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ABSTRACT

Interactions between regulatory elements are of cru-
cial importance for the understanding of transcrip-
tional regulation and the interpretation of disease
mechanisms. Hi-C technique has been developed for
genome-wide detection of chromatin contacts. How-
ever, unless extremely deep sequencing is performed
on a very large number of input cells, which is techni-
cally limited and expensive, current Hi-C experiments
do not have high enough resolution to resolve con-
tacts between regulatory elements. Here, we develop
DeepTACT, a bootstrapping deep learning model, to
integrate genome sequences and chromatin acces-
sibility data for the prediction of chromatin contacts
between regulatory elements. DeepTACT can infer
not only promoter–enhancer interactions, but also
promoter–promoter interactions. In tests based on
promoter capture Hi-C data, DeepTACT shows better
performance over existing methods. DeepTACT anal-
ysis also identifies a class of hub promoters, which
are correlated with transcriptional activation across
cell lines, enriched in housekeeping genes, function-
ally related to fundamental biological processes, and
capable of reflecting cell similarity. Finally, the utility
of chromatin contacts in the study of human diseases
is illustrated by the association of IFNA2 to coronary
artery disease via an integrative analysis of GWAS
data and interactions predicted by DeepTACT.

INTRODUCTION

Precise identification of physical contacts between regula-
tory elements is of crucial importance to not only the deci-
phering of transcriptional regulation, but also the under-
standing of the mechanisms of human complex diseases.
Since human variants that fall into non-coding regions are

likely to be responsible for diseases (1), clarifying the effects
of functional variants on regulatory elements is key to the
understanding of the disease mechanisms. However, most
of the non-coding variants are not well annotated and not
accurately linked to genes that they regulate (2), making it
difficult to evaluate the impact of these mutations. There-
fore, precise identification of interactions between promot-
ers and their regulators is urgently needed.

In the past decade, high-throughput methods based on
chromosome conformation capture (3C) have been devel-
oped to detect physical contacts, but only focus on lo-
cal loci of the genome (3). Chromatin Interaction Analy-
sis by Paired-End Tag Sequencing (ChIA-PET) technique
achieves genome-wide detection, but only captures interac-
tions related to a protein of interest (4). High-throughput
chromosome conformation capture (Hi-C), as well as Cap-
ture Hi-C, can hopefully realize genome-wide detection
of physical chromatin contacts, but requires an extremely
deep-sequencing depth to achieve high resolution, which is
costly and hard to apply to a large number of cell lines (5,6).

Recently, computational methods have been proposed to
improve the resolution of Hi-C data and detect physical
interactions at the regulatory element level (7–10). Zhang
et al. proposed a computational approach, named HiC-
Plus, to impute the higher resolution interaction maps from
low-resolution Hi-C data using a super resolution imaging
model (7). Nevertheless, HiCPlus can only improve Hi-C
resolution to a level typically not finer than 10 kb, leaving
interactions between regulatory elements still unclear. Zhu
et al. presented EpiTensor, an algorithm to identify 3D spa-
tial associations from 1D maps of histone modifications,
chromatin accessibility and RNA-seq data (8). Bkhetan
et al. developed 3DEpiLoop algorithm to predict chromatin
looping interactions from epigenomic data and transcrip-
tion factor profiles (9). Whalen et al. implemented an al-
gorithm called TargetFinder that integrates data for TFs,
histone marks, DNase-seq, expression and DNA methyla-
tion to predict individual promoter–enhancer interactions
across the genome (10). However, all these methods require
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a large number of epigenomic data, which are only simul-
taneously available in very few human cell lines thus far.
Importantly, supervised learning methods like 3DEpiLoop
and TargetFinder only focus on the prediction of promoter–
enhancer interactions, while recent studies have shown that
interactions among promoters are also involved in regula-
tory processes (11,12). Therefore, a powerful approach to
predict genome-wide promoter-related contacts using less
epigenomic data is still needed.

Over the past five years, deep neural networks have led to
dramatic advances in computer vision and pattern recogni-
tion (13,14) and have also been applied to biological prob-
lems such as the prediction of DNA accessibility and the
recognition of regulatory regions and protein-binding sites
(15–17). The success of previous applications of deep neu-
ral networks in biological fields inspires us to design a deep
learning model to detect chromatin contacts between regu-
latory elements, utilize the advantage of deep neural net-
works in automatically learning meaningful feature pat-
terns and capture high-level context dependencies.

In this paper, we develop a bootstrapping deep learning
model called DeepTACT (Deep neural networks for chro-
matin conTACTs prediction) to predict chromatin contacts
at individual regulatory element level using sequence fea-
tures and chromatin accessibility information. DeepTACT
can infer not only promoter–enhancer interactions, but
also promoter–promoter interactions. We show that Deep-
TACT fine-maps chromatin contacts of high-quality pro-
moter capture Hi-C (PCHi-C) from the multiple regula-
tory element level (5–20 kb) to the individual regulatory el-
ement level (1 kb). Besides, DeepTACT identifies a set of
hub promoters, which are active across cell lines, enriched
in housekeeping genes, closely related to fundamental bi-
ological processes and capable of reflecting cell similarity.
Moreover, through integrative analysis of chromatin con-
tacts predicted by DeepTACT and existing GWAS data, we
inferred novel associations for coronary artery disease, pro-
viding a powerful way to build a fine-scale chromatin con-
nectivity map to explore the mechanisms of human diseases.

