
427->582 

(T/C) 
[39] 

9 

9-hydroxy-1-{[2-(di-
methyla-

mino)ethyl]car-
bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazole 

 

0.0041 ± 
0.0006   

90 
(P388) 

238 
(T/C)  [40] 

9-hydroxy-5,6-dime-
thyl-6H-pyrido[4,3-
b]carbazole-1-N-[2-

(dimethyla-
mino)ethyl]carbox-

amides 
S16020 

0.0084 ± 
0.0007 

0.030 ± 
0.004 

0.075 ± 
0.011 

120 
80 

(P388) 

301 
>631 
(T/C) 

[41] 

, 2 HCl

0.019
160-320

80
(P388)

246->590
427->582

(T/C)
[39]

9

9-hydroxy-1-{[2-
(dimethylamino)ethyl]carbamoyl}-5,6-
dimethyl-6H-pyrido[4,3-b]carbazole
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4 

10-{[3-(diethyla-
mino)propyl]amino}-

6-methyl-5H-pyr-
ido[3′4′:4,5]pyr-

rolo[2,3-g]isoquino-
line 

Pazellipticine (PZN) 
 

0.02   20 
(L1210) 

85 
(ILS) [36] 

5 

1-{[3-(diethyla-
mino)propyl]amino}-
9-methoxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole  

5   15 
(L1210) 

24.6 
(ILS) 

[36] 

6 

1-{[3-(diethyla-
mino)propyl]amino]}-
9-hydroxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole 
1-{[3-(diethyla-

mino)propyl]amino}-
5-methyl-6H-pyr-

ido[4,3-b]carbazol-9-
ol 

 

0.02   5 
(L1210) 

49.5 
(ILS) 

[37] 

7 

1-{{[3-(diethyla-
mino)pro-

pyl]amino}methyl}-9-
methoxy-5-methyl-
6H-pyrido[4,3-b]car-

bazole 
 

1   
20 
10 

(L1210) 

21 
16 

(ILS) 
[38] 

8 

Pentanedioic acid 
mono{1-[2-(dimethyl-

amino)ethyl]car-
bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazol-9-yl] ester 
dihydrochloride 

S 30972-1 
, 2 HCl 

0.019   
160-320 

80 
(P388) 

246->590  
427->582 

(T/C) 
[39] 

9 

9-hydroxy-1-{[2-(di-
methyla-

mino)ethyl]car-
bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazole 

 

0.0041 ± 
0.0006   

90 
(P388) 

238 
(T/C)  [40] 

9-hydroxy-5,6-dime-
thyl-6H-pyrido[4,3-
b]carbazole-1-N-[2-

(dimethyla-
mino)ethyl]carbox-

amides 
S16020 

0.0084 ± 
0.0007 

0.030 ± 
0.004 

0.075 ± 
0.011 

120 
80 

(P388) 

301 
>631 
(T/C) 

[41] 

0.0041 ± 0.0006 90
(P388)

238
(T/C) [40]

9-hydroxy-5,6-dimethyl-6H-pyrido[4,3-
b]carbazole-1-N-[2-

(dimethylamino)ethyl]carboxamides
S16020

0.0084 ± 0.0007 0.030 ± 0.004 0.075 ± 0.011
120
80

(P388)

301
>631

(T/C)
[41]

10

9-hydroxymethyl-1-{[2-
(dimethylamino)ethyl)carbamoyl}-5,6-
dimethyl-6H-pyrido[4,3-b]carbazole
9-hydroxymethyl-5,6-dimethyl-6H-

pyrido[4,3-b]carbazole-1-N-[2-
(dimethylami-no)ethyl]carboxamides
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10 

9-hydroxymethyl-1-
{[2-(dimethyla-
mino)ethyl)car-

bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazole 

9-hydroxymethyl-5,6-
dimethyl-6H-pyr-

ido[4,3-b]carbazole-1-
N-[2-(dimethylami-

no)ethyl]carbox-
amides 

 

 0.65 ± 0.3    [42] 

11 

5,6-dimethyl-1-{[2-(di-
methyla-

mino)ethyl]car-
bamoyl}-9-(N-methyl-

carbamoyloxyme-
thyl)-6H-pyrido[4,3-

b]carbazole 
(1-{[2-(dimethyla-
mino)ethyl]car-

bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-
b]carbazol-9-yl)me-

thyl methylcarbamate 

 

 
1.25 ± 
0.29    [42] 

