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Abstract

Brassaiopsis angustifolia K.M. Feng belongs to the family Araliaceae, and is an endangered

shrub species in southwest China. Despite the importance of this species, the plastid

genome has not been sequenced and analyzed. In this study, the complete plastid genome

of B. angustifolia was sequenced, analyzed, and compared to the eight species in the Aralia-

ceae family. Our study reveals that the complete plastid genome of B. angustifolia is

156,534 bp long, with an overall GC content of 37.9%. The chloroplast genome (cp)

encodes 133 genes, including 88 protein-coding genes, 37 transfer RNA (tRNA) genes, and

eight ribosomal RNA (rRNA) genes. All protein-coding genes consisted of 21,582 codons.

Among the nine species of Araliaceae, simple sequence repeats (SSRs) and five large

repeat sequences were identified with total numbers ranging from 37 to 46 and 66 to 78,

respectively. Five highly divergent regions were successfully identified that could be used

as potential genetic markers of Brassaiopsis and Asian Palmate group. Phylogenetic analy-

sis of 47 plastomes, representing 19 genera of Araliaceae and two related families, was per-

formed to reconstruct highly supported relationships for the Araliaceae, which highlight four

well-supported clades of the Hydrocotyle group, Greater Raukaua group, Aralia-Panax

group, and Asian Palmate group. The genus Brassaiopsis can be divided into four groups

using internal transcribed spacer (ITS) data. The results indicate that plastome and ITS data

can contribute to investigations of the taxonomy, and phylogeny of B. angustifolia. This

study provides a theoretical basis for species identification and future biological research on

resources of the genus Brassaiopsis.
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Introduction

The genus BrassaiopsisDecne. & Planch. in the family Araliaceae includes nearly 45 species,

with most of the species in the Himalayas, western China, Indochina, and the Malay Peninsula

[1, 2], with southwestern China and northern Indochina as the main center of diversity [1].

The genus is part of the core Asian clade of Araliaceae [1, 3–5], and the species delimitation

and infrageneric classification of Brassaiopsis has been highly controversial [1]. Brassaiopsis
angustifolia K.M. Feng is an endangered shrub species. There is an urgent need to manage and

conserve the natural resource of this shrub. However, information on its genetic and genomic

background is limited. At present, the systematic position of B. angustifolia is not clear in the

genus of Brassaiopsis. Therefore, knowledge of the genomics and phylogeny of its populations

is essential to formulating effective protective measures.

During the past 20 years, molecular data have greatly improved our understanding of the

phylogenetic relationships within the Araliaceae family and within the Apiales order [6]. Previ-

ous phylogenetic studies based on nuclear ribosomal DNA [1–5, 7–12] and chloroplast (cp)

DNA [5, 7–13] sequence data have provided important clues about the evolution and diversity

of Araliaceae plants. However, traditional phylogenies based on analysis of multiple genes

have failed to well solve the relationship among species of Araliaceae. In addition, the early

divergences of the Asian Palmate group have been clarified by using the chloroplast genome,

but the backbone of its core is not totally resolved [14]. The family of Araliaceae, divided into

four main clades by molecular systematics: Greater Rauakaua, Polyscias–Pseudopanax, Ara-
lia–Panax, and Asian Palmate, respectively [3, 5, 10, 14]. Although several recent studies have

made progress, sampling from Araliaceae has remained limited largely in most studies because

of a focus on problems at other phylogenetic levels, individual geographic regions, or questions

dedicated to a single genus [1, 2, 7, 8, 12]. The genus Brassaiopsis is part of the core Asian clade

of Araliaceae. Based on the comprehensive analysis of internal transcribed spacer (ITS) and cp

DNA data, the sister group relationship of Brassaiopsis and Trevesia were supported [1–3, 5,

7–11]. Because of low sequence quality, the few samples, and rapid divergence in early evolu-

tionary history, the phylogenetic relationship among genera and species has not yet been well

solved of Araliaceae [2–5, 9, 11, 15]. In addition, the species delimitation and infrageneric clas-

sification of Brassaiopsis are highly controversial. Therefore, it is necessary to use the existing

cp genome data to construct a robust phylogenetic tree to clarify the phylogenetic relationships

within Araliaceae.

