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Abstract

Purpose

Optimization of the clinical management of screen-detected lung nodules is needed to avoid

unnecessary diagnostic interventions. Herein we demonstrate the potential value of a novel

radiomics-based approach for the classification of screen-detected indeterminate nodules.

Material and methods

Independent quantitative variables assessing various radiologic nodule features such as

sphericity, flatness, elongation, spiculation, lobulation and curvature were developed from

the NLST dataset using 726 indeterminate nodules (all� 7 mm, benign, n = 318 and malig-

nant, n = 408). Multivariate analysis was performed using least absolute shrinkage and

selection operator (LASSO) method for variable selection and regularization in order to

enhance the prediction accuracy and interpretability of the multivariate model. The boot-

strapping method was then applied for the internal validation and the optimism-corrected

AUC was reported for the final model.

Results

Eight of the originally considered 57 quantitative radiologic features were selected by

LASSO multivariate modeling. These 8 features include variables capturing Location: verti-

cal location (Offset carina centroid z), Size: volume estimate (Minimum enclosing brick),

Shape: flatness, Density: texture analysis (Score Indicative of Lesion/Lung Aggression/

Abnormality (SILA) texture), and surface characteristics: surface complexity (Maximum
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shape index and Average shape index), and estimates of surface curvature (Average posi-

tive mean curvature and Minimum mean curvature), all with P<0.01. The optimism-cor-

rected AUC for these 8 features is 0.939.

Conclusions

Our novel radiomic LDCT-based approach for indeterminate screen-detected nodule char-

acterization appears extremely promising however independent external validation is

needed.

Introduction

With approximately 160,000 deaths annually in the US, lung cancer continues to account for

more cancer-related deaths than colon, prostate and breast cancer combined.[1] In 2011, the

National Lung Screening Trial (NLST) demonstrated a 20% relative reduction in lung cancer

mortality with annual low-dose computed tomography (LDCT).[2] These encouraging results

triggered the widespread endorsement of lung cancer screening. However large-scale imple-

mentation has been hampered by the high rate of false-positive LDCT studies.[3] In the NLST

approximately 40% of individuals randomized to LDCT screening had one or more pulmonary

nodules identified during the study period, 96% of which were ultimately proven benign. [2]

In addition to lung cancer screening the increasing utilization of diagnostic chest computed

tomography (CT) results in an estimated 1.5 million incidentally discovered indeterminate

lung nodules in the US annually. With the implementation of LDCT lung cancer screening for

the> 10 million US adults meeting the screening eligibility criteria, this number is estimated

to increase substantially.[4]

In summary there appears to be a potential emerging global epidemic of newly detected

lung nodules.[5] This increased detection of indeterminate pulmonary nodules in the absence

of reliable non-invasive strategies to differentiate benign and malignant nodules will almost

certainly result in an increase in iatrogenic mortality, treatment related morbidity and health

care costs. While unnecessary invasive diagnostic and therapeutic interventions were kept to a

minimum in the NLST study, the management of indeterminate pulmonary nodules in clinical

practice serving the general population remains a major challenge.[2] Clinical risk calculators

have significantly improved the management of indeterminate pulmonary nodules, but addi-

tional tools to distinguish benign from malignant nodules are needed, especially for intermedi-

ate risk pulmonary nodules, in order to minimize patient anxiety, radiation exposure, health

care costs, and procedural morbidity and mortality.[6–11]

We have previously demonstrated that quantitative volumetric CT-based nodule character-

ization effectively risk-stratifies lung nodules of the adenocarcinoma spectrum.[12–16] In

addition we have recently reported in a Lung Tissue Research Consortium based case control

study that radiological features of the nodule surrounding lung tissue are potentially valuable

in distinguishing benign from malignant lung nodules. (manuscript submitted)

This approach eliminates the intra- and inter-observer variability and is independent of the

training level of the interpreting radiologist. In addition, modern digital CT images include a

large amount of valuable high-dimensional data that currently is not fully utilized besides con-

tributing to the overall impression “gestalt” by the radiologist. This invaluable resource can be

leveraged by modern quantitative imaging methods. Radiomic approaches to lung nodule

analysis consist of extracting reproducible and objective quantitative radiological variables

from CT datasets, reducing large volumes of complex data to manageable and clinically
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relevant information.[17] These quantitative imaging techniques have been proposed to facili-

tate the development of diagnostic and prognostic models in lung imaging, allowing for exam-

ple the risk-stratification of lung adenocarcinomas, the classification of screen- or incidentally

detected lung nodules and the characterization of lung cancer subtypes and tumor heterogene-

ity.[14, 18–23] In this study, we used the NLST dataset to develop and internally validate a

radiological multivariate model to distinguish malignant from benign CT-screen detected

indeterminate pulmonary nodules.

Methods

Subject selection

The Mayo Clinic and Vanderbilt University Institutional Review Boards approved or ex-

empted this study (IRB numbers: Vanderbilt University 151500 and Mayo Clinic 15–002674).

All participants for the present study were selected from the pool of eligible participants in the

NLST, and all patient data were fully anonymized. The methods of the NLST have been pub-

lished elsewhere.[2, 24] Briefly, the NLST was a randomized controlled trial conducted at 33

US centers, approved by the Institutional review boards at all centers. The study recruited

asymptomatic high-risk individuals from August 2002 through April 2004, aged 55 to 74 years,

with a smoking history of at least 30 pack-years, who quit 15 years or less prior to randomiza-

tion. Individuals were screened with either annual low-dose CT or chest X-ray for three years

and followed through December 31, 2009. 26,722 individuals were randomized to the low-

dose CT arm, and over 10,000 nodules (4–30 mm in longest diameter) were detected during

the screening rounds.