MATERIALS AND METHODS

Data collection and preprocessing

Promoter capture Hi-C (PCHi-C) data in total B cells (tB),
monocytes (Mon), fetal thymus (FoeT), total CD4+ T cells
(tCD4), naive CD4+ T cells (nCD4), total CD8+ T cells
(tCD8) and 11 other cell types were downloaded from the
study conducted by Javierre et al (18). In their study, PCHi-
C interactions were filtered with a threshold of CHiCAGO
scores >5 (19), leaving an average of 25 148 highly confi-
dent chromatin loops for each cell type. Processed peaks
of DNase-seq data for 199 cell lines were collected from
ENCODE (20). Since DNase-seq data are needed in the
modeling process, we chose PCHi-C data only in the six
cell types that have matching DNase-seq data (i.e. tB, Mon,
FoeT, tCD4, nCD4 and tCD8) to train and evaluate our
model. Details for the matching data are shown in the Sup-
plementary Data S1. In addition, we collected permissive
enhancers from FANTOM5 (21) and extended the length
of each enhancer to 2 kb surrounding its middle site, result-
ing in a list of 65 432 permissive enhancers. We obtained

TSS locations from Ensembl release v75 (22) and defined 1
kb regions surrounding TSSs (500 bp upstream and 500 bp
downstream) as promoters.

ChIA-PET data in a number of human cell lines were
collected from (23) and processed using a standard tool
ChIA-PET2 (24) with default settings, yielding 194 467
loops at a q value threshold 0.05. Then, we regarded in-
teractions matched with the loops as validation interac-
tions, yielding 20 504 promoter–promoter interactions and
30 943 promoter–enhancer interactions. Expression quan-
titative trait loci (eQTLs) were obtained from (25) and
were filtered at a q value threshold 0.05. Again, we re-
garded interactions matched with the eQTLs as validation
interactions, yielding 28 144 promoter–promoter interac-
tions and 27 355 promoter–enhancer interactions. Protein–
protein interactions (PPIs) were gathered from BIOGRID
(26), HPRD (27) and MINT (28) databases, resulting in
74 791 physical interactions in total. Transcripts per kilo-
base million (TPM) data of four RNA-seq replicates of B
cells were collected from ENCODE (20). ChIP-seq pro-
files of six core histone marks (i.e. H3K4me3, H3K27ac,
H3K4me1, H3K4me2, H3K9ac and H3K9me3) and 579
TFs were downloaded from ENCODE (20) on 15 April 15
2017.

Design of DeepTACT model and training strategy

We developed a novel bootstrapping deep learning model,
named DeepTACT, to predict chromatin contacts using se-
quence features and epigenomic information. Specifically,
the input for our predictive model is the sequences of
two regulatory elements represented with a one-hot encod-
ing strategy (Figure 1A), and their chromatin accessibility
scores derived from DNase-seq experiments of a given cell
type (Figure 1B). Based on this input, our model will com-
pute the predictive score of whether the two regulatory el-
ements have 3D contact. The model is a deep neural net-
work consisting of three modules: (i) a sequence module for
extracting sequence features with two convolutional neu-
ral networks (CNNs), (ii) an openness module for learn-
ing epigenomic features from chromatin accessibility scores
with another two CNNs and (iii) an integration module for
merging features of these two modules and gaining higher
level context features with an attention-based recurrent neu-
ral network (Figure 1C).

In addition, we use an ensemble strategy based on a
bootstrapping technique (29) to overcome the instability of
the deep neural model caused by random initialization of
parameters and local minimum of optimization. First, we
bootstrap from an original training set to generate new sub-
sets with the same sample size as the original set. Then, a
data augmentation strategy is applied to the resulting sub-
sets to obtain larger datasets for model training. The deep
neural network of Figure 1C is trained based on each aug-
mented subset independently, each resulting in a binary
classifier. The final output is an ensemble of the binary clas-
sifiers derived from different subsets (Figure 1D).

Next, we discuss the important issue of how to train the
model. Since our goal is to make context-specific prediction,
we need a strategy to construct the training data from the
chromatin contact data of that context so that the model can
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Figure 1. The DeepTACT method. (A) One-hot encoded sequence matrix. (B) Chromatin accessibility score matrix for replicates of a given cell type. (C)
Schematic illustration of the deep neural network architecture. (D) Schematic illustration of the bootstrapping technique. See ‘Materials and methods’
section for more details.

be learned from the relevant training data. Suppose we have
chromatin contact data in a certain context, for example,
promoter capture Hi-C (PCHi-C) data for B cells (18). The
data consist of tens of thousands of pairs of interacting re-
gions, where each individual region may be 5–20 kb in size.
While a majority of the regions contain multiple regulatory
elements, a percentage (about 8.56% in the data in (18)) of
the interacting pairs have the property that each region in
the pair contains only one regulatory element (Figure 3A
and B). Our strategy is to use these pairs, which can indeed
identify interacting regulatory elements unambiguously, to

construct the positive training cases. Further details on the
construction of training data are given in the next section.

