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Two DOPO-conjugated flame retardants with or without amino terminal

groups (DOPO-NH2 and DIDOPO, respectively) were synthesized and

incorporated into polyamide 6 (PA6). Results demonstrated the DOPO-NH2

endowed superior thermal, flame retardant and mechanical performances to

PA6 composites. With the same loading of 15 wt%, DOPO-NH2 can catalyze the

PA6 matrix more effectively and result in more residues at high temperature.

The PA6 composites containing DOPO-NH2 exhibited higher LOI (28.0%)

compared to 25.0% for the sample containing DIDOPO, and the lower heat

release capacity and peak heat release rate. Furthermore, the overall

mechanical properties of PA6 composites containing DOPO-NH2

outperformed the samples containing DIDOPO, even superior to that for

PA6. Such a significant difference can be mainly attributed to the existence

of amino-terminal group, which can interact with carboxyl group in PA6 as

confirmed by dynamic mechanical analysis, improving the compatibility

between the flame retardant and PA6 matrix.
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Introduction

As one class of important engineering plastics, polyamide especially polyamide 6

(PA6) are extensively used in electronical, automobile, and aerospace areas due to high

tensile strength, chemical resistance, good electrical insulation and easy processability

(Wirasaputra et al., 2016; Vannini et al., 2018; Song et al., 2017). However, the easy

flammability greatly limits their application, and flame retardant modification of

PA6 becomes an urgent task and is attracting more and more research interests.
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Due to the environmental considerations, a variety of

halogen-free flame retardants are proposed to flame retard

PA6, including phosphorous-containing (Zhi et al., 2011; Tao

et al., 2020), nitrogen-based (Cai et al., 2017; Lu et al., 2019), and

some organic/inorganic flame retardants (Marneya et al., 2012;

Zheng et al., 2020; He et al., 2020). Among these, metal

phosphinates are proved to be the most efficient flame

retardants for PA6 and has been commercialized as OP

serials. Metal phosphinates play their main role in gas phase

by releasing PO· free radical scavenger and also catalyze the

charring in the condensed phase. Higher than 15 wt% loading of

metal phosphinates is generally necessary to pass the UL-94 tests,

which will inevitably cause loss in mechanical properties (Zhao

et al., 2013; Lin et al., 2018). To further reinforce the flame

retardancy and compensate the mechanical loss, inorganic

synergists such as OMMT, carbon nanotube, halloysite are

combined with metal phosphinates together to flame retard

PA6 (He et al., 2017; He et al., 2019; He et al., 2022). In

recent years, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-

oxide (DOPO) conjugated flame retardants have been developed

as an effective alternative and exert their flame retardant activity

mainly in gas phase (Xie et al., 2017; Koedel et al., 2020; Zhang

et al., 2022; Sai et al., 2022). Incorporation of approx. 17 wt.%

bridged DOPO derivatives (DiDopoMeo or DiDopoEDA) into

PA6 can achieve a V-0 rating at 1 mm thickness (Buczko et al.,

2014). In another work, a nitrogen-phosphorus-based DOPO

derivative, DTE-DOPO was developed and incorporated to PA6.

Compared to the commercially-available Exolit® OP 1230, DTE-

DOPO exhibited higher flame-retardant efficiency since lower P

content was contained at a similar flame retardant loading, and

superior mechanical performances (Butnaru et al., 2015).

Therefore, DOPO derivatives exhibit good prospect in flame

retarding PA6.

In our previous work, different DOPO derivatives were

synthesized and employed to flame retard polylactic acid

(PLA) and high-temperature PA (Long et al., 2017; Huang

et al., 2018). Results demonstrated the molecular structure of

DOPO derivatives played a critical role on the final flame

retardant performance. For instance, the increase of aromatic

ring in the structure of the flame retardant contributed to the

formation of cross-linked structure in the residue of flame

retardant polymers during combustion (Long et al., 2017).

However, the effect of active terminal group in the molecules

on the flame retardant efficiency have not been considered.

