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Abstract: The present study involves the integrated network pharmacology and phytoinformatics-
based investigation of phytocompounds from Ocimum tenuiflorum against diabetes mellitus-linked
Alzheimer’s disease. It aims to investigate the mechanism of the Ocimum tenuiflorum phytocom-
pounds in the amelioration of diabetes mellitus-linked Alzheimer’s disease through network pharma-
cology, druglikeness and pharmacokinetics, molecular docking simulations, GO analysis, molecular
dynamics simulations, and binding free energy analyses. A total of 14 predicted genes of the 26 orally
bioactive compounds were identified. Among these 14 genes, GAPDH and AKT1 were the most
significant. The network analysis revealed the AGE-RAGE signaling pathway to be a prominent
pathway linked to GAPDH with 50.53% probability. Upon the molecular docking simulation with
GAPDH, isoeugenol was found to possess the most significant binding affinity (−6.0 kcal/mol).
The molecular dynamics simulation and binding free energy calculation results also predicted that
isoeugenol forms a stable protein–ligand complex with GAPDH, where the phytocompound is pre-
dicted to chiefly use van der Waal’s binding energy (−159.277 kj/mol). On the basis of these results,
it can be concluded that isoeugenol from Ocimum tenuiflorum could be taken for further in vitro
and in vivo analysis, targeting GAPDH inhibition for the amelioration of diabetes mellitus-linked
Alzheimer’s disease.

Keywords: Ocimum tenuiflorum; diabetes mellitus; Alzheimer’s disease; GAPDH; AGE-RAGE;
isoeugenol; network pharmacology; druglikeness and pharmacokinetics; molecular docking
simulation; GO analysis; molecular dynamics simulation; binding free energy analysis
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1. Introduction

There have been several insights into the exploration of the biomolecular link between
type 2 diabetes mellitus (T2D) and Alzheimer’s disease (AD) in the last two decades [1].
However, there is no specific molecular pathway or target that has been identified for
the development of AD in diabetic patients. Epidemiological details suggest a strong
relationship between high blood glucose levels and the degree of cognitive dysfunction in
diabetic patients [2,3]. A few studies have collectively termed these conditions as type 3
diabetes [4,5].

For the treatment of T2D-linked AD, there are no specific therapeutic applications
available. However, biguanides, sulfonylureas, glitazones, and DPP-4 inhibitors are known
to reduce the symptoms of AD. However, most of these drugs have been reported with ad-
verse effects, such as weight loss, lactic acidosis, ketoacidosis, anemia, bone fractures, and
gastrointestinal and cardiovascular complications. Therefore, it is worth testing phytocon-
stituents with antidiabetic potential, which are less toxic compared to synthetic drugs [6,7].

Ocimum sanctum, commonly known as tulsi, is a fragrant shrub of the basil family
Lamiaceae (Tribeocimeae) that is native to the eastern globe tropics, and which is said to have
originated in north-central India. Tulsi is supposed to help with disease prevention, general
health, wellbeing, and longevity, as well as dealing with the demands of daily life [8].
Specifically, it is also said to have an ameliorating effect on several health maladies [9–11].
Several in vitro, animal, and human experiments have proven the pharmacological benefits
of tulsi [10–12]. Therefore, O. sanctum serves as an important source of phytoconstituents
that can be utilized for pharmacotherapeutic applications.

With the advancements of computer-aided drug design technologies, several compu-
tational investigations have identified phytoconstituents as an effective replacement for
the available therapeutics [13]. Additionally, network pharmacology has been employed
to study the biological network of drug candidates, and to construct a poly-target drug
molecule to optimize medication efficacy [14–16]. Hence, we aim to investigate the anti-
diabetic as well anti-Alzheimer’s potential of O. sanctum phytochemicals through network
pharmacology and other computational methods.

2. Materials and Methods
2.1. Construction of Phytocompound Library

The phytocompounds of Ocimum tenuiflorum were searched for through IMPPAT
(Indian Medicinal Plants, Phytochemistry and Therapeutics) database, (https://cb.imsc.
res.in/imppat/basicsearchauth) (Accessed on 3 January 2022) [17], which contains more
than 1700 Indian medicinal plants with 1100 therapeutic uses. The phytocompounds
identified were retrieved from the NCBI PubChem database (https://pubchem.ncbi.nlm.
nih.gov/) (Accessed on 3 January 2022). On the basis of their ADMET properties, the
active compounds were screened for multiple parameters, such as oral bioavailability
(OB) ≥ 30%, blood–brain barrier (BBB), half-life (HL) < 3 h, Lipinski’s rule of five, Caco-2
cells, drug-induced liver injury (DILI), clearance (CL) > 15 mL, molecular weight (MW),
hydrogen bond donors (HbD), hydrogen bond acceptors (HbA), topological polar surface
area (TPSA), and pan assay interference compounds (PAINS).

2.2. Prediction of Target Genes

The genes associated with type 2 diabetes and AD were obtained using DisGeNET
(https://www.disgenet.org/search) (Accessed on 5 January 2022) and the GeneCards
database (https://www.genecards.org/) (Accessed on 3 January 2022). The target genes
were searched for using keywords “T2D” and “Alzheimer’s”, using “Homo sapiens” as a
filter for both.

2.3. Construction of PPI Network

The protein interaction network was built for the common genes taken from both
the diseases, to understand their functional associations and the extension of interactions,

https://cb.imsc.res.in/imppat/basicsearchauth
https://cb.imsc.res.in/imppat/basicsearchauth
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.disgenet.org/search
https://www.genecards.org/
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using the STRING online tool (https://string-db.org) (Accessed on 7 January 2022). The
STRING database was used to remove dissociation targets from the target genes, with a
confidence level of 0.09 and an organism filter set to Homo sapiens. Finally, the interaction
network was constructed.