12 

9-methoxy-5,6-dime-
thyl-1-({[1-hydroxy-2-
(hydroxymethyl)bu-
tan-2-yl]amino}me-
thyl)-6H-pirydo[4,3-

b]carbazole 
2-ethyl-2-{[(5,6-dime-
thyl-9-methoxy-6H-
pyrido[4,3-b]carba-

zole-1-yl)me-
thyl]amino}propane-

1,3-diol 

 

 
0.377 ± 
0.159    [43] 

13 

9-hydroxy-5,6-dime-
thyl-1-{[(1-hydroxy-2-

methylpropan-2-
yl)amino]methyl} 

-6H-pirydo[4,3-b]car-
bazole 

5,6-dimethyl-1-{[(1-
hydroxy-2-

methylpropan-2-
yl)amino]methyl} 
-6H-pirydo[4,3-
b]carbazol-9-ol 

 

 0.885 ± 
0.071 

   [43] 

0.65 ± 0.3 [42]
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Table 1. Cont.

No. Compound Structure

In Vitro
Cell Lines

IC50 µM ± SD
In Vivo

Reference
Number

L1210 A549 MCF-7
Dose

mg/kg
(Cell Lines)

Therapeutic Effect %

11

5,6-dimethyl-1-{[2-
(dimethylamino)ethyl]carbamoyl}-9-(N-

methylcarbamoyloxymethyl)-6H-
pyrido[4,3-b]carbazole

(1-{[2-
(dimethylamino)ethyl]carbamoyl}-5,6-
dimethyl-6H-pyrido[4,3-b]carbazol-9-

yl)methyl
methylcarbamate

Biology 2021, 10, x FOR PEER REVIEW 6 of 15 
 

 

10 

9-hydroxymethyl-1-
{[2-(dimethyla-
mino)ethyl)car-

bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazole 

9-hydroxymethyl-5,6-
dimethyl-6H-pyr-

ido[4,3-b]carbazole-1-
N-[2-(dimethylami-

no)ethyl]carbox-
amides 

 

 0.65 ± 0.3    [42] 

11 

5,6-dimethyl-1-{[2-(di-
methyla-

mino)ethyl]car-
bamoyl}-9-(N-methyl-

carbamoyloxyme-
thyl)-6H-pyrido[4,3-

b]carbazole 
(1-{[2-(dimethyla-
mino)ethyl]car-

bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-
b]carbazol-9-yl)me-

thyl methylcarbamate 

 

 
1.25 ± 
0.29    [42] 

12 

9-methoxy-5,6-dime-
thyl-1-({[1-hydroxy-2-
(hydroxymethyl)bu-
tan-2-yl]amino}me-
thyl)-6H-pirydo[4,3-

b]carbazole 
2-ethyl-2-{[(5,6-dime-
thyl-9-methoxy-6H-
pyrido[4,3-b]carba-

zole-1-yl)me-
thyl]amino}propane-

1,3-diol 

 

 
0.377 ± 
0.159    [43] 

13 

9-hydroxy-5,6-dime-
thyl-1-{[(1-hydroxy-2-

methylpropan-2-
yl)amino]methyl} 

-6H-pirydo[4,3-b]car-
bazole 

5,6-dimethyl-1-{[(1-
hydroxy-2-

methylpropan-2-
yl)amino]methyl} 
-6H-pirydo[4,3-
b]carbazol-9-ol 

 

 0.885 ± 
0.071 

   [43] 

1.25 ± 0.29 [42]

12

9-methoxy-5,6-dimethyl-1-({[1-hydroxy-
2-(hydroxymethyl)butan-2-

yl]amino}methyl)-6H-pirydo[4,3-
b]carbazole

2-ethyl-2-{[(5,6-dimethyl-9-methoxy-6H-
pyrido[4,3-b]carbazole-1-

yl)methyl]amino}propane-1,3-diol
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10 

9-hydroxymethyl-1-
{[2-(dimethyla-
mino)ethyl)car-

bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazole 

9-hydroxymethyl-5,6-
dimethyl-6H-pyr-

ido[4,3-b]carbazole-1-
N-[2-(dimethylami-

no)ethyl]carbox-
amides 

 

 0.65 ± 0.3    [42] 

11 

5,6-dimethyl-1-{[2-(di-
methyla-

mino)ethyl]car-
bamoyl}-9-(N-methyl-

carbamoyloxyme-
thyl)-6H-pyrido[4,3-

b]carbazole 
(1-{[2-(dimethyla-
mino)ethyl]car-

bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-
b]carbazol-9-yl)me-

thyl methylcarbamate 

 

 
1.25 ± 
0.29    [42] 