In plants, the cp is the main locus of photosynthesis and carbon fixation [16, 17]. The cp

genome of higher plants is a double-stranded circular DNA molecule ranging in size from 72

to 217 kb, containing about 130 genes. The cp genome has a typical tetrad structure, including

a large single copy (LSC) region, a small single copy (SSC) region, and a pair of inverted

repeats (IRs) in most plants [17–19]. Compared with nuclear genomes, the uniqueness of the

cp is evident in its maternal inheritance, small size, simple structure, and conserved sequences

[20, 21]. The cp genome sequence reveals the phylogenetic relatedness visually at different tax-

onomic levels and provides an understanding of the evolution of a plant’s structure and func-

tion [22, 23]. Therefore, the genome sequence is widely used for cp inheritance, domestication

studies, phylogeny, and adaptive evolution.

Here, we report for the first time, to our knowledge, the complete chloroplast genome

sequence of B. angustifolia and characterize the structure, gene content, and organization of its

genome. Then, we establish its codon usage frequencies, simple sequence repeats (SSRs),

repeats, regions of high sequence divergence, nucleotide variability values, and the expansion

and contraction of its IRs. Finally, we evaluated the phylogenetic position by comparative anal-

ysis based on 42 entire plastid genomes sequences of Araliaceae species and conducted a
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phylogenetic analysis of the Brassaiopsis genus using nuclear ribosomal ITS data. The results

of this study can provide clues for species classification of Brassaiopsis and help to clarify the

evolution and phylogenetic relationships of the species and genera of the Araliaceae family.

Furthermore, this newly developed genomic resource will help further conserve the genetics of

this endangered species.

Materials and methods

Sampling, DNA extraction and sequencing

We collected fresh and young leaves of B. angustifolia from a cultivated tree at the Southwest

Forestry University, Kunming, China (102˚45.4890 E, 25˚3.6390 N). Total genomic DNA was

extracted using the modified cetyltrimethylammonium bromide (CTAB) method [24]. Long-

range polymerase chain reaction was performed following Zhang et al. [25], with 15 pairs of

universal primers. The entire cp genome of B. angustifolia was sequenced via 250 bp paired-

end sequencing on a HiSeq 2500 Platform (Illumina, Nanjing, China).

Analysis of cp genome assembly, annotation, and relative synonymous

codon usage

Raw reads were filtered to remove low-quality reads, and de novo assembly of circular plas-

tome and ITS sequence were carried out using GetOrganelle software [26]. We used Bandage

software [27] to examine and screen the assembled cp genome of B. angustifolia. The cp

genome was adjusted and annotated with Geneious software [28], and use the Organelle

Genome DRAW software [29] to drawn a circular structure diagram of the entire genome.

The entire annotated chloroplast genome and the ITS sequences were submitted to the

National Center for Biotechnology Information (cp genome GenBank accession: OK638200;

ITS GenBank accession: OL352055). Relative synonymous codon usage (RSCU) and codon

usage were examined with CodonW (version 1.4.4) [30].

SSRs and identification of repeats

Using the MicroSatellite (MISA) identification tool [31], the minimum repeat number of

mononucleotides was 10; for dinucleotides, it was five, and for trinucleotide, tetranucleotide,

pentanucleotide, and hexanucleotide repeat motifs, it was four. The SSRs of 1–10 units of the

nine complete cp genomes of the Asian Palmate group were detected. Complement repeats,

forward repeats, palindromic repeats, and reverse repeats in non-SSR of the nine cp genomes

were detected with the online software REPuter (https://bibiserv.cebitec.uni-bielefeld.de/

reputer) [32], using the parameter default values. Tandem repeats in non-SSR of nine cp

genomes were detected with online software TRF (http://tandem.bu.edu/trf/trf.basic.submit.

html) [33].