2.4. C-T Network and Enrichment Analysis

The network obtained from STRING was imported to Cytoscape 3.8.2 [18]. By using
the CytoCluster plugin, the gene cluster was obtained to find the highly significant genes.
Later, the core targets were selected using the most important parameters on the basis
of the topological characteristics of the constructed networks, such as Degree Centrality
(DC), which is used to evaluates the number of nodes associated with a node, Closeness
Centrality (CC), which refers to the sum from one point to another, and Betweenness
Centrality (BC), which is used to evaluate the shortest path in the network [19] using
the CytoNCA plugin. Finally, the selected genes were again screened using CytoHubba
plugin using the Maximum Clique Centrality (MCC) scoring method to generate the critical
subnetwork. The biological interpretation of core target genes was performed using the
ClueGO plugin, which integrates the GO and KEGG pathways and creates a functionally
organized network, further using CluePedia to identify the potential biomarkers that are
associated with the pathway, as well as the cellular location of the core genes analyzed [20].
The filter for analysis was set to Homo sapiens with a p value less than 0.05, and the
Bonferroni method was considered. Finally, the C-T network was built for the core targets
and was analyzed using Cytoscape 3.8.2.

2.5. Molecular Docking Simulation

The 3D crystal structure of the target protein GAPDH (PDB ID: 1U8F) was downloaded
from the RCSB Protein Data Bank (https://www.rcsb.org/) (Accessed on 10 January 2022).
The molecular docking protocol was validated by redocking the co-crystallized ligand with
the target protein and evaluating the RMSD between the bound and re-docked ligand. The
molecular docking simulation was carried out according to the previous study conducted
by Patil et al. (2021) [21]. For the molecular docking simulation, AutoDock Tools 1.5.6 was
used to prepare the protein structures. AutoDock is a suite of automated docking tools. It
is designed to predict how small molecules, such as substrates or drug candidates, bind
to a receptor of a known 3D structure [22]. To purify the protein structures, water and
heteroatoms were removed. Polar hydrogens, on the other hand, were added to stabilize
the same. The energy of the protein structures was reduced by using Kollmann-united
charges and Gasteiger charges. After energy minimization, all atoms were assigned an
AutoDock 4 atom type prior to obtaining the prepared protein structure in the PDBQT
format for molecular docking simulations. The PDBQT format saves the protein’s atomic
coordinates, partial charges, and AutoDock 4 atom type [23]. Further, OpenBabel 2.3.1 was
used to transform the 3D SDF structures into PDBQT format during ligand preparation [24].
For ligand preparation, the structures were imported into AutoDock Tools 1.5.6. To reduce
the energy of the ligands, Kollman-united and Gasteiger charges were added. As indicated
by AutoDock Tools 1.5.6, the number of torsions was left at the default [25].

Binding site prediction for the target proteins was completed using a literature analysis.
The binding residues present in the binding pocket were identified using the literature avail-
able for GADPH [26]. Using AutoDock Tools 1.5.6, the binding pockets of the respective
proteins were set in the grid boxes. The grid box measuring 11.20 Å × 11.20 Å × 11.20 Å
was coordinated at x = 12.128023, y = 24.467386, and z = 29.015455. Virtual screening
of the phytocompounds was completed with a command line-based software known as
AutoDock Vina 1.1.2. For the perturbation and local optimization of ligands into the target
site, it employs the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, which analyses
the scoring function of each ligand conformation [27]. Because of the number of torsions
generated during ligand production, ligands were assumed to be flexible throughout the
docking simulation, while the proteins were believed to be rigid. However, 10 degrees

https://string-db.org
https://www.rcsb.org/
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of freedom were permitted for ligand molecules. The first binding poses with zero root-
mean-square deviation (RMSD) of atomic positions are deemed to be highly valid out of
ten binding poses generated [28]. They also possess the strongest binding affinity of all the
positions, implying that the binding is stronger. Biovia Discovery Studio Visualizer 2021,
an open-source visualizing GUI software, was used to visualize the results. The extent
of ligand interaction was determined using binding affinity, total number of bonds, and
respective hydrogen bonds [29].

2.6. Molecular Dynamics Simulation

The docked conformations of GAPDH protein and respective ligands (isoeugenol
and myrene) with the lowest negative binding affinity were chosen for the molecular
dynamics simulation, which was carried out according to the previous study conducted
by Patil et al. (2021) [30]. Myrene was chosen as the negative control, since the molecule
was predicted to have the highest positive binding affinity (inferior binding) with GAPDH.
For the simulation, the GROMACS-2018.1 biomolecular software suite was utilized [31].
All of the protein–ligand complexes were assigned using the CHARMM36 force field,
and the ligand topology was acquired using the CGenFF server [32]. The GROMACS
pdb2gmx module was used to add hydrogen atoms to the heavy atoms present. The
steepest descent technique was then utilized to achieve 5000 vacuum minimization steps.
The protein–ligand complexes were placed in a box with a 10 Å perimeter. The solvent
was included in the water model TIP3P. The entire system was neutralized by adding the
proper amount of Na+ and Cl− counter ions. A total of 3 simulations were run for 100 ns,
including a GAPDH protein backbone atom (5051 residues), GAPDH protein-isoeugenol
complex (5065 residues), and GAPDH protein–myrene complex (5062 residues). The en-
ergy of the generated systems was decreased using the steepest descent and conjugate
gradient techniques. The NVT ensemble was then followed by an NPT ensemble, which
was followed by a brief (1000 ps) equilibration (1000 ps). All simulations took 100 ns at
310 K temperature and 1 bar pressure. A trajectory analysis consisting of root-mean-square
deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), and sol-
vent accessible surface area (SASA), and ligand hydrogen bond parameters was performed
using the XMGRACE software, with the results displayed in graphical form [33,34].

2.7. Binding Free Energy Calculations

The determination of a protein–ligand complex’s binding free energy is another ap-
plication of molecular dynamics simulations and thermodynamics for determining the
extent of ligand binding with protein. The binding free energy calculations for all the
protein–ligand complexes were evaluated according to the previous study by Patil et al.
(2021) [30]. The molecular mechanics/Poisson–Boltzmann surface area (MM-PBSA) tech-
nique was used in this work. It is another application of molecular dynamics simulations
and thermodynamics for determining the extent of ligand binding with protein [35,36].
The g_mmpbsa program with MmPbSaStat.py script, which utilizes the GROMACS 2018.1
trajectories as input, was used to determine the binding free energy for each ligand–protein
combination. In the g_mmpbsa program, three components are used to calculate the bind-
ing free energy: molecular mechanical energy, polar and apolar solvation energies, and
molecular mechanical energy. The calculation is performed using MD trajectories of the
last 50 ns, which were considered to compute ∆G with dt 1000 frames. It is evaluated using
molecular mechanical energy and polar and apolar solvation energies. The equation (I) and
(II) that are used to calculate the free binding energy are given below [21,30].

