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Abstract: Mitogen-activated protein kinase (MAPK) signaling is involved in a variety of cellular
functions. MAPK-dependent functions rely on phosphorylation of target proteins such as mitogen-
and stress-activated protein kinase 1 (MSK1). MSK1 participates in the early gene expression and in
the production of pro- and anti-inflammatory cytokines. However, the role of MSK1 in neutrophil
recruitment remains elusive. Here, we show that chemokine macrophage inflammatory protein-2
(CXCL2) enhances neutrophil MSK1 expression. Using intravital microscopy and time-lapsed
video analysis of cremasteric microvasculature in mice, we studied the effect of pharmacological
suppression of MSK1 by SB-747651A on CXCL2-elicited neutrophil recruitment. SB-747651A
treatment enhanced CXCL2-induced neutrophil adhesion while temporally attenuating neutrophil
emigration. CXCL2-induced intraluminal crawling was reduced following SB-747651A treatment.
Fluorescence-activated cell sorting analysis of integrin expression revealed that SB-747651A treatment
attenuated neutrophil integrin αMβ2 (Mac-1) expression following CXCL2 stimulation. Both the
transmigration time and detachment time of neutrophils from the venule were increased following
SB-747651A treatment. It also decreased the velocity of neutrophil migration in cremasteric tissue
in CXCL2 chemotactic gradient. SB-747651A treatment enhanced the extravasation of neutrophils
in mouse peritoneal cavity not at 1–2 h but at 3–4 h following CXCL2 stimulation. Collectively,
our data suggest that inhibition of MSK1 by SB-747651A treatment affects CXCL2-induced neutrophil
recruitment by modulating various steps of the recruitment cascade in vivo.
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1. Introduction

During acute inflammation, neutrophils are recruited to the afflicted site by a well-defined and
dynamic multi-step process that is regulated by a myriad of molecules and signaling cascades elicited
by the cross-talk between neutrophils and endothelium [1,2]. The initial step of neutrophil rolling on the
endothelium is followed by β2 integrin–ICAM-1-dependent adhesion of neutrophils to endothelium [3].
Adherent neutrophils then crawl in the vascular lumen to reach optimal emigration sites at endothelial
junctions independently of hemodynamic forces, a process mediated by the αMβ2 integrin Mac-1 [4].
Transendothelial migration of neutrophils is regulated by the interactions between integrins, PECAM-1
as well as junctional adhesion molecules and their respective ligands [1–3]. Neutrophil recruitment
in vivo can be induced by CXC chemokines such as macrophage inflammatory protein-2 (CXCL2) [5].
Signaling mechanisms that regulate different steps of neutrophil recruitment such as intraluminal
crawling and subsequent transendothelial migration of neutrophils are not completely understood.
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Mitogen-activated protein kinases (MAPKs) are involved in a wide variety of cellular functions,
such as differentiation, survival and apoptosis [6,7]. They are known to participate in the
pathophysiology of neuronal and inflammatory diseases [7,8]. MAPK-dependent functions rely
on phosphorylation of target proteins such as the closely related mitogen- and stress-activated protein
kinases MSK1 and MSK2 [9]. Both kinases are phosphorylated by extracellular signal-regulated kinase
ERK1/2 and by p38 MAPK and are, thus, activated by a wide range of physiological and pathological
stimuli [9]. MSKs are homologous with the p90 ribosomal S6 kinase (RSK) family of kinases where the
N-terminal kinase domains of both MSKs and RSKs are members of the AGC (protein kinase A, protein
kinase G and protein kinase C) family of protein kinases [10]. Cellular functions of MSK1 include
early gene expression [11] and apoptosis [12]. MSK1 regulates the activation of nuclear factor-κB
(NF-κB) [13–15] and cyclic AMP response element-binding protein (CREB) [16], two transcription
factors that are important in mediating inflammatory responses. MSK1 also regulates the production of
pro- and anti-inflammatory cytokines [16–20] as well as endogenous mediators such as prostaglandin
E2 [21]. However, the role of MSK1 in innate immunity remains elusive.

Cellular functions of MSK1 were previously elucidated by murine germline manipulation [20]
and by inhibitors such as Ro 31-8220 and H89 [22,23]. However, these compounds are less selective
and inhibit many other kinases [24]. Recently, SB-747651A was shown to be a highly selective and
cell-active inhibitor of MSK1 with properties superior to H89 and Ro 31-8220 [24], thus enabling us to
dissect the putative functions of MSK1 in vitro and in vivo.

