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Abstract

Background—Neonatal jaundice resulting from elevated unconjugated bilirubin (UCB) occurs 

in 60–80% of newborn infants. Although mild jaundice is generally considered harmless, little is 

known about its long-term consequences. Recent studies have linked mild bilirubin-induced 

neurological dysfunction (BIND) with a range of neurological syndromes, including attention 

deficit-hyperactivity disorder. The goal of this study was to measure BIND across the lifespan in 

the Gunn rat model of BIND.

Methods—Using a sensitive force plate actometer, we measured locomotor activity and gait in 

jaundiced (jj) Gunn rats versus their non-jaundiced (Nj) littermates. Data were analyzed for young 

adult (3–4 months), early middle-aged (9–10 months), and late middle-aged (17–20 months) male 

rats.

Results—jj rats exhibited lower body weights at all ages and a hyperactivity that resolved at 17–

20 months of age. Increased propulsive force and gait velocity accompanied hyperactivity during 

locomotor bouts at 9–10 months in jj rats. Stride length did not differ between the two groups at 

this age. Hyperactivity normalized and gait deficits, including decreased stride length, propulsive 

force, and gait velocity, emerged in the 17–20-month-old jj rats.
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Conclusions—These results demonstrate that, in aging, hyperactivity decreases with the onset 

of gait deficits in the Gunn rat model of BIND.

Introduction

Neonatal jaundice resulting from elevated levels of unconjugated bilirubin (UCB) occurs in 

up to 85% of newborns (1). When UCB levels exceed the binding capacity of albumin, free 

bilirubin can enter the brain where it targets discrete nuclei, including the globus pallidus, 

cochlear nucleus and inferior colliculus, hippocampus, and cerebellum. Free bilirubin is 

toxic at elevated levels, resulting in a constellation of devastating and permanent 

neurological effects known as kernicterus (2). Little is known, however, about the long-term 

consequences of more subtle levels of neonatal jaundice. Emerging evidence supports a 

subtle-kernicteric syndrome that is referred to as bilirubin-induced neurological dysfunction 

(BIND). BIND has been linked to a range of neuropsychiatric syndromes that persist into 

adulthood, including attention deficit-hyperactivity disorder, autism, and schizophrenia (3–

6). Even with modest co-morbidities, the incidence of neonatal jaundice justifies further 

exploration of links between these disorders and BIND.

The goal of this study was to measure locomotor activity and gait across the lifespan in the 

Gunn rat model of BIND (7). Gunn rats are genetically deficient of UDP glucuronosyl 

transferase, the liver enzyme responsible for bilirubin conjugation and clearance. These rats 

become jaundiced soon after birth and exhibit physical, neurological and behavioral 

abnormalities. Their blood bilirubin levels peak at 16 days postnatal age and fall to lower 

but elevated levels throughout the rest of their lives (8–11). Although Gunn rats model 

classical kernicterus when administered sulfa during discrete postnatal time periods (9; 12–

14), untreated Gunn rats are a model of BIND. The most apparent abnormalities during the 

early postnatal days are their smaller size and hyperactive phenotype (15). More subtle and 

variable deficits include attention and learning deficits, deficits in social behavior, and 

anecdotal reports of ataxia (6, 15, 16). Anatomical and histopathological studies report 

cerebellar hypoplasia, hippocampal mitochondrial abnormalities, and alterations in 

catecholamines in the basal ganglia and cerebellum of Gunn rats (16–18). Disruptions in the 

circuitry through which these brain regions interact likely underlie the behavioral deficits 

that have been reported in this model (reviewed in (5)). Although jaundice peaks during 

early postnatal days in Gunn rats as it does in humans, we are studying these rats through 

adulthood and aging to determine long-term sequelae of BIND.

Results

Overall, jj rats maintained significantly lower body weights than their Nj counterparts at all 

ages (Figure 1A). Locomotor activity was significantly greater in the jj rats at 3–4 months 

during the initial 15-minute testing sessions, F(1,6)=39.656, p=0.001 (Figure 1 B). This 

difference between groups persisted across 6 days of testing. When the older groups were 

tested, locomotor activity remained higher in the 9–10 month jj rats, F(1,6)=8.117, p<l0.05, 

but normalized by 17–20 months, F(1,13)=0.137, p=0.72 (Figure 2A).
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Neither the number of runs, the duration of runs, the length of individual runs, or stride rate 

differed significantly as a function of group or age (see Table 1). However, for stride length, 

run velocity, and within run force range, differences emerged between the groups. Stride 

length was similar between the 9–10 month jj and Nj rats, F(1,6)=1.074, p=0.34, but was 

significantly decreased in the 17–20 month-old jj rats, F(1,14)=13.22, p<0.01 (Figure 2B). 