Derivation of the chromatin accessibility score for a genomic
site

For each DNase experiment, we denote the number of reads
falling at each genomic site as N. To remove the effect of se-
quencing depth, we choose a background window of length
W surrounding this peak and denote the number of reads
falling into this window as M. The chromatin accessibility
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score is formally defined as the fold change of read numbers
per base pair and can be simply calculated as

Ol = N
M/W

(l = 1 . . . L)

where L is the length of a given regulatory element. The
length of a background window W is set to 1 Mb, according
to the suggestion from (30).

Deep neural network

The core structure of the deep neural network used in Deep-
TACT can be divided into three modules: a sequence mod-
ule, an openness module and an integration module (Figure
1C). The former two modules are used to learn motif-like
patterns from sequences and chromatin accessibility data
with separate CNNs. In each CNN, a convolution layer is
used for feature extraction, together with a rectifier oper-
ation (ReLU) to propagate positive outputs and eliminate
negative outputs. Then, a max-pooling layer is used to re-
duce dimensions and help extract higher level features. In
the integration module, the features learned by the above
CNNs are concatenated with a merging layer, followed by a
bidirectional long- and short-term memory (BLSTM) layer
to further learn the context features from the pooled se-
quence patterns. As a typical representation of recurrent
neural networks (RNNs), BLSTM is widely used for its
ability to capture dependencies in sequences by accessing
long-range context (31). To help the RNN pay more atten-
tion to specific sequence patterns, an attention layer (ArXiv:
https://arxiv.org/pdf/1512.08756.pdf) is adopted in the inte-
gration module, following the BLSTM layer. The final layer
of the integration module is a dense layer that is actually
an array of hidden units with the ReLU activations feeding
into a logistic regression unit that predicts the probability
of an interaction. In addition, we adopt batch normaliza-
tion layers to accelerate the training process and dropout
layers to avoid overfitting. Details for the structure and pa-
rameters used in the deep learning model are described in
Supplementary Table S1.

We implemented the DeepTACT model using Keras 1.2.0
(ArXiv: https://arxiv.org/pdf/1211.5590.pdf) on a Linux
server. All experiments were carried out with 4 Nvidia K80
GPUs that significantly accelerated the training process
than CPUs.

Bootstrapping strategy

DeepTACT employs a bootstrapping strategy derived from
the theory established in (29) for more stable performance
(Figure 1D). We first generate K (K = 20 in this paper) new
datasets of equal size as the original training set by random
sampling with replacement from the training data. Then, we
apply a data augmentation strategy to each new dataset Di ,
yielding an augmented dataset Ai . After that, a deep neural
network as described above is trained based on each aug-
mented dataset independently, resulting in an ensemble of
the binary classifier {Si }. Given the information of a sam-
ple as input, its final prediction score is the average of the

prediction scores derived from all classifiers, as

Score = 1
K

K∑

i = 1

Si .

Data augmentation

Since training a deep learning model needs a large amount
of data, we augmented original training sets 20-fold for
more stable parameters and better performance. For each
element of a positive training sample, we scanned a certain
region (say, 2 kb) surrounding the center of the element with
a 1 kb sliding window at a step size of 50 bp, yielding 20 sub-
stitutions for the element and thus 400 substitution pairs
(20 × 20) for the positive sample. We augmented each pos-
itive sample by randomly selecting 20 interactions from its
substitution pairs. As for augmentation of negative sets, we
simply generated 20 times more negative samples based on
the distance distribution of original positive samples.

Activity of hub promoters

For each cell line, we define an activity score for a peak by
calculating the fold change between the number of reads
falling into a peak and the number of reads falling into a
background region surrounding the peak (say, 1 Mb). If the
maximum activity score of peaks overlapping a promoter is
more than 1, we consider this promoter is active. For each
hub promoter, we utilize the number of cell lines where it is
active to assess its activity.

Prioritization of disease-related regulatory elements with a
gene–enhancer network

We developed a random walk strategy to score the associa-
tion between genes/enhancers and a given disease by simu-
lating a process that a walker randomly wonders on a gene–
enhancer network with certain start probabilities derived
from GWAS data. First, we construct a gene-enhancer net-
work using interactions predicted by DeepTACT. Then, we
convert the GWAS summary statistics from the SNP level
to the promoter/enhancer level using a tool PASCAL (32),
yielding a P-value for each node in the network. After that,
we transfer the P values of nodes into initial probabilities
for random walking, which reflects our prior knowledge
about the relationship between the genes/enhancers and the
given disease. During the journey, the walker may choose
to restart from a new node with the probability π , or to
continue the current journey and jump to one neighbor of
the current node with the probability (1 − π ). After a num-
ber of steps, the probability that the walker stays at each
node would be stable. The steady-state probability of each
node can be considered as the association between this node
and the given disease, with the information of the gene–
enhancer network incorporated.