In the present study, we explored the effect of pharmacological inhibition of MSK1 using
SB-747651A on chemokine CXCL2-induced neutrophil recruitment in vivo. By using real-time
intravital microscopy and time-lapsed video analysis, we simultaneously determined the multiple
neutrophil recruitment parameters such as rolling, adhesion, emigration, intraluminal crawling velocity,
transmigration time, detachment time, migration velocity, and chemotaxis index in tissue.

2. Results

First, we examined whether the treatment of neutrophils with CXC chemokine CXCL2 affects
MSK1 protein expression. As shown in Figure 1, treatment of mouse bone marrow neutrophils with
CXCL2 significantly enhanced MSK1 protein expression in neutrophils.
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Figure 1. Effect of chemokine macrophage inflammatory protein-2 (CXCL2) on mitogen- and stress-
activated protein kinase 1 (MSK1) expression in neutrophils. (A) Representative original Western blot 
and (B) means ± SEM (n = 4) showing total MSK1 expression determined in 1-h saline-treated 
(Control) or CXCL2-treated (30 nM at 37 °C for 1 h) bone marrow neutrophils (relative to β-actin). *** 
(p < 0.001) from the Control. 

To test whether CXCL2-sensitive MSK1 participates in neutrophil recruitment in vivo, we 
studied the effect of the specific MSK1 inhibitor SB-747651A on neutrophil-endothelial cell 
interactions using intravital microscopy of post-capillary venule in mouse cremaster muscle. To this 
end, superfusion of murine cremaster muscle with SB-747651A (5 µM) for 30 min prior to and for 1 h 
following the placement of CXCL2-containing gel significantly enhanced leukocyte rolling flux (83.7 
± 3.4 cells/min with SB-747651A treatment versus 48.3 ± 3.1 cells/min without SB-747651A treatment; 
n = 4, p < 0.01) and rolling velocity (64.4 ± 2.8 µm/s with SB-747651A treatment versus 46.9 ± 5.8 µm/s 

Figure 1. Effect of chemokine macrophage inflammatory protein-2 (CXCL2) on mitogen- and
stress-activated protein kinase 1 (MSK1) expression in neutrophils. (A) Representative original Western
blot and (B) means ± SEM (n = 4) showing total MSK1 expression determined in 1-h saline-treated
(Control) or CXCL2-treated (30 nM at 37 ◦C for 1 h) bone marrow neutrophils (relative to β-actin).
*** (p < 0.001) from the Control.

To test whether CXCL2-sensitive MSK1 participates in neutrophil recruitment in vivo, we studied
the effect of the specific MSK1 inhibitor SB-747651A on neutrophil-endothelial cell interactions using
intravital microscopy of post-capillary venule in mouse cremaster muscle. To this end, superfusion
of murine cremaster muscle with SB-747651A (5 µM) for 30 min prior to and for 1 h following the
placement of CXCL2-containing gel significantly enhanced leukocyte rolling flux (83.7 ± 3.4 cells/min
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with SB-747651A treatment versus 48.3 ± 3.1 cells/min without SB-747651A treatment; n = 4, p < 0.01)
and rolling velocity (64.4 ± 2.8 µm/s with SB-747651A treatment versus 46.9 ± 5.8 µm/s without
SB-747651A treatment; n = 4, p < 0.05) in comparison to CXCL2-treated group in the absence of
SB-747651A treatment.