Run velocity was significantly greater in the 9–10-month-old jj rats, F(1,6)=6.061, p<0.05, 

but was decreased in the older jj group, F(1,15)=10.411, p<0.01 (Figure 2C). Within-run 

force range was similarly affected, as propulsive force was greater in 9–10 month-old, 

F(1,6)=27.320, p<0.01, but diminished in 17–20 month-old jj rats, F(1,11)=9.104, p<0.05 

(Figure 2D).

Discussion

Overall, jj rats exhibited decreased body weights that persisted across their lifespan, and a 

hyperactive phenotype that resolved in late middle age. Gait abnormalities, such as 

decreased stride length, decreased stride velocity and decreased propulsive force, emerged in 

the 17–20 month-old jj group. These results are consistent with reported effects of neonatal 

jaundice on hyperactivity, and on basal ganglia, hippocampal, and cerebellar pathology in 

the Gunn rat model.

The hyperactive phenotype exhibited by the jj rats was consistent with previous findings in 

60-day-old jj rats (15). Our results extend these findings to older adulthood. We also report 

for the first time that the hyperactivity produced by neonatal jaundice resolves at late middle 

age (17–20 months) in the Gunn rat model. Although the neural mechanisms underlying this 

phenomenon have not been identified, interactions between the basal ganglia and cerebellum 

may play a role (5). Disruptions of the cortico-cerebellar-basal ganglia circuit would 

adversely affect appropriate behavioral response selection and inhibition. It is tempting to 

attribute the decreased hyperactivity in the aged jj rats to normal age-related decreases in 

basal ganglia function (16–18). However, this hypothesis is not supported by the fact that 

locomotor activity in Nj rats did not decrease between the 9–10-month and the 17–20-

month-old groups. Because age-related decreases in locomotor activity are typically present 

by 18 months of age in rats (19), our findings suggest potential behavioral abnormalities in 

non-jaundiced littermates. The addition of a control group with full UDP glucuronosyl 

transferase activity is necessary to test this hypothesis. Alternatively, there is pathological 

evidence for damage to the hippocampus in Gunn rats (18). Lesions of the ventral 

hippocampus result in hyperactivity in adult rats (22–25), so it is possible that toxic effects 

of UCB in the hippocampus contributed to – if not accounted for – the hyperactive 

phenotype. It is well documented that hyperactivity following damage to the hippocampus 

during early postnatal periods is delayed, emerging in young adult rats (23, 24). Although 

speculative, these previous findings are consistent with hippocampal involvement in the 

hyperactivity we measured in jj rats. Further studies examining neural activity in affected 

structures are clearly warranted to test these hypotheses.

Gait deficits, including decreased stride length, are present in a number of neurological 

conditions with different underlying pathologies, including Parkinson’s disease (26), 

Huntington’s disease (27), and Amyotrophic Lateral Sclerosis (28). Although lesions in the 
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areas affected in each of these conditions likely disrupt motor-related circuits through the 

cerebellum, basal ganglia and cortex, anatomical and pathological studies in Gunn rats 

support a primary role for cerebellar dysfunction in the gait deficits we observed (16). The 

fact that we did not detect significant differences in stride length or other gait parameters in 

our 9–10 month-old group was surprising, but consistent with studies that have quantified 

gait in this model (29). Although other groups have reported a wobbly gait or ataxia in 

young Gunn rats (15, 30, 31), these reports have been observational. We also observed and 

quantified a wobbly gait in some, but not all, of the younger Gunn rats in our study (data not 

shown). Gait abnormalities and motor incoordination might be expected earlier in humans, 

but the timing is different in Gunn rats than most humans with hyperbilirubinemia. In Gunn 

rats, bilirubin peaks at about 12 mg/dL at 16 days of age (9) but remains elevated throughout 

life. The abnormalities we found may be a delayed effect of the neonatal peak, but perhaps 

the chronic levels are in part responsible for later responses. In addition, concurrent illness 