In mathematical term, we derive the initial probability for
an element e (i.e. a gene or an enhancer) with the P-value pe
as

p(0)
e = exp (α + β |log pe|)∑n

e=1 exp (α + β |log pe|) ,

https://arxiv.org/pdf/1512.08756.pdf
https://arxiv.org/pdf/1211.5590.pdf
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Figure 2. Performance evaluation of DeepTACT. Model comparison of promoter–promoter interactions (A) and promoter–enhancer interactions (B) in
six cell types.

where α and β are tuning parameters (α = 0 and β = 1), n
the total number of nodes in the gene–enhancer network.
Thus, we derive the initial probabilities as the vector p(0) =
(p(0)

1 , · · · , p(0)
n ). The gene–enhancer network is represented

by a connecting matrix W = (wgh)n×n , where wgh = 1 when
there is an interaction between node g and node h, otherwise
wgh = 0. We derive a transition matrix T = (tgh)n×n by ap-
plying row normalization to W, as tgh = wgh/

∑n
h = 1 wgh .

Then, we recursively update p(t+1), the probability of stay-
ing at each node for time (t+1), with

p(t+1) = (1 − π ) TTp(t) + πp(0).

Repeating the iteration a number of steps until p(t) is sta-
ble (e.g. �p = ‖p(t+1) − p(t)‖ < 10−3), we obtain the steady-
state probability p(∞). Alternatively, we derive the probabil-
ity of the steady state with

p(∞) = (1 − π ) TTp(∞) + πp(0).

Solving this linear equation gives us the closed form of
p(∞), as

p(∞) = π
(
I − (1 − π ) TT)−1

p(0).

It has been shown that results derived from the closed
form are consistent with that derived from the simulation
process (33). As defaults, we set π = 0.5. We found that the
results of the random walk were robust to the value of π
(Supplementary Table S2), which is in accord with the con-
clusion of previous studies that the random walk model is
not sensitive to the parameter π (34).

RESULTS

DeepTACT accurately predicts chromatin contacts

We designed a series of experiments to systematically eval-
uate the ability of DeepTACT in capturing promoter–

promoter interactions and promoter–enhancer interactions.
Taking data processing for promoter–promoter interactions
as an example, we first regarded unambiguous promoter–
promoter interactions as positive samples and uniformly di-
vided them into 10 subsets: one for testing, and the oth-
ers for training. Then, we generated negative samples under
the constraint that the distance between two promoters has
the same distribution as that of positive samples (Supple-
mentary Text S1). For training sets, the number of negative
samples and the number of positive samples are the same.
For testing sets, we generated negative samples five times of
positive ones (Supplementary Figure S1 explains the ratio-
nale of this imbalance in the test data). Data processing for
promoter–enhancer interactions is performed in a similar
way.

For the six datasets described in ‘Materials and meth-
ods’ section (Supplementary Table S3), DeepTACT yields
AUPRCs of 0.87–0.90 and AUROCs of 0.96–0.97 for
promoter–promoter interactions, and AUPRCs of 0.80–
0.84 and AUROCs of 0.93–0.95 for promoter–enhancer
interactions (Figure 2 and Supplementary Tables S4–S7).
We found that DeepTACT with both sequences and chro-
matin accessibility data as input outperformed the simpli-
fied DeepTACT model with either sequences or chromatin
accessibility data as input (Figure 2 and Supplementary Ta-
bles S4–S7). This indicates that chromatin accessibility data
provide complementary information to sequences in detect-
ing cell-type specific interactions. In addition, we collected
transcription factors (TFs) reported to be most closely re-
lated to each cell type (35), and we found these key TFs were
captured by at least two ensemble models of DeepTACT, in-
dicating that the sequence patterns learned by DeepTACT
are informative (Supplementary Text S2 and Table S8).
Finally, we compared DeepTACT with other state-of-art
methods: SPEID (BioRxiv: https://doi.org/10.1101/085241)
and Rambutan (BioRxiv: https://doi.org/10.1101/103614)

https://doi.org/10.1101/085241
https://doi.org/10.1101/103614
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(details in Supplementary Text S3). With the same testing
sets, DeepTACT achieves a mean AUPRC score of 0.89
for promoter–promoter interactions compared with 0.76 of
SPEID and 0.23 of Rambutan. For promoter–enhancer in-
teractions, DeepTACT achieves a mean AUPRC of 0.82
compared with 0.67 of SPEID and 0.36 of Rambutan (Fig-
ure 2 and Supplementary Tables S4–S7). To stay unbiased,
we further evaluated all methods in a dataset of CD34 cell
line (6), which was not used for model construction in ei-
ther method. In this new dataset, DeepTACT still achieves
the best performance against other methods, indicating that
the superior performance of DeepTACT is robust to PCHi-
C datasets (Supplementary Figure S2).

Taken together, the above results show that DeepTACT
is capable of integrating sequences and chromatin accessi-
bility data together to identify chromatin contacts between
regulatory elements.