∆GBinding = GComplex − (GProtein + GLigand) (1)

∆G = ∆EMM + ∆GSolvation − T∆S = ∆E(Bonded + non-bonded) + ∆G(Polar + non-polar) − T∆S (2)

GBinding: binding free energy, GComplex: total free energy of the protein–ligand com-
plex, GProtein and GLigand: total free energies of the isolated protein and ligand in solvent,
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respectively, ∆G: standard free energy, ∆EMM: average molecular mechanics potential
energy in vacuum, GSolvation: solvation energy, ∆E: total energy of bonded as well as non-
bonded interactions, ∆S: change in entropy of the system upon ligand binding, and T:
temperature in Kelvin.

3. Results
3.1. Target Prediction and Active Compound Library

A total of 61 compounds of Ocimum tenuiflorum were retrieved from the PubChem
database. On the basis of the ADMET (Table 3) screening, an active compound library was
built, and a total of 26 compounds passed the screening criteria. Further, the target genes
were fished for using the DisGeNET database, and a total of 6531 were considered, where
3134 belong to T2D and 3397 belong to AD, respectively. However, only 1381 genes were
found to be common in both the diseases (Figure 1).
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Figure 1. Venn diagram representing the interaction of T2D with AD.

3.2. Construction of PPI Network

The interaction network was constructed for the target proteins. Out of 1381 common
genes, the network was constructed for 1287 targets which were specific to Homo sapiens.
The constructed network contained 1287 nodes and 5685 edges with the 8.83 as the average
node degree and 0.564 as the coefficient. The pictorial representation of the diseases
interaction network is given in Figure 2.
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Table 1. Screening of active compounds using ADMET criteria.

Sl. No Compound Names

Oral
Bioavail-

ability (OB
≥ 30%)

Blood–
Brain

Barrier
(BBB)

Drug
Half-Life
(HL < 3 h)

Lipinski’s
Rule (LR)

of Five

Intestinal
Epithelial
Permeabil-
ity (Caco-2

Cells)

Drug-
Induced

Liver
Injury
(DILI)

Clearness
(CL > 15

mL/min/kg)

Molecular
Weight
(MW

100~600)

Hydrogen
Bond

Acceptor
(0~12)

Hydrogen
Bond
Donor
(0~7)

TPSA
(0~140) PAINS

1 Cyclo (L-val-L-Leu) Pass Pass 0.671 Accepted −4.711 Negative 5.356 212.150 4 2 58.200 0

2 α-Cubebene Fail Pass 0.052 Accepted −4.408 Negative 18.693 204.190 0 0 0.000 0

3 β-Caryophyllone Moderate Pass 0.227 Accepted −4.750 Negative 14.774 220.180 1 0 17.070 0

4 Phytosterols Pass Pass 0.013 Accepted −4.756 Negative 16.686 414.390 1 1 20.230 0

5 UNII-0V56HXQ8N5 Moderate Moderate 0.059 Accepted −4.357 Negative 19.832 204.190 0 0 0.000 0

6 (−)-Alloaromadendrene Pass Pass 0.040 Accepted −4.577 Negative 13.563 204.190 0 0 0.000 0

7 (−)-Camphene Pass Pass 0.077 Accepted −4.463 Negative 9.346 136.130 0 0 0.000 0

8 (−)-cis-Carveol Fail Pass 0.378 Accepted −4.328 Negative 12.624 152.120 1 1 20.230 0

9 (−)-Linalool Pass Pass 0.493 Accepted −4.375 Negative 9.738 154.140 1 1 20.230 0

10 (+)-α-Phellandrene Pass Pass 0.617 Accepted −4.383 Negative 12.660 136.130 0 0 0.000 0

11 (+)-δ-Cadinene Moderate Moderate 0.051 Accepted −4.469 Positive 7.421 204.190 0 0 0.000 0

12 (+)-endo-β-Bergamotene Pass Pass 0.063 Accepted −4.466 Negative 16.946 204.190 0 0 0.000 0

13 (1S,2R,4S)-(−)-Bornyl
acetate Pass Pass 0.243 Accepted −4.552 Moderate 6.063 196.150 2 0 26.300 0

14
(1S)-1,7,7-

Trimethylbicyclo[2.2.1]heptan-
2-one

Pass Pass 0.701 Accepted −4.582 Negative 13.808 152.120 1 0 17.070 0

15 (E)-β-Farnesene Fail Fail 0.156 Accepted −4.537 Moderate 13.186 204.190 0 0 0.000 0

16 (E)-α-Bisabolene Fail Fail 0.092 Accepted −4.502 Negative 17.581 204.190 0 0 0.000 0

17 (E)-β-Ocimene Pass Pass 0.678 Accepted −4.434 Negative 14.171 136.130 0 0 0.000 0

18 1-Octen-3-ol Fail Fail 0.672 Accepted −4.256 Negative 7.650 128.120 1 1 20.230 0

19 1S-α-Pinene Pass Pass 0.114 Accepted −4.303 Negative 15.022 136.130 0 0 0.000 0

20 2,3-Dimethylaniline Pass Pass 0.583 Accepted −4.255 Negative 10.496 121.090 1 2 26.020 0

21 2,5-Dimethoxybenzoic
acid Pass Moderate 0.885 Accepted −4.853 Positive 7.488 182.060 4 1 55.760 0

22 3-Carene Pass Pass 0.132 Accepted −4.307 Negative 16.061 136.130 0 0 0.000 0
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Table 2. Screening of active compounds using ADMET criteria.