Numerous researches have proved that active terminal groups

such as epoxide or amino groups in flame retardants or flame

retardant synergists have strong interaction with amino or

carboxyl end-groups of polymer molecules by coupling

reaction (Liang et al., 2019; Xu et al., 2019) or hydrogen

bonding (Malkappa et al., 2020; Chen et al., 2017). The strong

interaction between flame retardants and polymer matrix can

improve the interfacial compatibility and promote the uniform

dispersion of the flame retardants, which will be beneficial for

improving the flame retardancy and thermomechanical or

mechanical performance (Zhou et al., 2021b). For example,

Malkappa et al. (Liu et al., 2021) found a 37.2% increase in

thermomechanical performance and 41.7% and 30.4% decrease

in the peak heat and total heat release rates, respectively, when

adding 10 wt% poly (cyclotriphosphazene) functionalized α-
zirconium phosphate (f-ZrP) nanoplatelets into PA6. Given

that the possible strong interaction between −NH2 group of

nanofiller and the carbonyl groups of PA6 polymer matrix, it

is expected that the fire retardancy efficiency and mechanical

performance of DOPO derivatives can be further improved by

introducing −NH2 terminal group onto the molecular structure.

Therefore, in this article, two DOPO-conjugated flame retardants

with similar structures but different terminal groups were

incorporated into PA6 to investigate the effect of terminal

groups. The thermal stability and flame retardancy were

investigated by thermogravimetric analysis (TGA), limited

oxygen index (LOI) and microscale combustion calorimetry

(MCC). The mechanical performances were evaluated by

dynamical rheological analysis (DMA) and tensile testing.

Materials and methods

Materials

PA6 (1013B) were supplied by UBE Co. Ltd (Tokyo, Japan).

The DOPO-based flame retardant DIDOPO without amino

terminal groups (as shown in Figure 1), was synthesized as

previously reported protocols (Long et al., 2017). Briefly,

86.4 g DOPO and 24 g 2-acetonaphthone were dissolved in

xylene at 170°C. Then 16 g phosphorus oxychloride was added

dropwise to the above solution. After reacting for 8 h, 100 ml

isopropyl alcohol was added to the mixture and stirred at 80°C.

FIGURE 1
TG curves of DIDOPO and DOPO-NH2 under N2.
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The obtained solid product was then recrystallized, and washed

with isopropyl alcohol repeatedly to obtain the final powder

product. 1H NMR (CDCl3): δ 6.9–8.0 (m, 21H), 3.2 (m, 1H), 2.4

(m, 2H). HRMS (m/z): [MH]+ calcd for C32H24O4P2 535.

Found: 535.

The DOPO-NH2 with amino terminal groups was

synthesized according to our previous work (Wang et al.,

2021). Briefly, 38.91 g DOPO and 6.37 g 4, 4′-
diaminobenzophenone were mixed. The mixture was then

heated to 180°C and stirred for 3 h. After cooling down to

100°C, 150 ml toluene was added into the flask under stirring.

The formed precipitate was filtered off and washed with toluene.

The obtained solid product was then recrystallized from

tetrahydrofuran and the final powder product was obtained.
1H NMR (DMSO-d6): δ5.82–8.06 (m, 24H), 4.92 (s, 4H).

HRMS (m/z): [MH]+ calcd for C37H28O4N2P2 627. Found: 627.

The flame retardant PA6 composites consisting of 85 wt%

PA6 and 15 wt% flame retardants were prepared by melt

compounding in a co-rotating twin screw extruder (CTE 20,

Coperion Keya Machinery Manufacturing Co., Ltd., China) at

about 210–230°C with the screw speed of 300 r/min and feeding

speed of 16 r/min. Then, the modified PA6 composites were

further injection-molded into the standard testing bars by an

injection molding machine (CJ80MZ2NCII, Zhende Plastic

Machinery Factory, China) at 210–230°C. The obtained

PA6 composites were designated as PA6/DIDOPO and PA6/

DOPO-NH2, respectively.

Characterization

Thermogravimetric analysis (TGA) was carried out by a

Q50 instrument (TA Instruments, United States) under

nitrogen flow, from ambient temperature to 800°C with a

heating rate of 10°C·min−1.

Crystallization and melting behavior were examined using a

Q10 differential scanning calorimetry (DSC) (TA Instruments,

United States). Samples of about 5–10 mg were heated from 40 to

250°C and held at 250°C for 5 min to erase the thermal history.

Then, the samples were cooled to 40°C at a cooling rate of

10°C·min−1. A subsequent heating scan was then recorded at a

rate of 10°C·min−1 from 40 to 250°C. The crystallinity was

calculated according to the following equation:

Xc(%) � ΔHm

ΔH0m(1 − Φ) (1)

where Xc is the crystallinity; ΔHm is the melting enthalpy of the

sample in the second heating; ΔH0m is the melting enthalpy of

100% crystalline PA6, which is 190 J/g (Xiao et al., 2017); ϕ is the

mass fraction of the flame retardants in the composites.