Comparative genome analysis and sequence divergence

MAFFT software [34] was used to align the nine cp genomes of the Asian Palmate group,

which were then manually adjusted with BioEdit software [35]. Sequence identity analysis was

visualized with the mVISTA program in Shuffle-LAGAN mode [36], with the annotation for

B. angustifolia as a reference. We performed a sliding-window analysis in the DnaSP software

(version 6) [37] to evaluate the variability(π) of the plastomes. The window length was set to

600 bp and the step size to 200 bp. The contraction and expansion of the IR boundaries of nine

species in the Asian Palmate group were visualized with the IRscope software [38].
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Phylogenetic analysis based on cp genome and ITS data

Two different data matrices were assembled and analyzed using both maximum likelihood

and Bayesian inference (BI) methods. Matrix I contained 42 taxa with complete plastid

genomes available (S1 Table), including members of Aralia L. (5 spp.), BrassaiopsisDecne. &

Planch. (2 spp.), CheirodendronNutt. ex Seem. (1 sp.), Chengiopanax C. B. Shang & J. Y.

Huang (1 sp.), DendropanaxDecne. & Planch. (4 spp.), EleutherococcusMaxim. (5 spp.), Fatsia
Decne. & Planch. (2 spp.),Hedera L. (2 spp.), Heptapleurum Gaertn. (3 spp.), Heteropanax
Seem. (1 sp.),Hydrocotyle L. (1 sp.), KalopanaxMiq. (1 sp.),MacropanaxMiq. (1 sp.),Merril-
liopanaxH. L. Li (1 sp.), OplopanaxMiq. (1 sp.), Panax L. (6 spp.), Raukaua Seem. (3 spp.),

Schefflera J. R. Forst. & G. Forst. (1 sp.), and Tetrapanax (K. Koch) K. Koch (1 sp.) (S1 Table).

Angelica keiskei (Miq.) Koidz. (GenBank accession: MW125613), Diplopanax stachyanthus
Hand.-Mazz. (GenBank accession: MG524991), Diplopanax stachyanthusHand.-Mazz. (Gen-

Bank accession: KP318983), and Ostericum grosseserratum (Maxim.) Kitag. (GenBank acces-

sion: KT852844), were sampled as outgroups. Matrix II included 24 species of Brassaiopsis and

eight species of Trevesia, and included 34 ITS sequences (S2 Table).

The complete cp genome and ITS matrix were aligned with MAFFT software (version 7)

[34] and then manually edited with BioEdit 7.2.5 [35]. Bayesian inference was undertaken

using MrBayes (version 3.2.6) [39]. Used jModelTest (version 2.1.10) [40] to select the most

suitable replacement DNA model for phylogenetic reconstruction. The Markov chain Monte

Carlo (MCMC) algorithm was run for 10,000,000 generations. The first 25% of the trees was

discarded as aging trees and the remaining trees were used to generate a consensus tree for

majority-rule. When the average standard deviation of split frequencies was less than 0.01, we

considered the operation to be stable. Nodes with posterior probability (PP) values of 0.95 or

greater were considered statistically significant. ML analysis was performed IQ-TREE (version

1.6.7) [41]. ML bootstrap support (BS) values of 70% or greater were considered well sup-

ported, and ML BS of less than 50% were considered poorly supported or unresolved. The

best-fit DNA substitution models for matrix I and matrix II, respectively, were chosen as

“TPM1uf + I + G” (freqA = 0.3138, freqC = 0.1857, freqG = 0.1807, freqT = 0.3197, R (a) [AC]

= 1.0000, R(b) [AG] = 1.6623, R(c) [AT] = 0.4054, R (d) [CG] = 0.4054, R(e) [CT] = 1.6623, R

(f) [GT] = 1.0000, p-inv = 0.5260, and gamma shape = 0.9030) and “TrNef + G” (R(a) [AC] =

1.0000, R(b) [AG] = 4.0619, R (c) [AT] = 1.0000, R(d) [CG] = 1.0000, R(e) [CT] = 7.9724, R(f)

[GT] = 1.0000, and gamma shape = 0.1830) to construct the phylogenetic tree. Results of all

phylogenetic analysis are displayed with FigTree (version 1.4.3) (http://tree.bio.ed.ac.uk/

publications/).