During neutrophil recruitment, not all rolling neutrophils became adherent and emigrated in the
microvasculature. To analyze the subsequent steps of neutrophil recruitment in the same cremaster
muscle, we visualized the neutrophil recruitment process and determined the number of adherent and
emigrated neutrophils. As depicted in Figure 2A, the number of adherent neutrophils was significantly
increased at 30–60 min after the placement of CXCL2-containing gel on the cremaster muscle, an effect
significantly more pronounced in the presence of SB-747651A treatment. Similarly, the number of
emigrated neutrophil was significantly increased at 30–60 min after placement of CXCL2-containing
gel on the cremaster muscle, an effect that was significantly reduced by the SB-747651A treatment
(Figure 2B). Additional experiments were conducted to explore the consequence of SB-747651A
treatment on prolonged stimulation with CXCL2. To this end, SB-747651A treatment (3 mg/kg
intrascrotal injection, 1 h prior to the administration of CXCL2) resulted in increased neutrophil
adhesion 3.5–4.5 h following stimulation with CXCL2 (0.2 µg intrascrotal injection) as compared to the
effect of CXCL2 stimulation alone (Figure 2C). The number of emigrated neutrophils was significantly
increased after SB-747651A treatment at 3.5–4.5 h following CXCL2 stimulation as compared to the
CXCL2 treatment alone (Figure 2D).
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Figure 2. Effect of SB-747651A on CXCL2-induced neutrophil adhesion and emigration. (A) Time 
course of the number of adherent neutrophils (cells/100-µm venule) and (B) time course of the number 
of emigrated neutrophils (cells/235 × 208 µm2 field) induced by CXCL2 in the absence (Control) or in 
the presence of MSK1 inhibitor SB-747651A (5 µM) 30 min prior to and 60 min following the 
placement of CXCL2-containing gel. Data are means ± SEM (n = 4). *, ** and *** indicate significant 
difference (p < 0.05, p < 0.01 and p < 0.001, respectively) from the Control. (C) Time course of the 
number of adherent neutrophils (cells/100-µm venule) and (D) time course of the number of 
emigrated neutrophils (cells/443 × 286 µm2 field) induced by CXCL2 in the absence (Control) or in the 
presence of MSK1 inhibitor SB-747651A (3 mg/kg, intrascrotal injection, 1-h prior to CXCL2 treatment) 
at 3.5–4.5 h following an intrascrotal injection of 0.2 µg CXCL2. Data are means ± SEM (n = 3). *** 
indicates significant difference (p < 0.001) from the Control. (E) Representative images from intravital 
video microscopy showing a postcapillary venule (Left) and the surrounding cremaster muscle with 
emigrated neutrophils (arrow head) at 60 min induced by CXCL2 in the absence (Control) or in the 
presence of MSK1 inhibitor SB-747651A (5 µM) 30 min prior to and 60 min following the placement 
of CXCL2-containing gel (Right). 
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in response to CXCL2 chemotactic gradient was significantly lower following SB-747651A treatment 
as compared to the CXCL2 control. These data suggest that SB-747651A treatment thwarts the 
intraluminal crawling of adherent neutrophils to optimal sites of emigration. Intraluminal crawling 
of adherent neutrophils is dictated by neutrophil αMβ2 integrin Mac-1 [4]. Flow cytometry analysis 
revealed that neutrophil Mac-1 expression was significantly increased following the treatment of 
bone marrow neutrophils with CXCL2, an effect significantly blunted by SB-747651A treatment 
(Figure 3B and Figure S1). We also determined the effect of SB-747651A on the expression of integrin 
αLβ2, LFA-1, another important β2 integrin on CXCL2-treated neutrophils and found that CXCL2 only 
marginally enhanced LFA-1 expression on neutrophils and SB-747651A was completely ineffective 
on the LFA-1 expression level in the presence or absence of CXCL2 (Figure S2). These results suggest 
that SB-747651A treatment affects CXCL2-induced intraluminal crawling of neutrophils in a Mac-1-
dependent manner. 
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gradient. As a result, SB-747651A treatment significantly increased transmigration time and 
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Figure 2. Effect of SB-747651A on CXCL2-induced neutrophil adhesion and emigration. (A) Time
course of the number of adherent neutrophils (cells/100-µm venule) and (B) time course of the number
of emigrated neutrophils (cells/235 × 208 µm2 field) induced by CXCL2 in the absence (Control)
or in the presence of MSK1 inhibitor SB-747651A (5 µM) 30 min prior to and 60 min following the
placement of CXCL2-containing gel. Data are means ± SEM (n = 4). *, ** and *** indicate significant
difference (p < 0.05, p < 0.01 and p < 0.001, respectively) from the Control. (C) Time course of
the number of adherent neutrophils (cells/100-µm venule) and (D) time course of the number of
emigrated neutrophils (cells/443 × 286 µm2 field) induced by CXCL2 in the absence (Control) or
in the presence of MSK1 inhibitor SB-747651A (3 mg/kg, intrascrotal injection, 1-h prior to CXCL2
treatment) at 3.5–4.5 h following an intrascrotal injection of 0.2 µg CXCL2. Data are means ± SEM
(n = 3). *** indicates significant difference (p < 0.001) from the Control. (E) Representative images
from intravital video microscopy showing a postcapillary venule (Left) and the surrounding cremaster
muscle with emigrated neutrophils (arrow head) at 60 min induced by CXCL2 in the absence (Control)
or in the presence of MSK1 inhibitor SB-747651A (5 µM) 30 min prior to and 60 min following the
placement of CXCL2-containing gel (Right).