12 

9-methoxy-5,6-dime-
thyl-1-({[1-hydroxy-2-
(hydroxymethyl)bu-
tan-2-yl]amino}me-
thyl)-6H-pirydo[4,3-

b]carbazole 
2-ethyl-2-{[(5,6-dime-
thyl-9-methoxy-6H-
pyrido[4,3-b]carba-

zole-1-yl)me-
thyl]amino}propane-

1,3-diol 

 

 
0.377 ± 
0.159    [43] 

13 

9-hydroxy-5,6-dime-
thyl-1-{[(1-hydroxy-2-

methylpropan-2-
yl)amino]methyl} 

-6H-pirydo[4,3-b]car-
bazole 

5,6-dimethyl-1-{[(1-
hydroxy-2-

methylpropan-2-
yl)amino]methyl} 
-6H-pirydo[4,3-
b]carbazol-9-ol 

 

 0.885 ± 
0.071 

   [43] 

0.377 ± 0.159 [43]

13

9-hydroxy-5,6-dimethyl-1-{[(1-hydroxy-
2-methylpropan-2-yl)amino]methyl}

-6H-pirydo[4,3-b]carbazole
5,6-dimethyl-1-{[(1-hydroxy-2-

methylpropan-2-yl)amino]methyl}
-6H-pirydo[4,3-b]carbazol-9-ol
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10 

9-hydroxymethyl-1-
{[2-(dimethyla-
mino)ethyl)car-

bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazole 

9-hydroxymethyl-5,6-
dimethyl-6H-pyr-

ido[4,3-b]carbazole-1-
N-[2-(dimethylami-

no)ethyl]carbox-
amides 

 

 0.65 ± 0.3    [42] 

11 

5,6-dimethyl-1-{[2-(di-
methyla-

mino)ethyl]car-
bamoyl}-9-(N-methyl-

carbamoyloxyme-
thyl)-6H-pyrido[4,3-

b]carbazole 
(1-{[2-(dimethyla-
mino)ethyl]car-

bamoyl}-5,6-dime-
thyl-6H-pyrido[4,3-
b]carbazol-9-yl)me-

thyl methylcarbamate 

 

 
1.25 ± 
0.29    [42] 

12 

9-methoxy-5,6-dime-
thyl-1-({[1-hydroxy-2-
(hydroxymethyl)bu-
tan-2-yl]amino}me-
thyl)-6H-pirydo[4,3-

b]carbazole 
2-ethyl-2-{[(5,6-dime-
thyl-9-methoxy-6H-
pyrido[4,3-b]carba-

zole-1-yl)me-
thyl]amino}propane-

1,3-diol 

 

 
0.377 ± 
0.159    [43] 

13 

9-hydroxy-5,6-dime-
thyl-1-{[(1-hydroxy-2-

methylpropan-2-
yl)amino]methyl} 

-6H-pirydo[4,3-b]car-
bazole 

5,6-dimethyl-1-{[(1-
hydroxy-2-

methylpropan-2-
yl)amino]methyl} 
-6H-pirydo[4,3-
b]carbazol-9-ol 

 

 0.885 ± 
0.071 

   [43] 0.885 ± 0.071 [43]

14

9-hydroxy-1-hydroxymethyl-5,6-
dimethyl-6H-pyrido[4,3-b]carbazole
1-hydroxymethyl-5,6-dimethyl-6H-

pyrido[4,3-b]carbazol-9-ol
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14 

9-hydroxy-1-hy-
droxymethyl-5,6-di-

methyl-6H-pyr-
ido[4,3-b]carbazole 

1-hydroxymethyl-5,6-
dimethyl-6H-pyr-

ido[4,3-b]carbazol-9-
ol 

 

 0.962 ± 
0.52 

   [43] 

15 

7-hydroxy-10,11-di-
methyl-N-[2-(dime-
thylamino)ethyl]-  -
10H-pyrimido[4,5-

b]carbazole-4-carbox-
amide 

 

0.010     [44] 

16 

9-hydroxy-5,6-dime-
thyl-N-[2-(dimethyla-
mino)ethyl]- 6H-pyra-
zino[2,3-b]carbazole-

2-carboxamide 
 

0.33     [44] 

17 

1-(4-aminophenyl)-9-
hydroxy-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazole 
1-(4-aminophenyl)-

5,6-dimethyl-6H-pyr-
ido[4,3-b]carbazol-9-

ol 
 

0.096 ± 
0.031 

0.51 ± 
0.22    [45] 