Results

Chloroplast genome characteristics of B. angustifolia
The size of the B. angustifolia cp genome was 156,534 bp, and exhibited the usual quadripartite

structure, featuring a LSC region (86,509 bp), a SSC region (18,061 bp), and a pair of IRs

(25,982 bp) (Fig 1). The guanine-cytosine (GC) content was 37.9% in whole cp, 36.1% and

31.9% in the LSC and SSC regions, respectively, whereas higher rates (43.0%) were distributed

in the IR regions. A total of 133 genes were annotated in the sequenced B. angustifolia cp

genome, containing 88 protein-coding genes, 37 transfer RNAs (tRNAs), and eight ribosomal

RNAs (rRNAs) (S3 Table). These genes belong to several categories with different functions;

among which 17 duplicated genes were located in the IR regions, including six protein-coding

genes (ndhB, rpl2, rpl23, rps7, ycf2, and ycf15), seven tRNAs (trnA-UGC, trnI-CAU, trnI-GAU,

trnL-CAA, trnN-GUU, trnR-ACG, and trnV-GAC), and four rRNAs (rrn4.5S, rrn5S, rrn16S,
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and rrn23S). The transcription regulation of genes was believed to be affected by introns and

exons. Nineteen genes (11 protein-coding genes and eight tRNAs) contained at least one

intron, and three genes (clpP, ycf3, and rps12) had two introns (S3 Table).

According to the RSCU analysis (Fig 2), all protein-coding genes consisted of 21,582

codons. Among them, leucine (2,278 codons, 10.56%) was the most abundant amino acid, and

isoleucine (1,824 codons, 8.45%) was the second. Each amino acid corresponded to at least

one codon (tryptophan) and up to six (arginine, leucine, methionine, and serine). Trp had

only one codon (UGG), which meant there was no codon usage bias. In addition, with the

Fig 1. Circular map of chloroplast genome of Brassaiopsis angustifolia with annotated genes. Genes shown inside and outside of the circle are transcribed

in clockwise and counterclockwise directions, respectively. Genes belonging to different functional groups are color-coded. The GC and AT content are

denoted by the dark gray and light gray colors in the inner circle, respectively.

https://doi.org/10.1371/journal.pone.0269819.g001
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exception of methionine, most amino acids tended to use codons that ended in A/U rather

than in C/G.

Analysis of SSR and repeats for the nine cp genomes of the Asian Palmate

group

MISA analysis of 9 species cp genomic sequences from the Asian Palmate group revealed

numerous SSR loci. In total, six types of SSRs (mononucleotide, dinucleotide, trinucleotide,

tetranucleotide, pentanucleotide, and hexanucleotide repeats) were detected based on the

comparison of nine genomes in the Asian Palmate group. A total of 41 perfect SSRs were

found in B. angustifolia (Fig 3A). Similarly, 38, 42, 37, 45, 42, 40, 46, and 35 SSRs were detected

in Brassaiopsis hainla (Buch.-Ham.) Seem., Eleutherococcus brachypusNakai, Eleutherococcus
trifoliatus (L.) S. Y. Hu, Eleutherococcus gracilistylus (W. W. Sm.) S. Y. Hu, Eleutherococcus sen-
ticosusMaxim., Eleutherococcus sessiliflorus (Rupr. & Maxim.) S. Y. Hu, Kalopanax

Fig 2. Relative synonymous codon usage (RSCU) analysis of 20 amino acids and three termination codons in Brassaiopsis angustifolia. Bar diagram in different

colors reflects codon usage bias (brown, yellow, purple, green, blue, and red, correspond to the proportion of different codons in descending order). Numbers represent

codon quantities.

https://doi.org/10.1371/journal.pone.0269819.g002
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Fig 3. The simple sequence repeat (SSR) elements in the chloroplast genome of nine species in the Asian Palmate group. (A) Number of six SSR types. (B) Number

of identified SSR motifs of Brassaiopsis angustifolia. (C) Frequency of identified SSRs in large single copy (LSC) regions, small single copy (SSC) regions, and inverted

repeat (IR) regions. (D) Total of four repeat types.

https://doi.org/10.1371/journal.pone.0269819.g003
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septemlobus Koidz., andMacropanax dispermus Kuntze. The most abundant type of SSR was

mononucleotide repeats, which ranged from 17 bp inM. dispermus to 28 bp in E. gracilistylus,
followed by dinucleotide, tetranucleotide, trinucleotide, pentanucleotide, and hexanucleotide

repeats (Fig 3A). In the cp genome of B. angustifolia, most mononucleotide SSRs had A

(47.83%) and T (34.78%) motifs, whereas all dinucleotide repeats were composed of TA