Sl. No Compound Names

Oral
Bioavail-

ability (OB
≥ 30%)

Blood–
Brain

Barrier
(BBB)

Drug
Half-Life
(HL < 3 h)

Lipinski’s
Rule (LR)

of Five

Intestinal
Epithelial
Permeabil-
ity (Caco-2

Cells)

Drug-
Induced

Liver
Injury
(DILI)

Clearness
(CL > 15

mL/min/kg)

Molecular
Weight
(MW

100~600)

Hydrogen
Bond

Acceptor
(0~12)

Hydrogen
Bond
Donor
(0~7)

TPSA
(0~140) PAINS

23 4-Terpineol Pass Pass 0.447 Accepted −4.217 Negative 14.345 154.140 1 1 20.230 0

24 Acetic acid Pass Pass 0.791 Accepted −5.218 Negative 1.609 60.020 2 1 37.300 0

25 Acetyleugenol Pass Pass 0.843 Accepted −4.453 Moderate 8.457 206.090 3 0 35.530 0

26 α-Fenchene Pass Pass 0.099 Accepted −4.460 Negative 10.559 136.130 0 0 0.000 0

27 α-Humulene Fail No 0.095 Accepted −4.425 Negative 8.432 204.190 0 0 0.000 0

28 α-Terpineol Pass Pass 0.527 Accepted −4.193 Negative 8.942 154.140 1 1 20.230 0

29 Apigenin Fail No 0.856 Accepted −4.847 Positive 7.022 270.050 5 3 90.900 0

30 Apigenin 7-glucuronide Fail No 0.715 Rejected −6.376 Positive 1.194 446.080 11 6 187.120 0

31 β-Cadinene Fail Moderate 0.060 Accepted −4.392 Negative 17.975 204.190 0 0 0.000 0

32 β-Carotene Moderate No 0.076 Rejected −6.003 Negative 0.229 536.440 0 0 0.000 0

33 β-Caryophyllene Pass Pass 0.048 Accepted −4.517 Negative 9.943 204.190 0 0 0.000 0

34 β-Pinene Pass Pass 0.107 Accepted −4.460 Negative 10.097 136.130 0 0 0.000 0

35 Bis-acetic acid Fail No 0.998 Rejected −7.722 Positive 12.869 1700.170 46 25 777.980 1 alert

36 Carotene Pass No 0.036 Rejected −5.634 Negative 0.671 536.440 0 0 0.000 0

37 Carvacrol Fail Pass 0.671 Accepted −4.436 Negative 11.335 150.100 1 1 20.230 1 alert

38 cis-Anethole Pass Moderate 0.638 Accepted −4.440 Negative 11.146 148.090 1 0 9.230 0

39 Decanal Fail Pass 0.456 Accepted −4.551 Negative 5.049 156.150 1 0 17.070 0

40 Dehydro-p-cymene Pass Pass 0.568 Accepted −4.344 Moderate 10.755 132.090 0 0 0.000 0

41 Dipentene Fail Pass 0.233 Accepted −4.320 Negative 11.517 136.130 0 0 0.000 0

42 Estragole Moderate Moderate 0.577 Accepted −4.308 Negative 12.054 148.090 1 0 9.230 0

43 Eucalyptol Pass Pass 0.352 Accepted −4.414 Negative 8.066 154.140 1 0 9.230 0

44 Eugenol Fail Pass 0.887 Accepted −4.373 Negative 14.042 164.080 2 1 29.460 0

45 γ-Selinene Pass Pass 0.088 Accepted −4.577 Negative 13.350 204.190 0 0 0.000 0

46 Geranyl acetate Pass Pass 0.506 Accepted −4.420 Moderate 9.707 196.150 2 0 26.300 0

47 Isoeugenol Pass Moderate 0.880 Accepted −4.579 Negative 13.435 164.080 2 1 29.460 0
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Table 3. Screening of active compounds using ADMET criteria.

Sl. No Compound Names

Oral
Bioavail-

ability (OB
≥ 30%)

Blood–
Brain

Barrier
(BBB)

Drug
Half-Life
(HL < 3 h)

Lipinski’s
Rule (LR)

of Five

Intestinal
Epithelial
Permeabil-
ity (Caco-2

Cells)

Drug-
Induced

Liver
Injury
(DILI)

Clearness
(CL > 15

mL/min/kg)

Molecular
Weight
(MW

100~600)

Hydrogen
Bond

Acceptor
(0~12)

Hydrogen
Bond
Donor
(0~7)

TPSA
(0~140) PAINS

48 L-Ascorbic acid Fail Fail 0.928 Accepted −5.917 Positive 9.964 176.030 6 5 114.290 0

49 Linolenic acid Fail Fail 0.710 Accepted −4.631 Negative 4.877 278.220 2 1 37.300 0

50 Luteolin-7-O-glucuronide Fail Fail 0.855 Rejected −6.471 Positive 1.614 462.080 12 7 207.350 1 alert

51 Methyleugenol Moderate Pass 0.848 Accepted −4.338 Negative 11.466 178.100 2 0 18.460 0

52 Molludistin Fail Fail 0.290 Accepted −5.776 Positive 3.398 416.110 9 5 149.820 0

53 Myrcene Pass Pass 0.453 Accepted −4.402 Moderate 13.108 136.130 0 0 0.000 0

54 Nerol Fail Pass 0.737 Accepted −4.299 Positive 12.604 154.140 1 1 20.230 0

55 Octadeca-9,12-dienoic acid Moderate Fail 0.628 Accepted −4.733 Negative 3.327 280.240 2 1 37.300 0

56 Octadecanoate Fail Fail 0.476 Accepted −5.068 Negative 2.425 284.270 2 1 37.300 0

57 Oleic acid Moderate Fail 0.546 Accepted −4.922 Negative 2.573 282.260 2 1 37.300 0

58 Orientin Fail Fail 0.724 Rejected −6.208 Positive 5.042 448.100 11 8 201.280 1 alert

59 Palmitic acid Fail Fail 0.610 Accepted −5.027 Negative 2.377 256.240 2 1 37.300 0

60 Thymol Fail Pass 0.682 Accepted −4.387 Negative 9.444 150.100 1 1 20.230 0

61 Ursolic acid Moderate Pass 0.017 Accepted −5.221 Negative 3.671 456.360 3 2 57.530 0
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3.3. Network Analysis