The LOI test was conducted on a JF-3 oxygen index meter

(Jiangning Analytical Instrument Company, Jiangning, China)

with sample dimension of 100 mm × 6.5 mm × 3.2 mm

according to the standard of ASTM D286377. Microscale

combustion calorimetry (MCC) was carried out on a FTT0001

(Fire Testing Technology Ltd., United Kingdom) to determine

the flammability properties of the PA6 composites of milligram-

sized samples according to ASTM Standard Method D7309. The

specimens were thermally decomposed in an oxygenated

environment with a heating rate of 1 K s−1.

The rheological behaviors of samples were investigated by

using a rheometric analyzer (HAAKE MARSII, Thermo Fisher

Scientifc Inc., Newington, Germany) with the diameter of parallel

plates 35 mm. The tests were carried out over an angular

frequency range of 0.1 to 100 rad s−1 at 175°C using 1% strain.

Tensile and flexural strengths of the samples were evaluated

using a universal test machine (CMT4104, Shenzhen SANS

Testing Machine Co., China) with cross-head speeds of

50 and 2 mmmin−1 at room temperature. The notched Izod

impact strength was measured according to ASTMD256A using

an impact tester ZBC 1400-2. The freeze-fractured surfaces of

flame retardant PA6 composites were recorded on a TESCAN

MIRA scanning electron microscope (SEM) using 20 kV

accelerating voltage. Prior to the measurements, the freeze-

fractured surfaces were fractured and sputter-coated with

5 nm gold.

Results and discussion

Thermal stability of polyamide 6/DOPO-
conjugated flame retardant composites

According to our previous work, the initial decomposition

temperature (T5%) of DOPO is estimated at 249°C, and

maximum decomposition temperatures (Tmax) is at 328°C

(Wang et al., 2021). From Figure 1 and Table 1, both flame

retardants exhibit better thermal stability compared to DOPO.

The T5% of DIDOPO under N2 is observed at 363.6°C. The

compound decomposes in a single decomposition step with Tmax

at 427.3°C and the residues at 650°C is 1.5%. For DOPO-NH2, the

T5% and Tmax is 361.2°C and 473.3°C, respectively. Different from

DIDOPO, the char yield of DOPO-NH2 at 600°C reaches 23.5%,

suggesting the better charring capacity. The TG curves of pure

TABLE 1 TG and DTG data of flame retardants, PA6 and
PA6 composites in N2.

Sample T5wt% (oC) Tmax (
oC) Residues (wt%)

DIDOPO 363.6 427.3 1.5

DOPO-NH2 361.2 473.3 23.5

PA6 408.6 478.4 0.9

PA6/DIDOPO 349.4 458.8 1.1

PA6/DOPO-NH2 363.5 431.5 3.1
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PA6 and PA6 composites in N2 atmosphere are revealed in

Figure 2, and the typical data are listed in Table 1. Pure

PA6 decomposes in one step process, with the T5% and Tmax

at 408.6°C and 478.4°C, respectively, leaving negligible char

residues. With the introduction of DIDOPO, the T5% and

Tmax decrease and the amounts of char residues increase

slightly. For PA6/DOPO-NH2, the amounts of char residues

increase more significantly, indicating that DOPO-NH2 with

amino terminal groups improves the thermal stability of the

char residue at high temperature and promotes the formation of

more residues (Zhou et al., 2019).

Differential scanning calorimetry analysis
of polyamide 6/DOPO-conjugated flame
retardant composites

DSC analysis was conducted to investigate the effect of two

flame retardants on the crystallization and melting behaviors of

PA6. To erase the previous thermal history of the samples, an

initial heating scan was performed. Then the cooling and second

heating processes were recorded. As revealed by Figure 3A and

Table 2, the crystallization temperature (Tc) of the neat PA6 is

located at 190.8°C during the cooling process. From Figure 3B,

the melting curve of PA6 presents two peaks where the low

temperature peak corresponds to the γ-crystalline form and the

high-temperature peak corresponds to the α-crystalline form

(Cai et al., 2017). With the incorporation of DIDOPO, the

FIGURE 2
TG (A) and DTG (B) curves of PLA and flame retardant PLA composites under N2.

FIGURE 3
Nonisothermal crystallization (A) and melting (B) curves of PA6 and PA6 composites.

TABLE 2 Parameters of the nonisothermal crystallization and melting
for PA6 and PA6 composites.