(74.43%) and AT (28.57%) motifs (Fig 3B). Further analysis shows that most of the microsatel-

lites were in the LSC region and a small proportion in the SSC and IR regions (Fig 3C). A total

of 66 repeats were found in the B. angustifolia chloroplast genome, including tandem, palin-

dromic, forward, inverted, and complement repeats. Similarly, 70, 75, 73, 70, 76, 78, 70, and 66

repeats were detected in B. hainla, E. brachypus, E. trifoliatus, E. gracilistylus, E. senticosus, E.

sessiliflorus, K. septemlobus, andM. dispermus, respectively (Fig 3D).

Identification of mutational hotspots among nine species of the Asian

Palmate group

Sequence identity analysis was performed using mVISTA (Fig 4). Multiple sequence alignment

revealed high similarity among the nine chloroplast genomes of the Asian Palmate group,

which suggests that they are highly conserved; specifically, the results showed that the diver-

gence of the single-copy (SC) region was larger than that of the IR region, and the divergence

of the non-coding region was larger than that of the coding region.

The software DnaSP 6.0 was used to calculate the nucleotide variation value (π) within 600

bp of the cp genome of B. angustifolia, B. hainla, E. brachypus, E. gracilistylus, E. senticosus, E.

sessiliflorus, E. trifoliatus, K. septemlobus, andM. dispermus. The difference between the two

Brassaiopsis species the value varied from 0 to 0.02333, with an average of 0.00395, suggesting

that their genomic differences were small. However, five highly variable loci with much higher

π values (π> 0.015), including the psbI, petN-psbM-trnD-GUC, trnT-GUU-psbD, ndhF-rpl32,
and ycf1, which were precisely located (Fig 5A). Among seven species of the Asian Palmate

group and the two Brassaiopsis species, the π values varied from 0 to 0.02657 with a mean of

0.00461, indicating that the differences among species of the Asian Palmate group were larger

than those between congeneric species. Five highly variable loci including the trnK-UUU-

rps16, trnE-UUC-trnT-GGU, psbE-petL, ndhF, and ycf1 were precisely located in the nine spe-

cies of the Asian Palmate group (π> 0.015; Fig 5B).

Expansion and contraction of the inverted repeat regions

The IR boundaries of B. angustifolia and eight species of the Asian Palmate group were

compared, and the possible expansion or contraction of IR regions was analyzed (Fig 6).

The expansion and contraction of the boundaries of chloroplast genomic IR regions in nine

plants of the Asian Palmate group were revealed, and the four junctions of two IRs between

B. angustifolia and its related species were compared in detail (Fig 6). By comparing the

plastids of the Asian Palmate group species, we found that the IR/LSC connections of IRb

were mainly located between rpl2 and rps19 genes (Fig 6). In addition, the overlap of ycf1
genes appeared in different positions among the Asian Palmate group species, that is, the

SSC region of B. angustifolia and the IRB/SSC junction of other seven species.M. dispermus
did not contain the ycf1 gene. The ycf1 genes sited at the SSC/IRa boundary and the length

of ycf1 ranged from 5,520 to 5,649 bp. The trnH genes of the four species in the Asian Pal-

mate group were located in the LSC region, 2–5 bp away from the IRa-LSC border. In B.

angustifolia, the expansion of the LSC region leads to the ndhF gene being at the IRb/LSC

junction.
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Phylogenetic relationships among the Araliaceae genera

In order to better understand the phylogenetic relationship among the 42 sequenced taxa from

19 genera of the Araliaceae, we have downloaded the corresponding sequences from GenBank

(S1 Table). The BI and ML analysis of the complete plastid sequences of the main clades and

most genera indicate that most phylogenetic relationships have a high degree of internal sup-

port (Fig 7). Araliaceae was divided into four groups: theHydrocotyle group (BI-PP = 1.00,

ML-BS = 100%), which included theHydrocotyle. The Greater Raukaua Group (BI-PP = 0.9,

ML-BS = 100%) included Schefflera, Cheirodendron, and Raukaua. The Aralia-PanaxGroup

(BI-PP = 0.8, ML-BS = 98%) included Aralia and Panax. The Asian Palmate Group (BI-