The disease gene interaction network obtained from STRING was imported to Cy-
toscape 3.8.2 for further analysis. The interaction network that was imported to Cytoscape
contained 1025 nodes and 5685 edges. By using the CytoCluster plugin, the gene cluster
was obtained to find the highly significant genes. A total of 157 clusters were obtained,
out of which 19 had significant p values of less than 0.05, as depicted in Figure 3. Further,
using the CytoNCA plugin, the top 15 genes were selected (Table 4), and again the selected
genes were screened using the CytoHubba plugin to obtain the critical genes. After all
three analyses, the top 14 genes were selected for the construction of a C-T network. The
compounds were selected on the basis of the above ADMET screening.
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Table 4. Results from CytoNCA analysis revealing most significant target genes (selected on the basis
of degree centrality).

Name Betweenness
Centrality

Closeness
Centrality

Degree
Centrality

Number of
Undirected Edges

GAPDH 0.046608989 0.625061425 535 535

AKT1 0.038310118 0.625368732 535 535

ACTB 0.035911388 0.625061425 534 534

ALB 0.036238133 0.620487805 524 524

INS 0.047353182 0.619581101 515 515

TNF 0.026923424 0.610951009 497 497

IL6 0.025073263 0.610657705 491 491

TP53 0.028814967 0.591627907 428 428

IL1B 0.012693258 0.581618656 405 405

VEGFA 0.00953204 0.574525745 380 380

EGFR 0.018377788 0.576086957 374 374

STAT3 0.010150212 0.569127517 364 364

CTNNB1 0.01889698 0.56735058 350 350

MAPK3 0.010595927 0.563081009 333 333

After the discovery of core target and active compounds, the C-T network was con-
structed, as shown in Figure 4. The interaction network contains 35 nodes and 196 edges,
which were analyzed using Cytoscape. The analysis shows that the phytocompounds of
Ocimum tenuiflorum are connected to the target genes. Among these 14 genes, GAPDH and
AKT1 were the most significant, according to the analysis.
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3.4. Gene Ontology and Pathway Enrichment Analysis

The top 14 core genes were then analyzed using ClueGo and CluePedia for the GO
functional annotation and KEGG pathway analysis. On the basis of the analysis result,
a total of 148 pathways were obtained, which are divided into 17 functional groups that
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represents the pathways with GO terms as depicted in the pie chart (Figure 5). Figure 6
shows the graphical representation of the cellular location of the potential marker using the
interaction score from the GO term. The outcome of GO and pathway enrichment reveals
the AGE-RAGE signaling pathway to be the most significant target pathway with 50.53%
probability in comparison with the other pathways analyzed (Figure 5).

Molecules 2022, 27, x FOR PEER REVIEW  13  of  22 
 

 

 

Figure 5. The pie chart result of GO term analysis with interaction pathway obtained using 

ClueGo. 

 

Figure 6. The cellular location of the potential marker based on CluePedia analysis. 

3.5. Molecular Docking Study 

Following  the network analysis,  the most significant gene glyceraldehyde 3‐phos‐

phate dehydrogenase (GAPDH) was considered for the docking study. The structural de‐

tails of the selected protein molecule (PDB ID: 1U8F) have been depicted in Supplemen‐

tary Figure S1A. The results from the molecular docking protocol reveal that the protocol 

was suitable for  the screening of  the phytocompounds. The RMSD between  the bound 

and re‐docked ligand was found to be 2.10 Å (Supplementary Figure S1B). We then se‐

lected the active compounds for the docking study on the basis of the C‐T network and 

ADMET screening, and a total of 11 compounds were considered for the study. The virtual 

screening result is given in Table 3. The screening result showed that the GAPDH‐bound 

isoeugenol complex showed a better binding affinity of  −6.0 kcal/mol with  the highest 

non‐bonded interaction than other compounds. However, myrcene was found to have the 

lowest binding affinity  (−3.6 kcal/mol) and was considered  to be a negative control  for 

further  analyses. Both  isoeugenol  and myrcene were bound  to  the  same binding  site, 

where the co‐crystallized NAD+ was bound. Isoeugenol formed a total of eight non‐bond‐

ing interactions, with three of them being hydrogen bonds. It bound to ARG 13 (3.20 Å), 

GLY 12 (3.41 Å), and SER 98 (2.03 Å) with hydrogen bonds. It also  interacted with the 

protein using hydrophobic pi‐alkyl bonds with ARG 13 (4.27 Å and 5.10 Å), ILE 14 (5.24 

Å and 4.98 Å), and an alkyl bond with ALA 183 (3.90 Å). However, myrcene was found 

to have only two non‐bonding interactions, both being alkyl bonds. It bound only with 

ILE 14 (5.14 Å and 4.51 Å) (Figure 7). A protein–ligand interaction fingerprint (PLIF) was 

conducted to interpret the docking results (Supplementary Figure S2). 

Figure 5. The pie chart result of GO term analysis with interaction pathway obtained using ClueGo.

Molecules 2022, 27, x FOR PEER REVIEW  13  of  22 
 

 

 

Figure 5. The pie chart result of GO term analysis with interaction pathway obtained using 

ClueGo. 

 

Figure 6. The cellular location of the potential marker based on CluePedia analysis. 