Reduced emigration of neutrophils following treatment with SB-747651A at early time points
following CXCL2 stimulation could be due to the impairment in the early neutrophil recruitment steps
subsequent to adhesion. To explore the effect of SB-747651A treatment on neutrophil intraluminal
crawling and transendothelial migration, we analyzed neutrophil intraluminal crawling using
time-lapsed video photography. As shown in Figure 3A, the velocity of intraluminal crawling in
response to CXCL2 chemotactic gradient was significantly lower following SB-747651A treatment
as compared to the CXCL2 control. These data suggest that SB-747651A treatment thwarts the
intraluminal crawling of adherent neutrophils to optimal sites of emigration. Intraluminal crawling
of adherent neutrophils is dictated by neutrophil αMβ2 integrin Mac-1 [4]. Flow cytometry analysis
revealed that neutrophil Mac-1 expression was significantly increased following the treatment of bone
marrow neutrophils with CXCL2, an effect significantly blunted by SB-747651A treatment (Figure 3B
and Figure S1). We also determined the effect of SB-747651A on the expression of integrin αLβ2, LFA-1,
another important β2 integrin on CXCL2-treated neutrophils and found that CXCL2 only marginally
enhanced LFA-1 expression on neutrophils and SB-747651A was completely ineffective on the LFA-1
expression level in the presence or absence of CXCL2 (Figure S2). These results suggest that SB-747651A
treatment affects CXCL2-induced intraluminal crawling of neutrophils in a Mac-1-dependent manner.

To further define the cause of the reduced early emigration following SB-747651A treatment,
we analyzed transmigration time and detachment time of neutrophils in response to CXCL2
chemotactic gradient. As a result, SB-747651A treatment significantly increased transmigration time
and detachment time as compared to the control without this inhibitor (Figure 3C,D) indicating a slower
process of neutrophil emigration. These data suggest that SB-747651A treatment affects mechanisms
that regulate transendothelial migration of neutrophils in response to CXCL2 chemotactic gradient.
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endothelium and (D) the detachment time (min) of neutrophils from the venule upon stimulation 
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are means ± SEM (n = 4). ** indicates significant difference (p < 0.01) from the Control. 

Next, we performed an additional series of experiments to elucidate whether SB-747651A treatment 
modulates extravascular migration of neutrophils in tissue. Time-lapsed video microscopy analysis 
revealed that in response to CXCL2 chemotactic gradient, the speed of neutrophil migration was 
significantly reduced following SB-747651A treatment compared to the CXCL2 control group (Figure 4A). 
Chemotaxis index, a parameter of migration directionality, measures the ratio of the distance in the 
direction toward CXCL2-gel to the total migration distance the cell moved in the tissue. In response to the 
CXCL2 chemotactic gradient, chemotaxis index of migrating neutrophils was, however, not altered 
following SB-747651A treatment as compared to the CXCL2 control (Figure 4B). These data indicate that 
SB-747651A treatment inhibits the migration speed of extravascular chemotaxing neutrophils but does 
not affect their directionality in response to CXCL2 chemotactic gradient. 

Figure 3. Effect of SB-747651A on CXCL2-induced Mac-1-dependent intraluminal crawling and
transendothelial migration. (A) The velocity of intraluminal crawling (µm/min) of neutrophils
crawling in the luminal surface of the endothelium upon stimulation with CXCL2 in the absence
(Control, white bar) or in the presence (black bar) of MSK1 inhibitor SB-747651A (5 µM) 30 min
prior to and 60 min following the placement of CXCL2-containing gel. Data are means ± SEM
(n = 4). ** indicates significant difference (p < 0.01) from the Control. (B) Means ± SEM (n = 3) of
Mac-1-dependent fluorescence expressed as geomeans in untreated neutrophils (Control; white bar)
and in neutrophils treated with SB-747651A (5 µM, 30 min prior to addition of CXCL2; black bar) in
the absence (left bars) or in the presence (right bars) of stimulation with CXCL2 (30 nM for 10 min).
*, **, and *** indicate significant difference (p < 0.05, p < 0.01, and p < 0.001, respectively) from the
Control without CXCL2. # and ### indicate significant difference (p < 0.05 and p < 0.001, respectively)
from the group without SB-747651A. (C) The duration (min) of neutrophil transmigration across the
endothelium and (D) the detachment time (min) of neutrophils from the venule upon stimulation with
CXCL2 in the absence (Control, white bar) or in the presence (black bar) of MSK1 inhibitor SB-747651A
(5 µM) 30 min prior to and 60 min following the placement of CXCL2-containing gel. Data are means
± SEM (n = 4). ** indicates significant difference (p < 0.01) from the Control.