(e.g., viral infections) can exacerbate bilirubin neurotoxicity in jaundiced Gunn rats with 

minimal signs of neurotoxicity. Over time, these may have contributed to the later emerging 

symptoms. We did not measure cerebellar damage or hypoplasia, but these phenomena are 

features in these rats as early as 7–10 days of postnatal age (32, 33). It is possible that 

compensation accounted for the lack of gait abnormalities in our 9–10 month-old group. For 

example, previous studies demonstrate that aging has a detrimental effect on cerebellar-

specific motor learning and exacerbates ataxia resulting from cerebellar lesions (34–36). For 

example, anatomical reorganization and functional recovery is greater following cerebellar 

damage in the neonate than in the adult rat (34, 35). Although 9–10 month-old rats are 

adults, the cerebellar lesions present in Gunn rats are likely less severe than those produced 

experimentally in the cited studies. Despite the presence of visible ataxia in some of our jj 

rats throughout their lifespan, our results suggest that the toxic effects of neonatal jaundice 

on cerebellar circuits may go undetected until these circuits are further perturbed by the 

effects of normal aging (e.g., decreased beta adrenergic receptor function, impaired motor 

learning) on cerebellar function (36).

Previous studies have cited co-morbidities between neonatal jaundice and various 

neuropsychiatric disorders, including ADHD (3–6). Damage to the globus pallidus, 

hippocampus and cerebellum in BIND is consistent with clinical findings of abnormalities in 

each of these regions in ADHD (37, 38). Our findings support a link between BIND and 

ADHD in that, as in the clinical situation, hyperactivity generally resolves with increased 

age (3, 39). We believe that the human correlate for what we measured is hyperactivity or 

perhaps ADHD. While speculative, we hypothesize that BIND results in an ADHD 

phenotype in young Gunn rats until it is attenuated by gait abnormalities due to cerebellar 

dysfunction in aging. One potential weakness of our study was the lack of bilirubin 

measurements in our jj and Nj groups. The value of total (vs unbound, or free) bilirubin in 

predicting BIND is questionable, however (40), and measurement techniques for free 

bilirubin are in their infancy. In addition, we did not measure auditory dysfunction in our 

study. Changes in brainstem auditory evoked potentials have been measured in neonatal and 

young adult Gunn rats (14) and were likely present in our rats. To our knowledge, auditory 

function has not been measured in older Gunn rats. Given the significant incidence of 
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neonatal jaundice, additional studies are needed to further validate this model and to 

determine how BIND relates to ADHD and to ataxia in the elderly.

Methods

Animals

Male jj or Nj rats were studied at 3–4 months of age, 9–10 months of age, or 17–20 months 

of age. We limited our study to male rats due to the increased risk of hyperbilirubinemia in 

males (41). We did not generate an NN strain with full UDP glucuronosyl transferase 

activity to use as controls as Nj rats have not been shown to exhibit physical or neurological 

abnormalities. For the 3–4 months and 9–10 months groups, we used 4 jj rats and 4 Nj rats. 

For the 17–20 months groups, we used 12 jj rats and 4 Nj rats (we tested more jj rats 

because we kept more of them in our colony longer than their Nj littermates). Distance 

traveled was measured in all groups, but gait was only measured in the 9–10 and 17–20 

months-old groups because meticulous paw print analyses have revealed that younger jj and 

Nj rats do not differ with regard to stride length (29). Animals were housed in the University 

of Kansas Medical Center’s (KUMC’s) AAALAC-accredited animal facility, and all 

procedures adhered to the policies put forth in the Guide for the Care and Use of Laboratory 

Animals (2011) and were approved by the KUMC Institutional Animal Care and Use 

Committee.

Locomotor activity and gait

The force plate actometer was constructed in-house and had an 80 cm × 80 cm floor that 

recorded ground reaction forces as rats moved individually around the arena for 60 min. The 

animal’s center of force was quantified using Cartesian coordinates derived from the 

locations of the four force sensors that were rigidly attached to each corner of the actometer 

surface (see (42)). Distance traveled was quantified based on changes in the rat’s center of 

force during each session. Force transducer voltages were digitized at the rate of 100 

samples/s, and ground reaction forces were expressed as percent of body weight. We 

initially analyzed distance traveled in the 3–4 month groups across six 15-min sessions one 

week apart. For the older groups, sessions were 60 min in duration to allow for 

measurements of gait patterns made possible by the large size of the actometer. A scrolling 