PP = 0.7, ML-BS = 100%) can be divided into four small clades (A, B, C, and D). Clade A (BI-

Fig 4. Complete chloroplast genome alignments for nine species of the Asian Palmate group using the mVISTA program, with the Brassaiopsis angustifolia
chloroplast genome as a reference sequence. The y-scale indicates identity from 50% to 100%. Gray arrows indicate the position and direction of each gene. Red indicates

conserved non-coding sequences (CNSs). Blue indicates the exons of protein-coding genes (exon).

https://doi.org/10.1371/journal.pone.0269819.g004
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PP = 0.7, ML-BS = 100%) included Oplopanax. Clade B (BI-PP = 0.9, ML-BS = 100%) included

Heptapleurum,Heteropanax, and Tetrapanax. Clade C (BI-PP = 1.00, ML-BS = 99%) included

Chengiopanax plus Dendropanax. Clade D (BI-PP = 0.6, ML-BS = 92%) included Fatsia,

Hedera,Merrilliopanax, Brassaiopsis, Eleutherococcus, Kalopanax, andMacropanax.

Phylogenetic relationships among Brassaiopsis species

To better understand the phylogenetic relationships among Brassaiopsis species the ITS

sequences of 24 Brassaiopsis species were used in the evaluation, with eight Trevesia species as

the outgroup. The phylogenetic tree divided the genus into four main groups (Fig 8). Group I

(BI-PP = 1.00, ML-BS = 100%) included Brassaiopsis griffithii C. B. Clarke and Brassaiopsis
simplicifolia C. B. Clarke. Group II (BI-PP = 1.00, ML-BS = 94%) included Brassaiopsis elegans

Fig 5. Comparison of the nucleotide variability (π) values of the two Brassaiopsis plastomes (A) and nine plastomes of the Asian Palmate group (B). (Window length, 600

bp, step size, 200 bp); x-axis: position of the midpoint of a window; y-axis: nucleotide diversity of each window.

https://doi.org/10.1371/journal.pone.0269819.g005
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Ridl., Brassaiopsis malayana J. Wen & Frodin, ined., Brassaiopsis simplex (King) B. C. Stone,

and Brassaiopsis sumatrana Ridl.. Group III (BI-PP = 1.00, ML-BS = 95%) included Brassaiop-
sis ficifoliaDunn, Brassaiopsis grushvitzkyi J. Wen, Lowry & T. H. Nguyên, Brassaiopsis mou-
mingensis (Y. R. Ling) C. B. Shang, Brassaiopsis phanrangensis C. B. Shang, Brassaiopsis
producta (Dunn) C. B. Shang, and Brassaiopsis stellata K. M. Feng. Group IV (BI-PP = 0.66,

ML-BS = 83%) included Brassaiopsis aculeata Seem., B. angustifolia, Brassaiopsis ciliataDunn,

Brassaiopsis ferruginea (H. L. Li) G. Hoo, Brassaiopsis glomerulata (Blume) Regel, Brassaiopsis
gracilisHand.-Mazz., B. hainla, Brassaiopsis hispida Seem., Brassaiopsis mitis C. B. Clarke,

Brassaiopsis shweliensisW. W. Sm., and Brassaiopsis tripteris (H. Lév.) Rehder.

Discussion and conclusions

Comparison of cp genomes in the Asian Palmate group species

This study revealed the entire cp genome of an endangered shrub, namely B. angustifolia in

the family Araliaceae. The plastome with a length of 156,534 bp was larger than the published

Fig 6. Comparison of the borders of the inverted repeat (IR), small single copy (SSC), and large single copy (LSC) regions among nine chloroplast genomes of the

Asian Palmate group. JLB, JSB, JSA, and JLA represent the junctions of LSC/IRb, IRb/SSC, SSC/IRa, and IRa/LSC, respectively. The Fig is not drawn to scale based on

sequence length but shows only the relative change near or at the IR/SC junctions.

https://doi.org/10.1371/journal.pone.0269819.g006
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Fig 7. Molecular phylogenetic tree of 42 taxa of Araliaceae based on plastome sequences using unpartitioned Bayesian inference (BI) and

maximum likelihood (ML). Numbers at each node are bootstrap support values. The tree is rooted in the plastome sequences of Angelica keiskei,
Ostericum grosseserratum, andDiplopanax stachyanthus. Numbers associated with the branches are BI posterior probabilities (PP) and ML bootstrap

value (BS), and asterisks (�) indicate BS/PP of 100/1.00.