Next, we performed an additional series of experiments to elucidate whether SB-747651A
treatment modulates extravascular migration of neutrophils in tissue. Time-lapsed video microscopy
analysis revealed that in response to CXCL2 chemotactic gradient, the speed of neutrophil migration
was significantly reduced following SB-747651A treatment compared to the CXCL2 control group
(Figure 4A). Chemotaxis index, a parameter of migration directionality, measures the ratio of
the distance in the direction toward CXCL2-gel to the total migration distance the cell moved
in the tissue. In response to the CXCL2 chemotactic gradient, chemotaxis index of migrating
neutrophils was, however, not altered following SB-747651A treatment as compared to the CXCL2
control (Figure 4B). These data indicate that SB-747651A treatment inhibits the migration speed of
extravascular chemotaxing neutrophils but does not affect their directionality in response to CXCL2
chemotactic gradient.
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gel. Data are means ± SEM (n = 4). ** indicates significant difference (p < 0.01) from the Control. 
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peritoneal lavage fluid following 3 and 4 h of CXCL2 injection, indicating that SB-747651A treatment 
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peritonitis model of acute inflammation. 

 
Figure 5. Effect of SB-747651A on CXCL2-induced neutrophil emigration in peritoneum. Time course 
of the number of emigrated neutrophils (×106 cells) counted in the peritoneal lavage fluid in the 
absence (Control, open square) or in the presence of MSK1 inhibitor SB-747651A (3 mg/kg, i.p. 30 min 
prior to CXCL2 injection, solid circle) collected at 1, 2, 3, 4, and 6 h after an i.p. injection of CXCL2 (0.5 
µg/mouse). Data are means ± SEM (n = 3). * indicates significant difference (p < 0.05) from the Control. 

3. Discussion 

Neutrophil-endothelial cell interactions during acute inflammation generate molecular signals 
that are decisive in the recruitment of neutrophils to the site of inflammation. The present study 
discloses the effect of pharmacological inhibition of MSK1 on different steps of chemokine CXCL2-

Figure 4. Effect of SB-747651A on CXCL2-induced neutrophil migration and chemotaxis in tissue.
(A) The neutrophil migration speed (µm/min) and (B) the chemotaxis index of migrating neutrophils in
response to CXCL2 stimulation in the absence (Control, white bar) or in the presence (black bar) of MSK1
inhibitor SB-747651A (5 µM) 30 min prior to and 60 min following the placement of CXCL2-containing
gel. Data are means ± SEM (n = 4). ** indicates significant difference (p < 0.01) from the Control.

To corroborate the effects of SB-747651A treatment on CXCL2-induced transendothelial migration
of neutrophils in vivo, an additional series of experiments were performed to explore the effect
of SB-747651A treatment on CXCL2-triggered infiltration of neutrophils to the peritoneal cavity.
As shown in Figure 5, SB-747651A treatment did not enhance neutrophil emigration at 1–2 h after
CXCL2 treatment but significantly increased the number of emigrated neutrophils in the peritoneal
lavage fluid following 3 and 4 h of CXCL2 injection, indicating that SB-747651A treatment affects
neutrophil extravasation by increasing neutrophil emigration only at 3 and 4 h in mouse peritonitis
model of acute inflammation.
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Figure 5. Effect of SB-747651A on CXCL2-induced neutrophil emigration in peritoneum. Time course
of the number of emigrated neutrophils (×106 cells) counted in the peritoneal lavage fluid in the
absence (Control, open square) or in the presence of MSK1 inhibitor SB-747651A (3 mg/kg, i.p. 30 min
prior to CXCL2 injection, solid circle) collected at 1, 2, 3, 4, and 6 h after an i.p. injection of CXCL2
(0.5 µg/mouse). Data are means ± SEM (n = 3). * indicates significant difference (p < 0.05) from
the Control.
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3. Discussion

Neutrophil-endothelial cell interactions during acute inflammation generate molecular signals that
are decisive in the recruitment of neutrophils to the site of inflammation. The present study discloses
the effect of pharmacological inhibition of MSK1 on different steps of chemokine CXCL2-induced
neutrophil recruitment. We show that in response to chemokine CXCL2, MSK1 protein expression was
upregulated in neutrophils. Pharmacological inhibition of MSK1 by using selective MSK1 inhibitor
SB-747651A enhanced CXCL2-induced adhesion of neutrophils to the microvascular lumen while
temporarily curtailing transendothelial migration of neutrophils. SB-747651A treatment thwarted
Mac-1-dependent intraluminal crawling, while increasing both transmigration time and detachment
time, effects favoring reduced transendothelial migration. SB-747651A treatment further mitigated the
migration speed of neutrophils in extravascular tissue.