DeepTACT provides finer mapping of promoter–promoter in-
teractions from promoter capture Hi-C data

PCHi-C technique identifies pairs of interacting regions,
where the length of each region depends on the data reso-
lution. In the above, we discussed how to train and test the
DeepTACT model using interacting regions with each end
containing only one regulatory element. Once the model
has been learned in this way, we can apply it to infer con-
tacts between regulatory elements in situations where one
or both interaction regions contain multiple regulatory ele-
ments (Figure 3C). We test the performance of this infer-
ence on a PCHi-C dataset of B cells at the resolution of
15 kb, to check whether our model can predict element-
level interactions from PCHi-C data. We first collected all
candidate promoter–promoter (P–P) interactions from the
dataset, where a candidate P–P interaction is a possible in-
teraction between two promoters, one from each of the two
interaction regions. Then, we used the model trained in B
cells to detect true interactions from all candidate pairs. To
guarantee prediction precision, for each pair of interacting
regions, we predicted interaction only for the pair of pro-
moters with the highest DeepTACT score among the set of
candidate P–P interactions. We compared the co-opening of
predicted interaction pairs with that of other candidate in-
teraction pairs and found that two promoters of a predicted
interaction pair are more likely to be co-opening (Supple-
mentary Text S4 and Figure S3A). This explains why open-
ness data can contribute to the prediction of chromatin con-
tacts. In the B-cell data, the prediction gives an interaction
group of 14 691 promoter–promoter interactions. We call
this set of interactions the DeepTACT P–P group.

Then, we generated a candidate P–P group by random
sampling from all candidate P–P interactions, where the
size of the random sample is the same as that of the Deep-
TACT P–P group (Supplementary Text S5). We also con-
structed a co-opening control group that selected signifi-
cant co-opening interactions from candidate P–P interac-
tions (Supplementary Text S5). In addition, we generated
a random control group by sampling random P–P pairs
from the whole genome, where the distance between two
promoters of an interaction pair is the same as that in
the DeepTACT P–P group. We checked the overlaps be-

tween interactions derived from ChIA-PET data (23) and
each P–P group. The DeepTACT P–P group was found to
be supported by ChIA-PET data significantly more often
than the other three groups (Figure 3D; P values < 2.2 ×
10−16, one-sided Wilcoxon rank-sum tests). Moreover, we
regarded eQTLs (25) and PPIs (26–28) as additional val-
idation datasets and checked their overlaps with different
interaction groups. Again, DeepTACT P–P group was sig-
nificantly better validated than the other three groups (Fig-
ure 3D; P values < 2.2 × 10−16, one-sided Wilcoxon rank-
sum tests), indicating that the interactions inferred by Deep-
TACT were more biologically meaningful than the com-
parison groups. Meanwhile, results show that in all valida-
tion databases, interactions predicted by DeepTACT per-
form significantly better than interactions selected based on
co-opening degrees, which in turn show better performance
than original candidate interactions derived from PCHi-C
data. This indicates that DeepTACT does not simply pre-
dict interactions between regulatory elements based on their
chromatin openness.

Next, we asked whether promoters of an inferred inter-
action pair were more likely to be functionally related than
those of a co-opening interaction or a candidate interac-
tion. To answer this question, for two promoters of each
interaction pair, we checked their co-occurrence in KEGG
pathways (36), REACTOME pathways (37) and GO terms
(38) (Supplementary Text S6). In all these databases, the co-
occurrence frequency of promoters in the DeepTACT P–P
group was significantly higher than those in the co-opening
P–P group or the candidate P–P group (Figure 3E; P val-
ues < 2.2 × 10−16, one-sided Wilcoxon rank-sum tests), in-
dicating that the DeepTACT-inferred interactions tend to
connect functionally related genes more often.

Recently, Dao et al. identified mammalian enhancer-
like promoters (epromoter) with distal enhancer functions.
These ‘epromoters’ tend to have ubiquitous activity across
cell types (39). We collected 493 epromoters in HeLa cells
and 632 epromoters in K562 cells (39) and used the 146
epromoters detected in both cell lines for following anal-
ysis. We compared the number of epromoters involved
in DeepTACT P–P group, co-opening P–P group, candi-
date P–P group and random P–P group. The result shows
that interactions predicted by DeepTACT have significantly
the largest overlap with epromoters (Supplementary Figure
S4A; P values < 2.2 × 10−16, one-sided Wilcoxon rank-sum
tests). We also compared the expression level of genes reg-
ulated by epromoters defined by different P–P groups and
found that genes regulated by epromoters in DeepTACT
group show significantly the highest expression level (Sup-
plementary Figure S4B; P values < 2.2 × 10−16, one-sided
Wilcoxon rank-sum tests). These results indicate that in-
teractions predicted by DeepTACT are more biologically
meaningful than those derived from PCHi-C data.

DeepTACT provides finer mapping of promoter–enhancer in-
teractions from promoter capture Hi-C data

Similarly, we applied DeepTACT to identify true interac-
tions from all candidate promoter–enhancer (P–E) pairs de-
rived from the PCHi-C dataset of B cells, yielding a Deep-
TACT P–E group of 8960 promoter–enhancer interactions.
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Again, we found that the promoter and enhancer of a pre-
dicted interaction pair are more likely to be co-opening than
those of other candidate interaction pairs (Supplementary
Figure S3B). As in the analysis of P–P interactions, we gen-
erated a co-opening P–E group, a candidate P–E group and
a random P–E group as controls. We calculated the over-
laps between interactions of each group and interactions
derived from ChIA-PET data or eQTLs. We found that in-
teractions predicted by DeepTACT were supported by the
databases significantly more often than interactions of the
other groups (Figure 4A; P values < 2.2 × 10−16, one-
sided Wilcoxon rank-sum tests), this again indicating that
inferred interactions were more biologically significant than
interactions derived based on chromatin accessibility or di-
rectly derived from PCHi-C data.