3.5. Molecular Docking Study 

Following  the network analysis,  the most significant gene glyceraldehyde 3‐phos‐

phate dehydrogenase (GAPDH) was considered for the docking study. The structural de‐

tails of the selected protein molecule (PDB ID: 1U8F) have been depicted in Supplemen‐

tary Figure S1A. The results from the molecular docking protocol reveal that the protocol 

was suitable for  the screening of  the phytocompounds. The RMSD between  the bound 

and re‐docked ligand was found to be 2.10 Å (Supplementary Figure S1B). We then se‐

lected the active compounds for the docking study on the basis of the C‐T network and 

ADMET screening, and a total of 11 compounds were considered for the study. The virtual 

screening result is given in Table 3. The screening result showed that the GAPDH‐bound 

isoeugenol complex showed a better binding affinity of  −6.0 kcal/mol with  the highest 

non‐bonded interaction than other compounds. However, myrcene was found to have the 

lowest binding affinity  (−3.6 kcal/mol) and was considered  to be a negative control  for 

further  analyses. Both  isoeugenol  and myrcene were bound  to  the  same binding  site, 

where the co‐crystallized NAD+ was bound. Isoeugenol formed a total of eight non‐bond‐

ing interactions, with three of them being hydrogen bonds. It bound to ARG 13 (3.20 Å), 

GLY 12 (3.41 Å), and SER 98 (2.03 Å) with hydrogen bonds. It also  interacted with the 

protein using hydrophobic pi‐alkyl bonds with ARG 13 (4.27 Å and 5.10 Å), ILE 14 (5.24 

Å and 4.98 Å), and an alkyl bond with ALA 183 (3.90 Å). However, myrcene was found 

to have only two non‐bonding interactions, both being alkyl bonds. It bound only with 

ILE 14 (5.14 Å and 4.51 Å) (Figure 7). A protein–ligand interaction fingerprint (PLIF) was 

conducted to interpret the docking results (Supplementary Figure S2). 

Figure 6. The cellular location of the potential marker based on CluePedia analysis.

3.5. Molecular Docking Study

Following the network analysis, the most significant gene glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was considered for the docking study. The structural details of
the selected protein molecule (PDB ID: 1U8F) have been depicted in Supplementary Figure S1A.
The results from the molecular docking protocol reveal that the protocol was suitable for the
screening of the phytocompounds. The RMSD between the bound and re-docked ligand
was found to be 2.10 Å (Supplementary Figure S1B). We then selected the active compounds
for the docking study on the basis of the C-T network and ADMET screening, and a total
of 11 compounds were considered for the study. The virtual screening result is given in
Table 5. The screening result showed that the GAPDH-bound isoeugenol complex showed
a better binding affinity of −6.0 kcal/mol with the highest non-bonded interaction than
other compounds. However, myrcene was found to have the lowest binding affinity (−3.6
kcal/mol) and was considered to be a negative control for further analyses. Both isoeugenol
and myrcene were bound to the same binding site, where the co-crystallized NAD+ was
bound. Isoeugenol formed a total of eight non-bonding interactions, with three of them
being hydrogen bonds. It bound to ARG 13 (3.20 Å), GLY 12 (3.41 Å), and SER 98 (2.03 Å)
with hydrogen bonds. It also interacted with the protein using hydrophobic pi-alkyl bonds
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with ARG 13 (4.27 Å and 5.10 Å), ILE 14 (5.24 Å and 4.98 Å), and an alkyl bond with ALA
183 (3.90 Å). However, myrcene was found to have only two non-bonding interactions,
both being alkyl bonds. It bound only with ILE 14 (5.14 Å and 4.51 Å) (Figure 7). A
protein–ligand interaction fingerprint (PLIF) was conducted to interpret the docking results
(Supplementary Figure S2).

3.6. Molecular Dynamics Simulation

A molecular dynamics simulation was used to validate the docking investigation
and determine the degree of stability of the docked complex along with the target protein.
Graphs for RMSD, RMSF, Rg, SASA, and H-bond are represented in Figure 8 to analyze
the trajectories.

The root-mean-square deviation (RMSD) graph represents the protein–ligand com-
plex’s stability throughout the course of a 100 ns simulation. By examining the plot, it
can be said that the complex and target protein show a similar pattern of stability. The
complex is within the range of 0.2–0.5 nm and the protein backbone was found within
0.2–0.35, and both were found to be stable after 80 ns. However, the protein–myrcene
complex was found to have an RMSD value of 0.6 nm, and the plot was not concordant
with that of the protein backbone atoms. In the RMSF analysis, both the isoeugenol complex
and the protein backbone atoms were on par, with an almost similar fluctuation pattern.
In the protein–myrcene complex, a higher number of fluctuations was observed in the
loop regions (200 residues). Fluctuations were also found between 50 and 100 residues
in 200–250 regions. Further, Rg and SASA plots were analyzed to show the structural
compactness of the structure formed. The Rg plot analysis shows that the protein and
the complex were found to be ranging between 2.0 and 2.1 nm, whereas the SASA value
was found to be on par, with a similar pattern. The same trend of incompatible plot was
predicted for protein–myrcene complex in Rg analysis, which was observed in the case
of RMSD and RMSF. It was equilibrated at 2.2–2.3 nm. In the SASA plots, the value of
protein–myrcene complex was found to be ranging between 130 and 135 nm2, which made
the plot incompatible with that of the protein backbone atoms. Finally, the H-bond was
assessed to determine the structural re-agreement, and it can be seen that the complex may
have undergone structural alterations. In ligand hydrogen bond formation, isoeugenol
formed more hydrogen bonds (six) in comparison with myrcene (four).

Table 5. Binding affinity and non-bonding interactions of compounds with the target proteins.

Sl. No. Name of the
Compound

Binding
Affinity

(kcal/mol)

Total No. of
Non-Bonding
Interactions

Total No. of
Hydrogen Bonds

1 1S-α-Pinene −4.3 5 0

2 3-Carene −4.3 5 0

3 4-Terpineol −4.4 5 1

4 Acetyleugenol −5.0 6 1

5 α-Terpineol −4.4 5 1

6 β-
Caryophyllene −5.6 3 0

7 cis-Anethole −4.1 4 1

8 Eucalyptol −4.3 4 1

9 Geranyl acetate −5.9 6 1

10 Isoeugenol −6.0 7 2

11 Myrcene −3.6 2 0
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Figure 7. (A) The surface interaction view of GAPDH protein bound with isoeugenol (grey) and
myrcene (orange). (B,C) The 3D representation of isoeugenol and myrcene binding to the residues,
respectively. (D,E) The 2D representation of isoeugenol and myrcene binding to the residues, respec-
tively. Teal: surrounding non-binding residues, colored: bound residues.
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Figure 8. Analysis of RMSD, RMSF, Rg, SASA, and number of hydrogen bonds of GAPDH–isoeugenol
complex (black), GAPDH–myrcene complex (orange), and GAPDH protein backbone atoms (red) at
100 ns. (A) RMSD of protein complex and protein backbone. (B) RMSF. (C) Radius of gyration (Rg).
(D) SASA. (E) Ligand hydrogen bonds. Source like 1e+005 means 1 × 105.
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3.7. Binding Free Energy Calculations