18 

9-methoxy-5,6-dime-
thyl-1-{4-[N-[3-(dime-

thylamino)pro-
pyl]car-

bamoylphenyl}-6H-
pyrido[4,3-b]carba-

zole 
N-[2-(dimethyla-

mino)propyl]-4-(9-
methoxy-5,6-dime-
thyl-6H-pyrido[4,3-
b]carbazol-1-yl)ben-

zamide  

 

5.70 ± 
0.33 

4.30 ± 
1.95    [46] 

19 

9-hydroxy-5,6-dime-
thyl-1-{4-[N-[2-(dime-
thylamino)ethyl]car-
bamoyl]phenyl}-6H-
pyrido[4,3-b]carba-

zole 
N-[2-(dimethyla-

mino)ethyl]-4-(9-hy-
droxy-5,6-dimethyl-

 

7.15 ± 
2.76 

8.19 ± 
1.41    [46] 

0.962 ± 0.52 [43]
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Table 1. Cont.

No. Compound Structure

In Vitro
Cell Lines

IC50 µM ± SD
In Vivo

Reference
Number

L1210 A549 MCF-7
Dose

mg/kg
(Cell Lines)

Therapeutic Effect %

15

7-hydroxy-10,11-dimethyl-N-[2-
(dimethylamino)ethyl]-

-10H-pyrimido[4,5-b]carbazole-4-
carboxamide
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9-hydroxy-1-hy-
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methyl-6H-pyr-
ido[4,3-b]carbazole 

1-hydroxymethyl-5,6-
dimethyl-6H-pyr-

ido[4,3-b]carbazol-9-
ol 

 

 0.962 ± 
0.52 

   [43] 

15 

7-hydroxy-10,11-di-
methyl-N-[2-(dime-
thylamino)ethyl]-  -
10H-pyrimido[4,5-

b]carbazole-4-carbox-
amide 
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9-hydroxy-5,6-dime-
thyl-N-[2-(dimethyla-
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hydroxy-5,6-dime-
thyl-6H-pyrido[4,3-
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1-(4-aminophenyl)-

5,6-dimethyl-6H-pyr-
ido[4,3-b]carbazol-9-

ol 
 

0.096 ± 
0.031 

0.51 ± 
0.22    [45] 

18 

9-methoxy-5,6-dime-
thyl-1-{4-[N-[3-(dime-

thylamino)pro-
pyl]car-

bamoylphenyl}-6H-
pyrido[4,3-b]carba-

zole 
N-[2-(dimethyla-

mino)propyl]-4-(9-
methoxy-5,6-dime-
thyl-6H-pyrido[4,3-
b]carbazol-1-yl)ben-

zamide  

 

5.70 ± 
0.33 

4.30 ± 
1.95    [46] 

19 

9-hydroxy-5,6-dime-
thyl-1-{4-[N-[2-(dime-
thylamino)ethyl]car-
bamoyl]phenyl}-6H-
pyrido[4,3-b]carba-

zole 
N-[2-(dimethyla-

mino)ethyl]-4-(9-hy-
droxy-5,6-dimethyl-

 

7.15 ± 
2.76 

8.19 ± 
1.41    [46] 

0.010 [44]

16

9-hydroxy-5,6-dimethyl-N-[2-
(dimethylamino)ethyl]-

6H-pyrazino[2,3-b]carbazole-2-
carboxamide
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mino)ethyl]-4-(9-hy-
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7.15 ± 
2.76 

8.19 ± 
1.41    [46] 

0.33 [44]

17

1-(4-aminophenyl)-9-hydroxy-5,6-
dimethyl-6H-pyrido[4,3-b]carbazole
1-(4-aminophenyl)-5,6-dimethyl-6H-

pyrido[4,3-b]carbazol-9-ol
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droxy-5,6-dimethyl-

 

7.15 ± 
2.76 

8.19 ± 
1.41    [46] 

0.096 ± 0.031 0.51 ± 0.22 [45]

18

9-methoxy-5,6-dimethyl-1-{4-[N-[3-
(dimethylamino)propyl]carbamoylphenyl}-

6H-pyrido[4,3-b]carbazole
N-[2-(dimethyla-mino)propyl]-4-(9-

methoxy-5,6-dimethyl-6H-pyrido[4,3-
b]carbazol-1-yl)benzamide
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9-methoxy-5,6-dime-
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bamoylphenyl}-6H-
pyrido[4,3-b]carba-
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mino)propyl]-4-(9-
methoxy-5,6-dime-
thyl-6H-pyrido[4,3-
b]carbazol-1-yl)ben-

zamide  

 

5.70 ± 
0.33 

4.30 ± 
1.95    [46] 

19 

9-hydroxy-5,6-dime-
thyl-1-{4-[N-[2-(dime-
thylamino)ethyl]car-
bamoyl]phenyl}-6H-
pyrido[4,3-b]carba-

zole 
N-[2-(dimethyla-

mino)ethyl]-4-(9-hy-
droxy-5,6-dimethyl-

 

7.15 ± 
2.76 

8.19 ± 
1.41    [46] 

5.70 ± 0.33 4.30 ± 1.95 [46]
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Table 1. Cont.