Mechanistically, MSK1 targets both pro- and anti-inflammatory genes [17]. Molecules upstream
of MSK1 signaling, ERK1/2 and p38 MAPK, are important in the production of inflammatory
cytokines [17]. These signaling molecules also activate negative feedback pathways via MSK1/2 to
suppress the proinflammatory effects of Toll-like receptor 4 (TLR4) signaling [20]. Mice deficient
in MSK1/2 were shown to be more susceptible to endotoxic shock and showed enhanced
myeloperoxidase activity following phorbol ester-triggered eczema [20]. Similarly, skin inflammation
was shown to be enhanced in MSK1/2-deficient mice with elevated infiltration of neutrophils in
response to oxazolone-induced allergic contact dermatitis [25]. Furthermore, MSK1/2 activation was
also shown to be involved in the pathogenesis of psoriatic skin lesions [26]. Discordantly, however,
suppression of MSK1 by inhibitors such as H89 showed amelioration of airway inflammation [27].
In another study, MSK1 is documented to participate in airway inflammation elicited by respiratory
syncytial virus [19]. Discrepancies in the effect of MSK1 inhibitors and the anti-inflammatory
phenotype of MSK1-deficient mice may well be explained by the non-specificity of the inhibitors
Ro 31-8220 and H89 to different cellular kinases reported in the earlier studies.

The role of MSK1 in neutrophil-endothelial cell interactions remains elusive. In addition to
neutrophils, endothelial cells also express MSK1, which participates in the activation of CREB [28] and
in the regulation of synthesis of platelet-activating factor [29]. In the present study, however, the role
of endothelial MSK1 in the observed effects of SB-747651A treatment on CXCL2-induced neutrophil
recruitment cannot be ruled out. Thus, further investigations are warranted to examine the role of
cell-specific regulation of neutrophil recruitment by MSK1 using MSK1 knockout mice.

While p38 MAPK was previously shown to regulate neutrophil adhesion and transendothelial
migration [30], more recent work has suggested that p38 MAPK also contributes to other steps
of neutrophil recruitment, such as Mac-1-dependent intraluminal crawling and extravascular
migration [5]. Intracellular signals regulating neutrophil intraluminal crawling involve Vav guanine
nucleotide exchange factor 1 (Vav1) and mammalian-actin binding protein 1 downstream of spleen
tyrosine kinase [31,32]. However, the role of MSK1 in neutrophil intravascular crawling and
extravascular chemotaxis was not investigated in the previous studies. Enhanced adhesion has
been expected to be translated into increased transendothelial migration. Transendothelial migration
is effectively accomplished by subsequent recruitment steps following neutrophil adhesion and
intraluminal crawling. We observed that SB-747651A treatment attenuated CXCL2-stimulated Mac-1
expression and CXCL2-induced intraluminal crawling of neutrophils. Surprisingly, despite increased
neutrophil adhesion to the vascular endothelium, we found that SB-747651A treatment effectively
decreased intraluminal crawling and decreased transendothelial migration at the early time points,
the latter was evidenced by the decreased emigration, prolonged transmigration time and detachment
time of neutrophils at early time points during transendothelial migration following SB-747651A
treatment. In contrast to the role of p38 MAPK on the directionality of chemotaxing neutrophils [5],
inhibition of MSK1 did not affect the chemotaxis index of extravascular migrating neutrophils but
attenuated the migration speed of neutrophils. SB-747651A treatment presumably affects the expression
of adhesion molecules that regulate the passage of neutrophils into extravascular tissue. It is intriguing
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to speculate that differential effects of SB-747651A treatment on neutrophil and endothelial adhesion
molecules may have accounted for the increased adhesion and decreased emigration of neutrophils
during the very early stage of recruitment in acute inflammation. It is also possible that the attenuation
of the migration speed of neutrophils in tissue by SB-747651A increases the accumulation of emigrated
neutrophils in the inflammatory sites at time points later than 1–2 h after CXCL2 stimulation. It is
interesting to note that SB-747651A did not change neutrophil emigration in early time points but
increased neutrophil emigration until 3–4 h in peritoneum stimulated by CXCL2. This suggests that
SB-747651A treatment may only result in enhanced neutrophil recruitment in peritoneum after 3–4 h
of CXCL2 treatment, in a pattern different from the two-phase recruitment in cremaster muscle.