https://doi.org/10.1371/journal.pone.0269819.g007
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plastome of B. hainla [13], which both possess the typical angiosperm quadripartite structure

(Fig 1). The cp genomes are highly conserved for mostland plants. The difference in the size of

the IRs and intergenic spacers leads to differences between the cp genomes [42]. Reportedly,

the ycf1 and ycf2 genes are located on the border between the IR region and the LSC and SSC

regions, and there is incomplete replication of these two genes [13, 43]. Unlike ycf2, the lengths

of the truncated ycf1 genes were different among B. angustifolia, B. hainla, E. brachypus, E. gra-
cilistylus, E. senticosus, E. sessiliflorus, E. trifoliatus, K. septemlobus, andM. dispermus (Fig 5).

The gene ycf1 passes through the SSC-IRb region, and the truncated ycf1 gene was located in

the LSC-IRa region. The change in length of the truncate ycf1 gene directly caused the shrink-

age of the IR region in the plastomes of E. gracilistylus and K. septemlobus. In addition, in the

M. dispermus, there is a truncated ycf1 gene in the LSC-IRa region; the same phenomenon

exists in some species of other angiosperms [44]. Except for B. angustifolia, the ndhF gene is

Fig 8. Bayesian inference (BI) and maximum likelihood (ML) strict tree illustrating the phylogeny of the genus

Brassaiopsis based on nrDNA ITS datasets. Numbers associated with the branches are BI posterior probabilities (PP)

and ML bootstrap values (BS), and asterisks (�) indicate BS /PP of 100/1.00.

https://doi.org/10.1371/journal.pone.0269819.g008
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completely located in the SSC region in the other eight species, but the distance from the IRB/

SSC boundary is different, which is consistent with the results obtained by Li et al. [13] in a

study of seven species of Araliaceae.

Analysis of mutational hotspots

Not all genetic mutation events are random, with some clustering as hotspots [45, 46]. These

mutation dynamics created highly variable regions in the genome [43]. In B. angustifolia and

B. hainla plastomes, we identified five highly variable loci, which included psbI, petN-psbM-

trnD-GUC, trnT-GUU-psbD, ndhF-rpl32, and ycf1 (Fig 5A). In the Asian Palmate group, we

identified five highly variable loci, which included trnK-UUU-rps16, trnE-UUC-trnT-GGU,

psbE-petL, ndhF, and ycf1 (Fig 5B). Compared with other highly variable regions, ycf1 had the

greatest genetic divergence among the nine sequenced plastid genomes of the Asian Palmate

group (Fig 5B); from which, three highly variable loci were identified. These highly variable

loci can be used for phylogenetic studies of the Araliaceae DNA barcode and at the species

level. These results are partially congruent with those of Dong et al. [47] and Song et al. [48].

Therefore, Therefore, these associated regions can serve as barcodes as potential markers to

reconstruct the phylogenetic relationship of Araliaceae.

The values of the nucleotide variability from the complete cp genomes among species of B.

angustifolia and B. hainla were only 0.39%, and the nine species of the Asian Palmate group

were 0.46%, which is similar to the nucleotide variability of two Panax L. species (0.40%) [49];

six PerseaMill.,MachilusNees, PhoebeNees, and Cinnamomum Schaeff. species (0.32%) [50];

nine Lindera Thunb. species (0.48%) [51]; and 40 Populus L. species (0.36%) [52], which were

much greater than the values of the two PhoebeNees species (0.1%) [53], and three Alseo-
daphneNees species (0.12%) [48], and were much less than the sequence divergence among

the six Cymbidium Sw. species (3.70%) [54] and the five Epimedium L. species (3.97%) [55].