No. Compound Structure

In Vitro
Cell Lines

IC50 µM ± SD
In Vivo

Reference
Number

L1210 A549 MCF-7
Dose

mg/kg
(Cell Lines)

Therapeutic Effect %

19

9-hydroxy-5,6-dimethyl-1-{4-[N-[2-
(dimethylamino)ethyl]carbamoyl]phenyl}-

6H-pyrido[4,3-b]carbazole
N-[2-(dimethyla-mino)ethyl]-4-(9-

hydroxy-5,6-dimethyl-6H-pyrido[4,3-
b]carbazol-1-yl)benzamide

Biology 2021, 10, x FOR PEER REVIEW 7 of 15 
 

 

14 

9-hydroxy-1-hy-
droxymethyl-5,6-di-

methyl-6H-pyr-
ido[4,3-b]carbazole 

1-hydroxymethyl-5,6-
dimethyl-6H-pyr-

ido[4,3-b]carbazol-9-
ol 

 

 0.962 ± 
0.52 

   [43] 

15 

7-hydroxy-10,11-di-
methyl-N-[2-(dime-
thylamino)ethyl]-  -
10H-pyrimido[4,5-

b]carbazole-4-carbox-
amide 

 

0.010     [44] 

16 

9-hydroxy-5,6-dime-
thyl-N-[2-(dimethyla-
mino)ethyl]- 6H-pyra-
zino[2,3-b]carbazole-

2-carboxamide 
 

0.33     [44] 

17 

1-(4-aminophenyl)-9-
hydroxy-5,6-dime-
thyl-6H-pyrido[4,3-

b]carbazole 
1-(4-aminophenyl)-

5,6-dimethyl-6H-pyr-
ido[4,3-b]carbazol-9-

ol 
 

0.096 ± 
0.031 

0.51 ± 
0.22    [45] 

18 

9-methoxy-5,6-dime-
thyl-1-{4-[N-[3-(dime-

thylamino)pro-
pyl]car-

bamoylphenyl}-6H-
pyrido[4,3-b]carba-

zole 
N-[2-(dimethyla-

mino)propyl]-4-(9-
methoxy-5,6-dime-
thyl-6H-pyrido[4,3-
b]carbazol-1-yl)ben-

zamide  

 

5.70 ± 
0.33 

4.30 ± 
1.95    [46] 

19 

9-hydroxy-5,6-dime-
thyl-1-{4-[N-[2-(dime-
thylamino)ethyl]car-
bamoyl]phenyl}-6H-
pyrido[4,3-b]carba-

zole 
N-[2-(dimethyla-

mino)ethyl]-4-(9-hy-
droxy-5,6-dimethyl-

 

7.15 ± 
2.76 

8.19 ± 
1.41    [46] 7.15 ± 2.76 8.19 ± 1.41 [46]

20

9-hydroxy-5,6-dimethyl-1-{3-[N-[2-
(dimethylamino)ethyl]carbamoyl]phenyl}-

6H-pyrido[4,3-b]carbazole
N-[2-(dimethyla-mino)ethyl]-3-(9-

hydroxy-5,6-dimethyl-6H-pyrido[4,3-
b]carbazol-1-yl)benzamide
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9-hydroxy-5,6-dime-
thyl-1-{3-[N-[2-(dime-
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bamoyl]phenyl}-6H-
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zole 
N-[2-(dimethyla-

mino)ethyl]-3-(9-hy-
droxy-5,6-dimethyl-
6H-pyrido[4,3-b]car-

bazol-1-yl)benzamide 

 

6.08 ± 
3.96 

8.25 ± 
2.14    [46] 

21 

5,6-dimethyl-1-(4-ni-
tro-phenyl)-6H-pyr-
ido[4,3-b]carbazol-9-

ol 
 

 2.37 ± 
3.41    [47] 

22 

1-(4-hydroxy-phenyl)-
5,6-dimethyl-6H-pyr-
ido[4,3-b]carbazol-9-

ol 
 

 1.76 ± 
0.05 

   [47] 