Collectively, our data suggest that inhibition of MSK1 by SB-747651A treatment affects
CXCL2-induced neutrophil recruitment by modulating various steps of the recruitment cascade
in vivo.

4. Materials and Methods

4.1. Mice

Male C57BL/6N mice between 8- and 16-weeks-old, purchased from Charles River Canada
(Saint-Constant, QC, Canada), were used in experiments. This study was carried out with the approved
animal protocols (#20070028; 28 November 2012 and 7 June 2013) from the University Committee
on Animal Care and Supply (UCACS) at the University of Saskatchewan following the standards of
Canadian Association of Animal Care.

4.2. Intravital Microscopy

Mice were anaesthetized with an intraperitoneal (i.p.) injection of 10 mg/kg xyalzine
(Bayer, Toronto, ON, Canada) and 200 mg/kg ketamine hydrochloride (Rogar, Montreal, QC, Canada).
The mouse cremaster muscle preparation was used to study neutrophil behaviour in microcirculation
and tissue as described previously [5,33–35]. The cremaster muscle was kept warm and superfused
with 37 ◦C-warmed bicarbonate-buffered saline (pH 7.4; containing in mM 133.9 NaCl, 4.7 KCl,
1.2 MgSO4 and 20 NaHCO3). An upright microscope (model Eclipse Ci-s, Nikon, Tokyo, Japan) with a
LUCPLFLN 20× objective lens was projected to a charge-coupled device (CCD) color video camera
(DC-220, Dage, Dage-MTI, Inc., Michigan City, IN, USA) for bright-field intravital microscopy. For the
induction of neutrophil recruitment, two approaches were taken. In the first approach, an agarose gel at
1-mm3 size containing murine CXC chemokine CXCL2 (0.5 µM; R&D Systems, Minneapolis, MN, USA)
was placed on the surface of the cremaster muscle in a preselected area 350-µm distant from
and parallel to the observed postcapillary venule. After placing a glass coverslip to hold the
gel, the cremaster muscle was superfused with bicarbonate-buffered saline at a very slow rate
(≤10 µL/min) to allow the formation of CXCL2 chemotactic gradient. Throughout the experiment,
neutrophil behaviour and hemodynamic changes in the selected cremasteric postcapillary venule
(25–40 µm diameter) were visualized on a TV monitor and recorded at real time on a DVD recorder
before (for time 0 min) and after the addition of CXCL2-containing gel (recorded for 60 min). During
recording, all efforts were made to adjust and keep the microscope images focused on the adhering,
crawling, transmigrating and chemotaxing neutrophil inside the venule and in the muscle tissue.
The number of rolling, adherent, and emigrated neutrophils was determined in the cremasteric
microvasculature during offline playback analysis of the recorded video as described previously [34].
Where indicated, the specific MSK1 inhibitor 5 µM SB-747651A (Axon Medchem BV, Groningen,
The Netherlands) was superfused on the cremaster muscle 30 min prior to and remained superfused
for 60 min after the addition of CXCL2-containing gel. The second approach was to induce neutrophil
recruitment at later time points by intrascrotal injection of CXCL2 (0.2 µg in 100 µL sterile saline) and
by determining the parameters of neutrophil recruitment under intravital microscopy at 3.5–4.5 h after
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CXCL2 treatment. In this approach, where indicated, SB-747651A was administered at 3 mg/kg by
intrascrotal injection 1 h prior to CXCL2 injection.

4.3. Cell Tracking

Using ImageJ software (Version 1.48, National Institutes of Health, Bethesda, MD, USA),
neutrophil intraluminal crawling, transmigration, and chemotaxis in cremasteric microvasculature
were analyzed using the time-lapsed movie converted from the real-time video recording of the
experiment as described previously [4,5,35,36]. The following recruitment parameters were quantified
from tracking and analyzing at least 40 cells for each treatment group: (a) velocity of intraluminal
crawling (µm/min): the total distance the neutrophil crawled from the initial site of adhesion to the
transmigration site (µm) divided by the duration of neutrophils undergoing intraluminal crawling
(min); (b) transmigration time (min): from the time the neutrophil stopped crawling and started to
transmigrate to the time the whole neutrophil body was just outside the venule; (c) detachment time
(min): from the time the neutrophil body was just outside the venule after its transmigration to the
time when the neutrophil migrated away and lost contact to the venule; (d) speed of migration in
tissue (µm/min): neutrophil migration distance in tissue (µm) divided by the time that the neutrophil
migrated (min); (e) chemotaxis index in tissue: the ratio of the distance in the direction toward the
CXCL2-gel to the total migration distance the neutrophil moved in tissue.