Phylogenetic analysis of Araliaceae and Brassaiopsis
Previous molecular markers provided limited information to elucidate the relationship among

Araliaceae plants. Many studies have attempted to resolve the relationships within Araliaceae

using molecular markers of ITS or plastid-region data, but the relationship of Araliaceae was

still unclear [1–3, 5, 7–9, 11]. In addition, studies show that increased sampling of taxa can

greatly improve overall phylogenetic accuracy [56–58]. Our study and Valcárcel et al. [14] had

found that using the whole plastomes, with an appropriate sampling, can greatly aid the rela-

tionship between the deep pedigrees of the Araliaceae. The family of Araliaceae, grouped in

four main clades in molecular phylogenies (Greater Rauakaua, Polyscias–Pseudopanax, Ara-
lia–Panax, and Asian Palmate) [3, 5, 10, 14]. From the results of our study, four branches of

phylogenetic meaningful have been identified in deep lineages of the Araliaceae. The topologi-

cal backbone of the phylogenetic genome obtained in this work agrees with those previously

published [5, 10, 14]. Moreover, the problems of several major branches of the Araliaceae were

solved. In theHydrocotyle group, the genus ofHydrocotyle is located within Araliaceae and is a

relatively primitive genus (Fig 7). In the Greater Raukaua Group, our phylogenetic analysis

revealed a sister group containing three Raukaua species, one Cheirodendron species, and the

Schefflera digitata species (Fig 7), with strong support, as in the previously published phyloge-

netic tree constructed with combinations of plastid markers of trnL-trnF [5], trnD-trnT plus

rpl16 [6], nuclear (ITS + external transcribed spacers [ETS]) plus plastid markers (ndhF-rpl32,
rpl32-trnL, trnK-rps16, trnH-psbA) [7], and ITS plus plastid markers (ndhF, trnL–F, rps16,
atpB–rbcL, rpl16 and psbA–trnH) [10]. In the Aralia-PanaxGroup, our phylogenetic analysis

revealed that Aralia is nested among the members of Panax (Fig 7), which is consistent with
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the cp data from Nicolas et al. [6], Valcárcel et al. [9], Mitchell et al. [10], Plunkett et al. [11]

and Li et al. [13], the nuclear ribosomal DNA data from Wen et al. [3], and the nuclear plus

plastid data from Li et al. [8]. In the Asian Palmate Group, Oplopanax that appears as sister to

the remaining Asian Palmate group, as found in previous studies [7, 10, 14]. Schefflera has

been shown to be polyphyletic and distributed in the main pedigree of the family [7–11]. With

the deepening of the research, there has been a large taxonomic rearrangement of Schefflera
that resulted in the description of five new or reinstated genera [7, 59–64]. The resurrection of

Heptapleurum in an Asian clade formerly belonging to Schefflera (Araliaceae), and with the

completion of these transfers, Heptapleurum is now the largest genus in Araliaceae [63, 64]. In

the Clade B, our phylogenomic analysis shows that sisterhood contained threeHeptapleurum
species and H. fragrans, Tetrapanax papyrifer (Hook.) K. Koch and Oplopanax horridus
(Smith.) Miq. (Fig 7), likewise significant support in the nuclear ribosomal ITS sequences [2,

11], ITS plus plastid markers [9, 10], and the cp genomes data [14]. Furthermore, these clade

can be divided into four groups, with strong support, the backbones of the phylogenomic

topologies obtained here are consistent with previously published phylogenetic relationships

[6, 10, 11, 14].

The phylogeny of Brassaiopsis was estimated based on ITS sequences. In the deep lineages

of the Brassaiopsis species, four branches of phylogenetic importance have been identified. In

group I, B. griffithii and B. simplicifolia were located in the earliest-diverging extant lineage

within Brassaiopsis (Fig 8). Four species B. elegans, B malayana, B. simplex, and B. sumatrana,

were located within group II (Fig 8). In group III, B. ficifolia, B. grushvitzkyi, B.moumingensis,
B. phanrangensis, B. producta, and B. stellata formed a sister relationship. In the study of

Mitchell et al. [1], B.moumingensis was found to be a sister with B. grushvitzkyi, and B. stellata.

In group IV, B. angustifolia was a sister with the other 11 Brassaiopsis species (Fig 8). In addi-

tion, our phylogeny supports the following relationships: the sisterhood of the B. hainla and B.

aculeata, flowed B. glomerulata, as found in previous studies [1, 2]. Because of the limited

mutation sites in the ITS sequence, the systematic relationship among Brassaiopsis species has

not been solved, and needs to be studied further.
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