23 

6-(9-hydroxy-5,6-di-
methyl-6H-pyr-

ido[4,3-b]carbazol-1-
yl)pyridine-2-carbox-
ylic acid [2-(dimethyl-

amino)ethyl]amide  

0.050 ± 
0.011 

0.095 ± 
0.040 

0.23 ± 
0.020 

40 
(P388) 

207 
(T/C) 

[41] 

24 

5,6-dimethyl-1-(6-me-
thyl-pyridin-2-yl)-6H-
pyrido[4,3-b]carbazol-

9-ol 
 

0.9 5.03    [42] 

25 

5-methyl-6-(2-dime-
thylamino-ethyl)-1-(6-
methyl-pyridin-2-yl)-
6H-pyrido[4,3-b]car-

bazol-9-ol 
 

1.50 2.12    [48] 

26 

5,6-dimethyl-1-(2-me-
thyl-pyridin-4-yl)-6H-
pyrido[4,3-b]carbazol-

9-ol 
 

0.8     [49] 

27 

5,6-dimethyl-1-(6-me-
thyl-pyridin-3-yl)-6H-
pyrido[4,3-b]carbazol-

9-ol 
 

0.85     [50] 

6.08 ± 3.96 8.25 ± 2.14 [46]

21 5,6-dimethyl-1-(4-nitro-phenyl)-6H-
pyrido[4,3-b]carbazol-9-ol
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0.8     [49] 

27 

5,6-dimethyl-1-(6-me-
thyl-pyridin-3-yl)-6H-
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22 1-(4-hydroxy-phenyl)-5,6-dimethyl-6H-
pyrido[4,3-b]carbazol-9-ol
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23

6-(9-hydroxy-5,6-dimethyl-6H-
pyrido[4,3-b]carbazol-1-yl)pyridine-2-

carboxylic acid
[2-(dimethylamino)ethyl]amide
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6H-pyrido[4,3-b]car-

bazol-9-ol 
 

1.50 2.12    [48] 

26 

5,6-dimethyl-1-(2-me-
thyl-pyridin-4-yl)-6H-
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0.8     [49] 

27 
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9-ol 
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0.050 ± 0.011 0.095 ± 0.040 0.23 ± 0.020 40
(P388)

207
(T/C) [41]
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Table 1. Cont.

No. Compound Structure

In Vitro
Cell Lines

IC50 µM ± SD
In Vivo

Reference
Number

L1210 A549 MCF-7
Dose

mg/kg
(Cell Lines)

Therapeutic Effect %

24 5,6-dimethyl-1-(6-methyl-pyridin-2-yl)-
6H-pyrido[4,3-b]carbazol-9-ol
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Figure 2. Modification of the structure of olivacine.

Of interest are compounds 28 and 29, which have 4-nitro-imidazole (compound 28)
and 4-nitro-pyrazole (compound 29) at the C-1 position. The compounds were tested for
antitumor activity under aerobic and anaerobic conditions. For compound 28 in normoxic
conditions IC50 = 4.74 µM (A549), IC50 = 5.96 µM (MCF-7) and in hypoxic conditions
IC50 = 0.57 µM (A549), IC50 = 0.69 µM (MCF-7). For derivative 29 in normoxic conditions
IC50 = 30.5 µM, (A549), IC50 = 11.25 µM (MCF-7) and in hypoxic conditions IC50 = 0.65 µM
(A549), IC50 = 0.81 µM (MCF-7). Compounds 28 and 29 seem to be very interesting because
some cancers develop in anaerobic conditions, and there is a need for compounds that will
selectively affect cancer tumors.

3.1.1. 9-Hydroxyolivacine 2

U. Schmidt et al. presented the synthesis and biological studies of olivacine deriva-
tives [52]. They described 8-hydroxyolivacine, 9-hydroxyolivacine and 8-methoxyolivacine
and 9-methoxyolivacine. The compounds were tested for growth inhibition of Mycobac-
terium tuberculosis. 9-methoxyolivacine showed significant inhibition, MIC90 = 1.5 µM and
olivacine, MIC90 = 4.7 µM, which shows that olivacine and its derivatives have antitumor
activity and show wider bioactivity. The authors rightly note that olivacine’s pharmaco-
logical potential and its derivatives are much less studied than that of ellipticine and its
derivatives [52].

3.1.2. Azo-Olivacine Derivatives 4, 15, 16

Olivacine was modified by introducing nitrogen atoms into the pyrido[4,3-b]carbazole
system instead of carbon atoms. They showed various anticancer effects.