To determine the energy generated during the MD simulation, the free binding energy
calculation was performed for both protein–ligand complexes. From the analysis, it can
be seen that, aside from polar solvation energy and electrostatic energy, other energies
contribute negatively to the complex development in the case of both the complexes.
From the results, it is clear that the GAPDH–isoeugenol complex is more stable than the
GAPDH–myrcene complex. Apart from the experimental values, the standard deviations
also indicate the deviation of the GAPDH–myrcene complex from stabilization. Table 6
gives the details of the energy formed, along with their values.

Table 6. Binding free energy calculations of protein–ligand complexes.

Types of Binding
Free Energy

GAPDH–Isoeugenol Complex GAPDH–Myrcene Complex

Values
(kj/mol)

Standard
Deviation
(kj/mol)

Values
(kj/mol)

Standard
Deviation
(kj/mol)

Van der Waal energy −159.277 ±7.426 −124.482 ±11.201
Electrostatic energy 0.803 ±1.153 1.251 ±3.091

Polar solvation energy 26.262 ±4.667 20.381 ±6.330
SASA energy −11.247 ±0.590 −9.201 ±2.998

Binding energy −143.458 ±8.685 −110.921 ±10.120

4. Discussion

Over the past few decades, there have been a substantial number of studies conducted
on the relation between type 2 diabetes (T2D) and AD (AD), as both T2D and AD are
age-related conditions [37–39]. According to a study that has been recently conducted [40],
it is known that there is about a 50–150% chances of an increase in cases of AD with
people suffering from T2D compared with the normal population. T2D affects, directly
or indirectly, various metabolic, inflammatory, signaling, and hyperinsulinemia functions,
which can also be a related risk factor leading to AD. One of the most common features of
T2D is impairments in insulin actions and signaling, which leads to hyperglycemia and
hyperinsulinemia [40]. The most common factor linked to T2D and AD is the role of insulin
resistance [3,40].

Ocimum tenuiflorum, which is commonly called holy basil or tulsi, belongs to the
Lamiaceae family. Over the past few decades, many researchers have studied the pharma-
cological properties of tulsi, and it has been used in Ayurveda up until now. In accordance
with [41–43], tulsi has exhibited a beneficial effect on both diabetes and AD. With this
in consideration, we used phytocompounds from tulsi to study the effect of potential
anti-diabetic and anti-Alzheimer’s drugs.

To understand the relationship between T2D and AD, the alternative herbal medicine
network pharmacology approach was used. The core target and the active compounds
were identified to understand the disease network and their pathway from the network per-
spective. The PPI network for the common genes from both T2D and AD was constructed
using the STRING database, which was later imported to Cytoscape for analysis. The main
focus of this objective was to find the relationship through network construction and to
find the most significant genes and their pathway using GO terms.

The constructed PPI contained a total of 19 significant clusters that had p values of less
than 0.05 (p < 0.05). Further, using CytoNCA and CytoCluster, the most significant GAPDH
gene was considered for a docking and dynamic study to understand the interaction of
active compounds on GAPDH as target. In an in vivo study, GAPDH was reported to
play a significant role in the development of diabetic retinopathy by elevating retinal
mitochondrial superoxide levels. It is also reported to elevate the AGE-RAGE pathway,
protein kinase C, and the hexosamine pathways, which are considered to be the hallmarks
of T2D [44–46]. However, in the presence of αβ-42, the nitrosylation of GAPDH can increase
tau acetylation, causing a disruption in the microtubule association process, and the amount
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of nitrosylated GAPDH is elevated in AD brains. These studies indicate that GAPDH is
linked with both T2D and AD and could be used as a potential target. Thus, the inhibition of
GAPDH would be an essential step to reduce the pathogenesis of diabetes-linked AD [47].

We screened the core 14 genes for the pathway analysis with GO term using ClueGo
and Cluepedia plugins. The core 14 genes are correlated with multiple biological processes
and pathways, which includes the AGE-RAGE signaling pathway, the interleukin-4 and
interleukin-13 signaling pathways, the photodynamic therapy-induced NF-kB survival
signaling pathway, the negative regulation of the lipid catabolic process, and pancreatic
cancer, which are the top interacting pathways. Our study shows that the AGE-RAGE
signaling pathway may play a key role in drug development for both T2D and AD.

In both hyperglycemic and calcification settings, AGE/RAGE signaling promotes both
cellular and systemic responses to increase bone matrix proteins via the PKC, p38 MAPK,
fetuin-A, TGF-, NFB, and ERK1/2 signaling pathways. Through the activation of Nox-1
and the decreased expression of SOD-1, AGE/RAGE signaling has been demonstrated to
increase oxidative stress and promote diabetes-related vascular calcification. Increased
oxidative stress caused by AGE/RAGE signaling in diabetes-related vascular calcification
was also linked to the phenotypic transformation of VSMCs to osteoblast-like cells in AGE-
induced calcification. Researchers discovered that pharmacological drugs and antioxidants
reduced calcium deposition in the diabetic vascular calcification caused by AGEs [48].
However, GAPDH is linked with the activation of the AGE-RAGE pathway, which could
be the initiating point of diabetes-linked AD pathogenesis [44,45].