Studies have shown that genes regulated by distal en-
hancers tend to have higher expression level (40). Here, we
asked whether genes with distal enhancers defined by inter-
actions in the DeepTACT P–E group tended to have higher
expression levels than those defined by the co-opening P–E
group or the candidate P–E group. We collected four RNA-
seq replicates of B cells from ENCODE (41), and used tran-
scripts per million (TPM) to value gene expression level.
We compared the expression level of regulated genes de-
fined by different P–E groups. As shown in Figure 4B, regu-
lated genes defined by DeepTACT tend to have significantly
higher expression level than those defined by co-opening P–
E interactions or candidate interactions (P values < 0.005,
one-sided Wilcoxon rank-sum tests), indicating promoter–

enhancer interactions inferred by DeepTACT are more re-
lated to gene expression than those derived based on chro-
matin accessibility or directly derived from PCHi-C data.

We further checked the functional enrichment of genes
regulated by distal enhancers in B cells and found these
genes tend to be enriched for functions related to metabolic
processes (Supplementary Figure S5A), which is consistent
with previous findings (42,43). In contrast, genes without
any distal enhancer did not show significant enrichment in
these processes. In addition, we compared the functional en-
richment of regulated genes defined by different P–E groups
and found the most significant enrichment level in those
genes defined by the DeepTACT P–E group (Figure 4C).
More specifically, in 8 out of top 10 enriched GO terms,
regulated genes defined by DeepTACT demonstrate higher
enrichment than those defined by the candidate P–E group
(Supplementary Figure S5A). Noticing that genes regulated
by distal enhancers showed significant enrichment in key
GO functions while those without distal enhancers did not,
we developed the following strategy to roughly annotate
new functions for enhancers. For a cluster of genes show-
ing enrichment in a certain GO term, we annotate this GO
function to the enhancer cluster that regulates those genes
(Supplementary Figure S5B). Annotation results are shown
in Supplementary Data S2.

Collectively, these results indicate that interactions pre-
dicted by DeepTACT have stronger biological meaning
than interactions selected based on chromatin accessibil-
ity and interactions directly derived from PCHi-C data. To
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demonstrate the general applicability of DeepTACT model,
we further applied the whole training and prediction pro-
cess to a new dataset of GM12878 cell line derived from
Carins et al. (19) and examined the predicted interactions
with high quality Hi-C data from Rao et al. (5). The re-
sult shows that interactions predicted by DeepTACT have
significantly more overlaps with Hi-C contacts than other
candidate interactions (Supplementary Text S7 and Figure
S6), which indicate that our DeepTACT model is generally
applicable to PCHi-C datasets.

Characterization of hub promoters defined by predicted inter-
actions

Previous studies have shown that there is a small portion
of regulatory elements that tend to be involved in signifi-
cantly more interactions (8,44). We found that, indeed, in-
teractions were not uniformly distributed among promot-
ers across cell lines (Supplementary Figure S7). Taking the
analysis of B cells as an example, we defined the top 10%
promoters most frequently involved in chromatin contacts
as hub promoters, yielding 1302 hub promoters in B cells.
We examined multiple genomic signals to assess the charac-
terization of these hub promoters.

First, we collected 1256 ChIP-seq profiles of six core hi-
stone marks (H3K4me3, H3K27ac, H3K4me1, H3K4me2,
H3K9ac and H3K9me3) from ENCODE (41) (Supplemen-
tary Table S9). For each histone mark, we checked the ac-
tivity of a hub promoter by counting the number of cell
lines where the promoter is active. For comparison, we also
extracted promoters with the highest interaction degrees

defined by candidate interactions. Excluding hub promot-
ers, we also randomly generated non-hub promoters as a
control group. All promoter groups are at the same sam-
ple size. As shown in Figure 5A, for histone marks en-
riched in transcriptionally active promoters (45–47) (i.e.
H3K4me3, H3K27ac, H3K4me1, H3K4me2 and H3K9ac),
hub promoters defined by DeepTACT interactions were sig-
nificantly more active across cell lines than the other two
promoter groups. As for H3K9me3, which is related to tran-
scriptional repression (48), hub promoters defined by Deep-
TACT showed the lowest activity across cell lines (Figure
5A; P-value < 0.05, one-sided Wilcoxon rank-sum test).
Altogether, these results indicate that hub promoters de-
fined by DeepTACT are related to transcriptional activation
across cell lines.

Second, we checked the activity of hub promoters in 4383
ChIP-seq profiles of 579 TFs collected from ENCODE (41).
For each promoter, we counted the number of cell types
where the promoter was active and calculated the total num-
ber of covered TFs. We found that hub promoters defined
by DeepTACT interactions were significantly more active
across cell lines and covered more TFs than those defined
by candidate interactions (Figure 5B; P values < 0.005,
one-sided Wilcoxon rank-sum tests). The comparison re-
sult is another supportive evidence for the effectiveness of
our DeepTACT model.