Sample Tc (
oC) Hm (J/g) Xc (%) Tm (oC)

PA6 190.8 76.3 31.8 214.4/221.1

PA6/DIDOPO 187.0 70.8 34.7 209.3/218.8

PA6/DOPO-NH2 189.1 64.6 31.7 212.0/219.8
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crystallization temperature reduces by about 3°C (187.0°C) and

lower melting temperatures (Tm) are observed. Similar decrease

in melting temperatures for polymer composites by other DOPO

derivatives is previously reported (Butnaru et al., 2015; Jia et al.,

2018). The incorporated DIDOPO which acts as a plasticizer is

regarded as the main cause. However, the Tc and Tm of PA6/

DOPO-NH2 are all higher compared to PA6/DIDOPO. Besides,

upon the addition of DIDOPO, the crystallinity (Xc) of PA6/

DIDOPO increases compared to the neat PA6 (from 31.8% to

34.7%), while the crystallinity of PA6/DOPO-NH2 is 31.7%. It is

considered that for PA6/DIDOPO, the DIDOPO in PA6 acts as a

plasticizer and facilitates the movement of polymer molecular

chain segments, resulting in the higher crystallinity. While for

PA6/DOPO-NH2, the terminal amino groups in DOPO-NH2 can

form hydrogen bonding with the PA6 matrix and therefore limit

the crystallization process (Wang et al., 2019).

Flame retardancy of polyamide 6/DOPO-
conjugated flame retardant composites

The flame retardancy of PA6 and PA6 composites is

investigated by LOI tests, and the results are listed in Table 3.

PA6 is inherently flammable and the LOI value of 22.0% is

obtained. The introduction of DIDOPO and DOPO-NH2

improves the LOI to 25.0% and 28.0%, respectively. Such

results indicate that both flame retardants endow PA6 with

improved flame retardancy and the flame retardant efficiency

of DOPO-NH2 is superior to that of DIDOPO.

Microscale combustion calorimetry (MCC) is one of the

most effective bench scale methods to evaluate the

combustion properties of polymer materials of milligram-sized

samples (Ding et al., 2016). In this work, MCC was employed in

order to assess and compare the combustion behavior of different

PA6 composites. The heat release rate (HRR) profiles of the

PA6 and PA6 composites versus temperature are shown in

Figure 4 and the relevant MCC data are listed in Table 3. For

neat PA6, the peak heat release rate (pHRR) was 683.1 W g−1 at a

temperature of TM = 489.9°C and the heat release capacity (HRC)

was about 693 kJ g−1. The presence of DIDOPO in the PA6 causes

decrease in TM due to the thermal degradation of DIDOPO or

their catalytic degradation effect on PA6 as reflected by the

slightly increased residues in TG analysis. In addition, the

introduction of DIDOPO results in slightly increased PHRR

and HRC (714.7 W g−1 and 732 kJ g−1, respectively). According

to references (Buczko et al., 2014; Butnaru et al., 2015), similar

phenomenon regarding the increased pHRR for the

PA6 formulation containing DiDopoEDA or DTE-DOPO

have been reported. It is considered that for these DOPO

derivatives, a gas-phase flame inhibition mechanism plays a

main role in improving the flame retardancy (Peng et al.,

2021; Yang et al., 2021; Huo et al., 2022). On the contrary,

the addition of DOPO-NH2 bring about decrease in PHRR and

HRC (670.5 W g−1 and 675 kJ g−1), respectively. Therefore, in the

present study, it can be concluded that for these DOPO

derivatives, a gas-phase flame inhibition mechanism plays a

main role in improving the flame retardancy. While for

DOPO-NH2 containing sample, besides the flame inhibition

in gas phase due to the existence of DOPO groups, the

charring effect in condensed should not be excluded (Xue

et al., 2021).

Rheological and mechanical properties

To evaluate the influence of the two flame retardants on the

rheological behaviors of PA6, rheological measurements were

carried out on neat PA6 and PA6 composites. From Figures 5A,B,

TABLE 3 The parameters obtained from MCC and LOI values for PA6 and PA6 composites.

Sample HRC (J/g·K) PHRR (W/g) TM (oC) LOI (%)

PA6 693 683.1 489.9 22.0

PA6/DIDOPO 732 714.7 445.6 25.0

PA6/DOPO-NH2 675 670.5 467.3 28.0

FIGURE 4
The HRR curves of PA6 and PA6 composites from MCC.
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both storage modulus and complex viscosity of PA6 decrease

obviously with the incorporation of DiDOPO in the whole range

of measured frequencies. This might indicate the internal

plasticizing effect of DiDOPO on the polymer structures,

which facilitates the movement of the PA6 molecular chains.