Pazelliptine 4 (PZE) is a 9-aza derivative of olivacine [36], which exhibits greater
antitumor activity and is less toxic than ellipticine [53]. Unlike C-9 ellipticine derivatives,
which can be oxidized at the C-10 position and form harmful free radicals capable of
alkylating proteins or nucleic acids, N-9 derivatives do not undergo such transformations.
They are probably metabolized by oxidation of the nitrogen atom at the N-6 position [54].
Moreover, it seems that ESA is not active against DNA in isolated cell nuclei, probably due
to the rapid metabolism of this compound [55].

3-Aza-olivia influenced cancer cells of the cervix (KB), lymphocytic leukemia (L-1210),
ovary (SK-OV-3) and breast (MCF-7) only at a relatively high concentration of 3.16 µg/mL.
In contrast, at lower concentrations, no dose-dependent effect was observed [56]. It seems
that such a modification is not the best.
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Studies on other S16020 9 derivatives have shown that the cytotoxicity is influenced
not only by the number of nitrogen atoms but also by the location. The pyrazinocarbazole
derivative 16 has been found to exhibit weak cytotoxicity to tumor cells, while derivative
15 has similar cytotoxicity against L1210 murine leukemia cells and P388 leukemia to the
parent compound S16020 9 [44].

3.2. SAR In Vivo

The in vivo evaluation of olivacine and its derivatives was performed on two exper-
imental mouse models, L12010 leukemia and P388 leukemia. The therapeutic effect of
drugs was measured as the percent increase in life span (% ILS) over controls, evaluated
as follows: % ILS = (median survival time (MST) in treated) − (median survival time in
controls)/(median survival time in controls) × 100 or % T/C = median survival time of
treated/median survival time of control animals. From the data presented in Table 1, we can
see that administering olivacine 1 to diseased mice at a dose of 250 mg/kg increased their
survival by 35% (ILS), at a dose of 84 mg/kg 141% (T/C). Modifying the olivacine structure
and replacing carbon at 9-C with nitrogen, and introducing a diethylaminopropylamine
group at C-1 (compound 4) resulted in an increase in survival to 85% (ILS) at a lower dose
of 20 mg/kg. Compound 5 has such an alkylamino chain in the 1-position and the methoxy
group in the 9-position at a dose of 15 mg/kg, 24% (ILS). Changing the moiety to hydroxyl
at position 9 in compound 6 resulted in a dose reduction of 5 mg/kg and increased survival
to 49.5%. Extending the alkyl chain and introducing a new CH2 group reduced the activity
of compound 7 (20 mg/kg, 21% (ILS), 10 mg/kg, 16% (ILS)) compared to the very similar
compound 5. Compound 8 showed the best activity at doses of 160–320 mg/kg, 246->590%
(T/C), 80 mg/kg, 427->582% (T/C). 1-((2-dimethylamino)ethyl)carbamoyl)-5,6-dimethyl-
9-hydroxy-6H-pyrido[4,3-b]carbazole (S16020) 9 dose 90 mg/kg, 238% (T/C), 120 mg/kg
301% (T/C). After introducing the [(dimethylamino)ethyl]pyridine substituent in position
1 of the pyridocarbazole system, compound 23 was obtained, which at a dose of 40 mg/kg
showed a therapeutic effect of 207% (T/C).

3.3. Clinical Trials

So far, the following ellipticine derivatives have been used in clinical trials: celip-
tium [57–59], datelliptium [60,61], retelliptine [61,62], elliprabin [61] and olivacine deriva-
tive: S16020 [25].

So far, the most active synthesized olivacine derivative is 9-hydroxy-5,6-dimethyl-1-
(2-(dimethylamino)ethyl)carbamoyl)-6H-pyrido[4,3-b]carbazole 9, known in the literature
as S16020. It is an olivacine derivative containing a (2-(dimethylamino)ethyl)carbamoyl
moiety in the C-1 position. In the N-6 position, it has a methyl group that blocks the pyr-
role nitrogen atom and prevents oxidation of the 9-hydroxy group to the quinoid system
responsible for the toxicity of the compound [63]. The derivative of pyrido[4,3-b]carbazole
9 showed significant activity in preclinical studies against the murine leukemia P388,
melanoma B16, sarcoma M5076 and human colon C38 and breast cancer cells, ovary and
lung [23,25,40,56,64–68]. Thanks to its activity comparable to cyclophosphamide [66] and
doxorubicin [64,67] and relatively low toxicity, it was qualified for clinical trials [56,68].
S16020 was synthesized by R. Jasztold-Howorko, who published the synthesis and biologi-
cal research of this compound in 1994 [40]. The compound has obtained patent protection
in European countries, Japan, and the United States and has been subjected to clinical
trials [56,69]. Unfortunately, the compound was not approved for further research. It
turned out that, although the average survival time of patients treated with S16020 was
slightly longer than that of patients treated with methotrexate, facial and tumor swelling
as well as erythematous rash prevented the inclusion of the new olivacine derivative in
the next phase of clinical trials [70]. However, only this derivative of olivacine has been so
thoroughly researched, and it is the subject of the largest number of articles.