The most significant gene, GAPDH, was selected as a target of an interaction study
after C-T network construction. Before going for the molecular docking simulation, AD-
MET profiling of the retrieved compounds was performed. Compounds that obey the
desired ADMET properties were selected for further analysis. The Lipinski rule of five was
considered as an important parameter for this analysis, as it deals with the druglikeness
parameters. Although most of the compounds accepted the rule, other pharmacokinetic
rules, such as oral bioavailability, the blood–brain barrier, drug half-life, and drug-induced
liver injury, were considered for the screening of the compounds. This was conducted
because natural products are often cited as an exception to Lipinski’s rules. Phytochemicals
are considered to be the product of nature’s ‘evolution’, which enhances the functionality
of the compounds in specific metabolic pathways [49]. When it comes to making physiolog-
ically active molecules with high molecular weights and a large number of rotatable bonds,
nature has learned to maintain low hydrophobicity and intermolecular H-bond donating
potential. Natural products are also more likely than pure synthetic compounds to resemble
biosynthetic intermediates or endogenous metabolites, allowing them to benefit from active
transport systems. Surprisingly, the natural product leads in the Lipinski universe all
delivered an oral medication with a 50% success rate [50].

Only selected compounds from the ADMET screening were docked with the target
protein. From the docking study, we see that isoeugenol had a better binding affinity
of 6.0 kcal/mol with the highest non-bonded interaction and hydrogen bonds of seven
and two. Where the hydrogen bond formed is within the active site of the structure. The
binding of the isoeugenol to the hydrophobic site, which is supposed to be occupied by
nicotinamide adenine dinucleotide phosphate (NADPH), suggests that isoeugenol inhibits
the enzyme activity. Moreover, other known details of the hydrophobic site also mention
the same [51]. Among the docked compounds, myrcene was predicted with the lowest
(more positive) binding affinity (−3.6 kcal/mol). It had only two non-bonding interactions
with zero hydrogen bonds. Therefore, it was further considered as a negative control for
MD simulation. Although geranyl acetate was predicted with −5.9 kcal/mol of binding
affinity, which is close to that of the isoeugenol’s, the compound was not considered to be a
computational hit. This was because of the comparatively fewer non-bonding interactions
(six) and hydrogen bonds (one) than isoeugenol. In the PLIF analysis, binding residues
interacting with isoeugenol and myrcene were used, for which residues interacting with
NAD+ were used as a reference (Supplementary Figure S2). However, ALA 183 was not
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considered for PLIF, since it does not interact with NAD+. A study conducted on GAPDH
inhibition by 3-bromopyruvate and its derivatives showed that molecular docking can
be performed for this protein [52]. However, the study failed to provide sufficient proof
for the stability of the experimental compounds through MD simulation and binding free
energy calculations.

Both isoeugenol and myrcene were found to obey Lipinski’s rule of five. Both the
compounds passed the oral bioavailability parameter. Isoeugenol was predicted to have
negative drug-induced liver injury (DILI), yet myrcene was found to have moderate DILI.
Therefore, isoeugenol could be a better drug candidate than myrcene in terms of cytotoxicity.
Additionally, the CYP450 metabolism of isoeugenol generates a corresponding epoxide,
which could act as a potential inhibitor of GAPDH. This is due to GAPDH’s increased
proclivity for reacting with epoxide as a result of its contact with the phosphate moiety,
which causes the enzyme to change its conformation [53].

Further, to know the stability of the docked complex, an MD simulation was per-
formed. From the MD result, we can see that the complex formed is stable, and a structural
re-arrangement may have taken place with the docked structure. In the MD result analysis,
isoeugenol-bound GAPDH was found to be more stable in comparison with myrcene-
bound GAPDH. The graphical analysis of the MD trajectories, including RMSD, RMSF, Rg,
SASA, and ligand hydrogen bonds, depict the stability of isoeugenol inside the binding
pocket over myrcene. The binding free binding energy was calculated, as it is known that
the greater the negative value, the higher the stability. The calculated result had the free
binding energy of −143.458 kj/mol; thus, we can conclude that the docked structure is
stable. However, the GAPDH–isoeugenol complex is chiefly formed by the van der Waal’s
energy, which is −159.277 kj/mol. However, the binding free energy values of the GAPDH–
myrcene complex were found to be inferior in comparison with the GAPDH–isoeugenol
complex. Although both the complexes were formed majorly using van der Waal’s energy,
the GAPDH–isoeugenol complex was predicted to have more stability. Results obtained
from both molecular dynamics simulation and binding free energy calculations support
the molecular docking simulation results. The present investigation is the first ever to be
conducted on GAPDH inhibition using plant-based compounds through network phar-
macology and computational studies. Until now, there have been no studies on GAPDH
inhibition through an in-silico approach using phytochemicals. With these findings, we
report the pharmacological significance of isoeugenol from Ocimum tenuiflorum against
diabetes-linked AD targeting GAPDH.

5. Conclusions

A phytochemical intervention into T2D has already been proven to ameliorate the
lifestyle-based disorder. However, diabetes-linked AD and other diabetic complications
have not been focused on so far. Therefore, in this study, we report the virtual screening
of isoeugenol from Ocimum tenuiflorum as an inhibitor of GAPDH, a common target for
both T2D and AD. The study systematically identifies GAPDH as a promising target
through network pharmacology tools. However, the phytocompounds have also been
screened through a druglikeness and pharmacokinetic approach. Moreover, the compound
target network also identifies isoeugenol as the best inhibitor of GAPDH. This hypothesis
is supported by the computational tools, including a molecular docking simulation, a
molecular dynamics simulation, and binding free energy calculations, where the binding
interactions and stability of the isoeugenol with GAPDH have been proven to be satisfactory.
With these results, we can conclude that isoeugenol could be the lead potential inhibitor
of GAPDH. In future, isoeugenol could be used for in vitro and in vivo studies against
GAPDH, targeting T2D-linked AD.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules27082398/s1, Figure S1: (A) Structural details
of protein GAPDH (PDB ID: 1U8F) bound to its co-crystallized NAD+ cofactor. N-terminal of the
protein is highlighted in blue, whereas the red terminal is highlighted in red. (B) Result from the

https://www.mdpi.com/article/10.3390/molecules27082398/s1
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validation of the docking protocol: Crystallized and bound NAD+ (green) complexed with re-docked
NAD+ (red) with an RMSD of 2.10 Å; Figure S2: Protein-ligand fingerprinting of isoeugenol and
myrcene docked with GAPDH.
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