Third, based on the finding that hub promoters were ac-
tive across cell lines, we asked whether hub promoters are
enriched in housekeeping genes, which are known to be re-
quired for the maintenance of basic cellular function and
are expressed in most cells (49). We collected 3669 house-
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keeping genes from (50) and detected a large fraction of
overlaps between hub promoters and housekeeping genes,
leading to a significantly high enrichment of hub promot-
ers in housekeeping genes (P-value = 1.27 × 10−26, Fisher’s
exact test). This result partly explains why hub promoters
are active across cell lines and also illustrates the biological
meaning of hub promoters.

Fourth, we integrated a PPI network with 74 791 physi-
cal interactions derived from BIOGRID (26), HPRD (27)

and MINT (28) databases to check the interaction degrees
of proteins coded by hub promoters. The result shows that
the average interaction degree of hub promoters is 13.31.
To assess the significance of this average degree, we ran-
domly generated protein groups at the same sample size for
100 000 times and then calculated the average degrees of
these random groups, yielding a distribution of average de-
grees (Figure 5C). We found proteins encoded by hub pro-
moters had a significantly higher average degree compared
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with random protein groups (P-value = 1.30 × 10−4), indi-
cating proteins encoded by hub promoters also tend to be
hubs in the PPI network.

Finally, we assessed the functional enrichment of hub
promoters in GO terms (38) and REACTOME pathways
(37). Results show that hub promoters are significantly en-
riched in the core biological processes and pathways (Fig-
ure 5D and E). For example, hub promoters show high en-
richment in RNA metabolic processes, DNA binding events
and organelle parts, suggesting interactions mediated by
hub promoters play a vital role in the molecular functions
and fundamental cell processes. Besides, hub promoters are
highly enriched in cell cycle, promoter opening, chromo-
some maintenance and other chromatin-related pathways,
implying hub promoters are closely associated with chro-
matin structures and promoter communication and regula-
tion.

In summary, hub promoters defined by DeepTACT in-
teractions are characterized by distinct features. To draw
a more general conclusion, we analyzed the hub promot-
ers defined by DeepTACT interactions detected in the other
five cell types and obtained similar results (Supplementary

Figures S8–S12). We further observed the hub promoters
of different cell types and found a significantly large frac-
tion of overlaps between each two groups of hub promoters
(Figure 5F; Jaccard scores ranging from 0.291 to 0.467; P
values < 2.2 × 10−16, Fisher’s exact tests), supporting the
point that hub promoters are fundamental across cell lines.
Interestingly, we observed more overlaps among hub pro-
moters of different types of the same cell line (i.e. tCD4,
tCD8 and nCD4) than hub promoters of different cell lines
(Figure 5G–H), indicating that hub promoters can reflect
cell similarity. With this understanding, we applied hierar-
chical clustering to the six cell types based on Jaccard scores
of their hub promoters (Figure 5F). The clustering result re-
veals the lineage relationship of different cell types, which is
totally consistent with the hematopoietic tree (18).

Identification of disease-related regulatory elements using
predicted interactions

We designed a computational method to identify disease-
related regulatory elements by integrating summary statis-
tics of genome-wide association study (GWAS) data of a
given disease and chromatin contacts of a cell line related
to the disease. We illustrate this by an initial example. Since
there have been reports of the involvement of T cells in
coronary artery disease (CAD) (51,52), we explore the use
of interactions detected in total CD4+ T cells to iden-
tify CAD-related promoters and enhancers (application to
tCD8 and nCD4 is shown in Supplementary Text S8, Ta-
bles S10 and S11). First, we collected 79 128 SNPs from
the meta-analysis of GWA study including a total of 22 233
patients and 64 762 normal individuals (53). Meanwhile,
we merged all interactions inferred by DeepTACT from to-
tal CD4+ T cells, as well as positive training interactions,
into a highly sparse gene–enhancer network of 22 702 nodes
and 40 993 edges. After excluding genes not coding pro-
teins and cross-chromosome interactions, we simulated a
random walk process on the gene–enhancer network with
P values of nodes derived from GWAS data as initial prob-
abilities, yielding a steady probability score for each node.
The steady scores can serve as a measurement of the asso-
ciation between a gene/enhancer and the disease (see ‘Ma-
terials and methods’ section for details).

We noticed that regulatory elements ranked top by the
random walk included not only those with high initial prob-
abilities, but also those with insignificant P values (Sup-
plementary Table S12). Since results of the random walk
partly rely on the initial probabilities of nodes that are de-
rived from GWAS data, it is not surprising to see nodes
with highly significant P values ranked top. For example,
CDKN2B (cyclin dependent kinase inhibitor 2B) ranks first
with the most significant P-value (initial P-value = 1.08 ×
10−13). PSRC1 (proline and serine rich coiled-coil 1) ranks
fifth by the random walk (initial P-value = 5.19 × 10−10).
These genes are well known to be associated with CAD
(54,55).