For DOPO-NH2 containing samples, although the storage

modulus and the complex viscosity decrease compared to neat

PA6, the effect is not so profound. In almost the whole frequency

range, the storage modulus and complex viscosity of PA6/

DOPO-NH2 are higher than that of PA6/DIDOPO. This

could be ascribed to the limited motion of the polymer chains

due to the interaction between the terminal amino of DOPO-

NH2 and carboxyl end groups of PA6 molecules (Wang et al.,

2019).

Generally, the mechanical performance of polymer

composites are strongly dependent on the interfacial

compatibility between the additive and the polymer matrix

(Qian et al., 2017; Qian et al., 2019; Liu et al., 2022). The

impacts of DIDOPO and DOPO-NH2 on the mechanical

properties PA6 matrix are assessed and the results are

presented in Figure 5C and Table 4. Upon the loading of

DIDOPO, the tensile and flexural strengths of PA6 decrease

to 53.2 and 67.8 MPa, respectively, from 58.4 to 71.2 MPa for

neat PA6. The elongation at break shows no obvious change.

Comparably, in the presence of DOPO-NH2, the tensile and

flexural strengths of PA6 composites increase to 63.7 and

81.3 MPa, respectively, even higher than that of untreated

PA6. Besides, the strain at break further increased to 4.3%

(higher than 3.9% of the untreated PA6).

In addition, PA6/DIDOPO and PA6/DOPO-NH2

composites registered lower impact strength values of 3.5 kJ/

m2 and 3.6 kJ/m2, respectively, compared to pristine PA6,

suggesting the incorporation of both flame retardants

increases the brittleness due to its rigid chemical structure

(Zhou et al., 2021a). From SEM images the cryogenic fracture

of both PA6 composites, one can distinguish distinct lines of

fracture propagation which are associated to an inherent

brittleness Figures 5D,E. Similar phenomenon have been

FIGURE 5
Storage modulus (A) and complex viscosity (B) as a function of frequency, and stress-strain curves (C) of PA6 and PA6 composites; SEM images
of the fracture of PA6/DIDOPO (D) and PA6/DOPO-NH2 (E) composites after their treatment in liquid N2.

TABLE 4 Mechanical properties of pure PA6 and PA6 composites.

Sample Tensile strength (MPa) Flexural strength (MPa) Notched impact strength
(kJ/m2)

Elongation
at break (MPa)

PA6 58.4 ± 0.6 71.2 ± 3.0 9.2 ± 0.3 3.9 ± 0.1

PA6/DIDOPO 53.2 ± 4.1 67.8 ± 4.1 3.5 ± 0.1 3.8 ± 0.3

PA6/DOPO-NH2 63.7 ± 1.9 81.3 ± 2.1 3.6 ± 0.1 4.3 ± 0.3
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observed for PA6/meltable triazine-DOPO by Butnaru et al.

(2015). It is considered that a good interfacial compatibility

between the flame retardant and PA6 restricts the movement of

the chain segments, resulting in a lower toughness. In addition, a

few DIDOPO aggregate particles are clearly visible in the fracture

surface in PA6/DIDOPO composites but not in PA6/DOPO-NH2

(Figures 5D,E), which can explain why the latter exhibits higher

tensile strength and flexural strength than the former.

The results are consistent with the rheological analysis and it

is considered that the terminal amino groups play a critical role,

which can form strong hydrogen bonding with PA6 molecular

chains and enhance the interaction force between

PA6 macromolecular chains (Liu et al., 2021). However, the

introduced flame retardant particles may act as an energy

concentration under impact force, resulting in decrease of

impact strength.

Conclusion

In this paper, DIDOPO and DOPO-NH2 with amino

terminal groups were used to modify the flame retardancy

and mechanical properties of PA6. The flame retardant

performance of PA6 containing DOPO-NH2 is superior to

that containing DIDOPO. At 5 wt% loading of the additives,

the PA6/DOPO-NH2 had a LOI of 28.0% while PA6/DIDOPO

show a much lower LOI of 25.0%. Besides, from the MCC test,

the PHRR and HRC of PA6/DOPO-NH2 decreased compared to

that of pristine PA6, and the PHRR and HRC of PA6/DIDOPO

are even higher than of PA6. Furthermore, the overall mechanical

performances of PA6 containing DOPO-NH2 are better than the

sample containing DIDOPO. Particularly, the tensile strength,

flexural strength and elongation at break of PA6 composites

containing DOPO-NH2 reach 63.7, 81.3 MPa and 4.3%,

respectively, even higher than that of untreated PA6. DSC and

rheological analysis suggest that the stronger interaction between

DOPO-NH2 and PA6 play a critical role for the property

improvement. This work offers an alternative and promising

strategy for design and synthesis of more efficient flame

retardants.
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