graphics program written in-house was used to visualize, count, and record consecutive 

force-time variations that constituted half strides. Temporally aligned on the same screen 

with the force data were the rat’s location coordinates, which allowed the observer to 

identify and record only rhythmic, long, straight, fast, continuous runs and their associated 

force time series (see two examples depicted in Figure 3). Each cycle is a half stride. In the 

figure, the numbers 1 through 6 give the temporal order of half stride production. A 

rhythmic sequence of four or more half strides constituted a run where diagonally opposite 

feet act in unison to produce alternating stance and swing phases (Figure 3). In order to be 

considered suitable for quantitation, four or more half strides (i.e., two full strides was the 

minimum) had to be discerned by the program user. Additional criteria for including a run in 

the data set for estimation of gait parameters were: i) A run had to be reasonably straight. 

This was judged by the program user by noting the lack of curvature in X(t) and/or Y(t) 

during the run sequence of half strides. This criterion ensured that variation in rhythm and 
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other gait parameters would not be the result of changing direction at corners, etc. ii) A run 

had to be expressed as a continuous sequence of half strides without any pausing in 

locomotion. iii) Rhythmic sequences of force variation, such as those produced by grooming 

or scratching were easily excluded from scoring because these in-place behaviors were not 

accompanied by locomotion. These data, which were saved in an Excel file, were subjected 

to further processing in SYSTAT in order to calculate the number of runs, duration of run, 

stride length (run distance/number of strides), stride rate (strides/second), velocity (run 

distance/run duration), within-run force range (maximum – minimum force), run distance 

(measured directly using scrolling graphics program), and number of half strides/run 

(measured directly using scrolling graphics program). Each of these parameters was then 

averaged across runs for each rat. Analysis of variance (ANOVA) was used to compare jj vs 

Nj groups. ANOVAs were conducted separately for each age group, and p<0.05 was 

considered statistically significant.
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Figure 1. 
(A) Body weight as a function of group and age. At each age, Nj rats’ (filled bars) body 

weights exceeded those of jj rats (open bars). (B) Distance traveled during 15-min, weekly 

testing sessions. Rats in the jj group (open symbols) exhibited greater locomotion than Nj 

rats (filled symbols) on each testing day. *p<0.05, **p<0.01.
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Figure 2. 
Distance traveled and gait measures in adult vs late middle-aged Nj (filled bars) vs jj (open 

bars) rats. (A) Distance traveled was greater for the 9–10 month-old jj rats, but this effect 

was not present at 17–20 months. (B) Stride length was diminished in the 17–20-month-old 

jj group. Compared to Nj rats, run velocity (C) and within-run force range (D) were both 

greater in the 9–10-month-old jj group, but diminished in the 17–20-month-old jj group. 

*p<0.05; **p<0.01.

Stanford et al. Page 10

Pediatr Res. Author manuscript; available in PMC 2015 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Changes in center of force and raw force-time records illustrating one run from one 

representative 20-month-old Nj rat (left) and one representative 20-month-old jj rat (right). 

(A) Center of force measures indicate the run distance for the Nj rat. Numbers 1–6 along the 

relatively straight line along the y axis refer to the sequential order of half strides. (B) The 

graph shows changes in the Nj rat’s vertical force during the run shown in panel A. The 

numbers 1–6 refer to the 6 half strides depicted in Panel A. Two examples of stance and 

swing phases are indicated. (C) Center of force measures indicate the run distance for the jj 

rat. Numbers 1–6 along the relatively straight line along the×axis refer to the sequential 

order of half strides. (D) The graph shows changes in the jj rat’s vertical force during the run 

shown in panel C. The numbers 1–6 refer to the 6 half strides depicted in Panel C. Two 

examples of stance and swing phases are indicated.
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Table 1

Gait measures that did not differ significantly between-groups. Data are means ± SEM.

Measure 9–10 mosNj 9–10 mosjj 17–20 mosNj 17–20 mosjj

Runs (#) 10 ± 2 13 ± 2 14 ± 2 10 ± 2

Duration of Runs (s) 1.28 ± 0.05 1.16 ± 0.03 1.22 ± 0.13 1.4 ± 0.05

Run Length (mm) 385 ± 8 386 ± 14 407 ± 17 344 ± 16

Stride Rate (Hz) 1.91 ± 0.02 2.06 ± 0.11 2.10 ± 0.17 1.99 ± 0.04
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