It is interesting to see IFNA2 (interferon �2), which can-
not be detected based on the GWAS signal (initial P-value
= 1), ranks second by random walk. Specifically, we found
that there was no significant SNP around the TSS of IFNA2
(the nearest signal is more than 500 kb away; Figure 6A)
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and the initial probability of IFNA2 was lower than 40 other
regulatory elements within 2 Mb region (Figure 6B), mak-
ing it hard to associate IFNA2 with CAD based on the
GWAS signals only. Intriguingly, when integrated with the
gene–enhancer network, IFNA2 was given the second high-
est steady score (Figure 6C), which implies a strong relation-
ship between IFNA2 and CAD. Indeed, it has been reported
that IFNA2 was significantly down-regulated in CAD pa-
tients (56). Meanwhile, we found our gene–enhancer net-
work links IFNA2 to CDKN2B (Figure 7A and B), a gene
locates at a risk locus of CAD in 9p21.3 (57). Studies have
shown that IFNA2 and CDKN2B are both p53-mediated
immunity genes (58) and are reported to have functional
association related to CAD (59). This again supports our
finding that IFNA2 and CAKN2B are CAD-related genes.
Besides IFNA2, we also identified two novel candidates
for CAD, a gene IFNA1 (interferon �1) and an enhancer
chr9:21817235-21817446 (Figure 7C), which have not been
reported to be related to CAD yet.

Altogether, this example suggests that the joint analy-
sis of GWAS and the gene–enhancer network is helpful
in prioritizing disease-related regulatory elements. To fur-
ther highlight the contribution of the network constructed
using interactions predicted by DeepTACT, we developed
two other control networks to detect disease-related regu-
latory elements: one is a network constructed directly us-
ing candidate interactions derived from PCHi-C data, an-
other is a network constructed using co-opening interac-
tions selected from candidate pairs (details in Supplemen-

tary Text S9). Similarly, we conducted the random walk
strategy separately on these two networks to detect disease-
related regulatory elements. Results show that regulatory el-
ements detected after integrating control networks are the
same as those detected based on GWAS P values (Supple-
mentary Tables S13 and S14), suggesting that the control
networks did not provide enough additional information
during the random walking process. In contrast, the inte-
gration of GWAS data and interactions predicted by our
DeepTACT model succeeded in detecting meaningful dis-
ease genes, indicating that interactions predicted by Deep-
TACT can provide more information for the detection of
disease-related regulatory elements than co-opening inter-
actions and candidate interactions.

DISCUSSION

In this paper, we proposed a bootstrapping deep learning
model, named DeepTACT, to predict 3D interactions be-
tween regulatory elements using their sequences and chro-
matin opening signals as input. In our work, we utilized
DNase-seq data to provide chromatin accessibility informa-
tion, while ATAC-seq data can also be used in the same
way (Supplementary Text S10 and Figure S13). The large
amount of public DNase-seq and ATAC-seq experiments
makes the application of DeepTACT easier than other
methods that are strict in model inputs (8–10). Based on the
understanding that there exists a number of enhancer-like
promoters that can regulate other promoters just like en-
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hancers do (11,12), we paid equal attention to the detection
and analysis of promoter–promoter interactions and that
of promoter–enhancer interactions. Briefly, we first statis-
tically demonstrated the ability of DeepTACT in identify-
ing 3D interactions between regulatory elements. Then, we
applied DeepTACT to PCHi-C datasets and showed that
DeepTACT can perdict fine-grain interactions from PCHi-
C data. We also defined a class of hub promoters and illus-
trated that these hub promoters were characterized by dis-
tinctive biological features. In addition, we elucidated how
interactions between regulatory elements can be exploited
for the identification of disease genes and the interpretation
of disease mechanisms.

Several directions are worth exploring in the future. First,
features learned by the deep learning model could be fur-
ther explored to explain the relationship among the TFs
enriched in different ends of interaction pairs. Although
we have already reported a number of tissue-specific TFs
learned by convolution kernels of DeepTACT from differ-
ent tissues, it is hard to decipher the interactions between
TFs using our present model, which has only one convolu-
tion layer for each regulatory element. A specially designed
model is needed to answer this question. Second, in this
work we applied DeepTACT to predict interactions from
a series of promoter capture Hi-C data. We expect Deep-
TACT to be applied to general Hi-C data in future work.
In the supplementary, we give an example of how Deep-
TACT can be applied to Hi-C data (Supplementary Text
S11). Third, there are other choices to attain tissue-specific
epigenomic information for this model, such as ChIP-seq
of histone marks and TFs, and data for DNA methylation.
A comparison of model performance given different types
of epigenomic data as input will shed lights on the under-
standing of the relationship between different epigenomic
events and chromatin contacts. Fourth, chromatin contacts
connect genes to their regulators and thus help interpret
regulatory effects on the expression level of target genes
(Supplementary Figure S14). This interpretation makes in-
teractions between regulatory elements useful in predicting
gene expression. Finally, regulatory interactions can be used
to score the influence of GWAS variants on the regulation
mechanisms. Given a GWAS variant falling into any end of
an interaction, we can assign a score for the variant based
on the difference in predicted interaction probabilities be-
tween original sequences and sequences after mutation. In
this way, interactions between regulatory elements can offer
an opportunity for the annotation and interpretation of the
non-coding genome.
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