4.4. Isolation of Murine Neutrophils

Bone marrow cells were freshly harvested from mouse femurs and tibias, and the marrow was
flushed with ice-cold Ca2+- and Mg2+-free phosphate-buffered saline (PBS) solution. Neutrophils were
isolated using a Percoll (GE Healthcare, Uppsala, Sweden) gradient (72%, 64%, and 52%) centrifugation
at 1060× g at room temperature for 30 min as described previously [37] and subsequently washed
with PBS. The isolated cells had >85% purity of morphologically mature neutrophils.

4.5. Fluorescence-Activated Cell Sorting (FACS) Analysis of Mac-1 and LFA-1 Expression

The expression of β2 integrins Mac-1 and LFA-1 on neutrophils was determined using a
previously described method with slight modifications [5,38]. Following lysis of red blood cells,
bone marrow-derived neutrophils were incubated at 37 ◦C for 30 min in the presence or absence of
5 µM SB-747651A in vitro. The cells were stimulated with CXCL2 (30 nM at 37 ◦C for 10 min) to
upregulate Mac-1 and LFA-1 expression. Aliquots of the neutrophil suspension (106/mL) were washed
in ice-cold PBS containing 1% BSA, stained with a fluorescent anti-Mac-1 or anti-LFA-1 antibody
(Anti-mouse CD11b FITC; clone M1/70; anti-mouse CD11a FITC; clone M17/4, both from eBioscience,
San Diego, CA, USA) or the isotype control (Rat IgG2bκ FITC; eBioscience) and incubated for 30 min at
4 ◦C. The samples were then centrifuged (1200 rpm, 3 min, 4 ◦C) and washed twice with ice-cold PBS
containing 1% BSA and analyzed in the FL-1 channel of an Epics XL flow cytometer (Beckman Coulter,
Miami, FL, USA) with an excitation wavelength of 488 nm and an emission wavelength of 530 nm.

4.6. Induced Peritonitis

Acute mouse peritonitis was induced to obtain emigrated neutrophils after an i.p. injection of
murine CXCL2 (0.5 µg in sterile saline). Cells were then lavaged and harvested from the peritoneum
at different time points and the emigrated neutrophils were counted.

4.7. Western Blotting

After the indicated treatment, bone marrow neutrophils were lysed in lysis buffer (pH 8.0;
containing 50 mM Tris–HCl, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS and
protease and phosphatase inhibitor cocktails, purchased from Fisher Scientific, Toronto, ON, Canada).
Proteins (40 µg) were solubilized in Laemmli sample buffer at 95◦C for 5 min and resolved by 10%
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SDS–PAGE. For immunoblotting, proteins were transferred onto a nitrocellulose membrane and
blocked with 5% BSA in Tris-buffered saline-Tween 20 at room temperature for 1 h. Then, the membrane
was incubated with anti-MSK1 antibody (1:1000; Cell Signaling Technology, Danvers, MA, USA) at
4 ◦C overnight. After incubation with horseradish peroxidase-conjugated goat anti-rabbit secondary
antibody (1:2000; Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 1 h at room temperature,
antibody binding was detected with the ECL detection reagent (GE Healtcare, Baie d’Urfe, QC, Canada).
β-actin (mouse anti-β-actin antibody, 1:1000, Santa Cruz Biotechnology) was detected after stripping
with a buffer (pH 6.8; containing 0.5 M Tris–HCl, 2% SDS and 0.7% 2-β-mercaptoethanol).
Densitometric quantification of the detected bands was performed using Gene Snap Software (Syngene,
Frederick, MD, USA).

4.8. Statistical Analysis

Data are expressed as means ± SEM. n denotes the number of mice studied in each group or the
number of mice used to derive bone marrow neutrophils for in vitro studies. Statistical analysis was
performed using two-tailed Student’s t-test and p values < 0.05 were considered statistically significant.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/10/2163/s1.
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