As a result of arylation of S16020 9 with glutaric anhydride, the new compound
S30972-1 8 was obtained, which turned out to be more active in vivo and less toxic than
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doxorubicin and etoposide [71]. The study found that combination 8 is presumably a
prodrug of S16020 9 [72].

3.4. Influence on the Effectiveness of Radiotherapy

The derivative S16020 has also been studied in conjunction with radiation therapy.
Combining ionizing radiation with intercalators [73] and inhibitors of topoisomerase II [22]
often leads to an increase in its toxicity. This was demonstrated in studies using the HEP2
human tumor line and mice, comparing the effects of ionizing radiation in combination
with S16020. Differences in the activity of topoisomerase II in tissues (a higher expression
of topoisomerase II characterizes tumor cells compared to normal cells) cause the S16020
compound used alone to increase the cytotoxic effect of radiation during ionization, without
increasing its toxicity to healthy tissues and susceptibility to fungal infections. The study
also showed that the order of receiving the dose of radiation and S16020 (20 days apart or
simultaneously) did not affect their action [74,75].

4. Mechanisms of Antitumor Activity of Olivacine and Olivacine Derivative

The mechanism of action and antitumor properties of olivacine (presented in Figure 3)
are similar to ellipticine and rely on direct interaction–intercalation in DNA and topo II
activity [22,23]. It should be emphasized that some olivacine derivatives, e.g., compound
S16020, showed a broad spectrum of antitumor activity and greater activity than ellipticine
derivatives and doxorubicin [24,25].
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4.1. Inhibition of the Function of Topoisomerase II (Topo II)

Previous studies indicate that olivacine derivatives bind to the topo II dissectible
enzyme–DNA complex [71]. It is assumed that the stabilization of the cleavable complex
“from the side” of the enzyme, i.e., drug interactions with the topo II complex, is more
durable and effective, promising effective stabilization of the complex [76]. It has been
shown that in addition to blocking topo II, olivacine derivatives also intercalate into DNA.
Thus, the determination of the share of direct interactions of new derivatives with the
nucleic acid and interactions with the topo II enzyme may help in understanding the
mechanisms of genotoxic action of these compounds, especially in comparison with the
standard topo II inhibitor that stabilizes the cleavable topo II–DNA complexes—etoposide,
which it is a semi-synthetic derivative of podophyllotoxin [77].

4.2. p53 Protein

A promising direction of research in recent years in experimental oncology involves
attempts to restore the structure and function of the p53 protein, which heralds the develop-
ment of new therapeutic strategies, increasing the effectiveness of anticancer therapy. This
is an important way to influence the death of cells through apoptosis, which in neoplastic
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disease is disturbed. Olivacine derivatives affect both the normal p53 protein and the
wild-p53 protein [26,27].

5. Conclusions

In this review, we have described the alkaloid olivacine and its derivatives. Olivacine
1 has been known for 60 years, but all its properties are still not known. We know that it
has been used against malaria, has anticancer properties, and inhibits E. coli bacteria. Its 9-
methoxyolivacine derivative significantly inhibits the growth of Mycobacterium tuberculosis.
Importantly, however, the olivacine derivatives show greater antitumor activity than
doxorubicin and ellipticine. At the same time, they are less toxic than ellipticine and
doxorubicin, which are currently used in cancer treatment. Based on in vitro and in vivo
activity, it can be seen that derivatives with a methyl substituent in the N-6 position of the
pyridine carbazole system have the best activity.

Interestingly, the derivatives that showed very good activity in in vitro tests did not
translate into in vivo tests (compounds having a hydroxyl group in the C-9 position of
the pyridocarbazole system). The best effect seems to be introducing a moiety in the
C-9 position of the pyridocarbazole system, which in the body will hydrolyze to the OH
group. Interestingly, olivacine derivatives show a stronger effect on the p53 protein than
ellipticine, a protein responsible for DNA repair or cell apoptosis. Also of interest are
olivacine derivatives 28 and 29, which are active under hypoxic conditions but are very
weakly active under aerobic conditions. These compounds may be precursors to drugs that
act on anaerobic neoplasms and will not act on healthy cells. It seems that research on new
olivacine derivatives may contribute to the development of new effective anticancer drugs.
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