Participants for the present study were selected from the pool of eligible participants in the

NLST, who did not withdraw from follow-up, in the CT arm of the study (N = 26,262) and

included all screen-detected lung cancer cases: adenocarcinomas, squamous cell carcinomas,

large cell carcinomas, small cell carcinomas and carcinoid tumors. Non-lung cancer controls

were selected as a stratified random sample from all participants without a diagnosis of lung

cancer during the screen or follow-up periods of the NLST. Cases with more than one nodule

were excluded. We restricted our analysis to pulmonary nodules with a size defined by a largest

diameter between 7 and 30 mm as reported in the NLST database.

Screening HRCT data

All NLST screening scans were low-dose scans with 2.5 mm collimation or less as pre-defined

by strict NLST criteria, the details of which have been published elsewhere.[24] The CT data-

sets were obtained from the Lung Screening Study core laboratory and transferred to a hard

drive that was shipped to the investigators. The datasets from the American College of Radiol-

ogy Imaging Network core laboratory were transferred initially via hard drive, then electroni-

cally to the investigators. Information on nodule location was available to the investigators in

the NLST database and confirmed by one radiologist (B.J.B.) and two pulmonologists (F.M.

and T.P.) using the CT obtained closest in time to the diagnosis of malignant or benign lung

nodules. Nodules were electronically tagged for segmentation and analysis. HRCT without vis-

ible nodules, nodules with borders indistinguishable from neighboring structures (e.g. medias-

tinum or pleura) and nodules without related clinical data were excluded.

Optimization and validation of nodule segmentation

The lung nodules were segmented manually using the ANALYZE software (Biomedical Imag-

ing Resource, Mayo Clinic, Rochester, MN). The location and the extent of each nodule was
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identified visually and a stack of two dimensional borders were traced out along the transverse

orientation. A semi-automated region-growing approach based on the operator-specified

bounding cube enclosing the nodule and a seed location within the nodule was used for initial

segmentation (see supporting information). Manual editing was performed to remove, if

needed, intruding structures like vessels and pleura. A parametric feature-based region grow-

ing technique based on the texture classification of the voxels within the operator specified

bounding cube was used as previously described.[25]

Radiomic features

A comprehensive set of automatically computable, quantitative radiomic metrics was included

for the development of a multivariable predictive model to discriminate benign from malig-

nant lung nodules. Based on previous data and preliminary analysis (S1 File), we considered

metrics within the following categories: general characteristics of the nodule (size and loca-

tion), nodule characteristics (radiodensity, texture and surface characteristics) and features of

the nodule-free surrounding lung characteristics, as below (Table 1):

1. Metrics capturing the spatial Location of the nodule.

2. Nodule Size

3. Bulk metrics based on the global Shape descriptors of the nodule.

4. Radiodensity metrics based on the CT Hounsfield units within the nodule.

5. Nodule Texture/Density metrics based on the texture exemplar distributions within the

nodule.

6. Texture/Density nodule surrounding lung metrics based on the parenchymal texture exem-

plar distributions within a region surrounding the nodule.

7. Metrics capturing the nodule surface descriptors.

8. Metrics capturing the distribution of the nodule surface characteristics exemplars.

Development of Score Indicative of Lesion/Lung Aggression/Abnormality

(SILA)

Current literature suggests that no single quantitative metric exists to differentiate benign and

malignant nodules. However, multivariate predictive models based on an ensemble of nodule

texture/density, surround texture/density, nodule surface and other shape descriptors could

improve the discriminability. To facilitate the multivariate analysis we investigated the possi-

bility of replacing our previously developed nodule texture/density and surface categorization

using unsupervised stratification into continuous variables that can be thresholded at multiple

levels to provide, if needed, the necessary categorization. We developed SILA to map the nine

nominal texture/surface exemplar distributions of the nodule onto a continuous scale. The

nine nominal exemplar distributions can be ordinated in 362,880 (factorial 9) ways. To iden-

tify the unique ordination that correlates with the virulence/malignancy of the nodule, we

used qualitative spatial reasoning and multi-dimensional scaling. Based on this, the nine tex-

ture exemplars arbitrarily labeled as V,I,B,G,Y,O,R,C, and P were ordinated as V-R-O-I-Y-P-

B-G-C identical to that used to represent the distributions via the glyphs (Figure C in S1 File).

The nine surface exemplars were ordinated as unknown-minimal surface-valley-flat-ridge-pit-

saddle valley-saddle ridge-peak. SILA was computed as the Cramer-Von Mises Distance of the

ordinated exemplar distributions. Using a similar strategy, the seven primal parenchymal
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Table 1. AUC analysis across cancers and controls.

ID Variables Cancer mean (SD)

n = 408

Control mean (SD)

n = 318

AUC P value

1. Location

20 Location 6.37 (3.42) 7.06 (3.16) 0.56 0.00558

1 Centroid_x 154.78 (74.5) 142.21 (78.73) 0.56 0.02837

2 Centroid_y 143.95 (47.18) 151.84 (55.47) 0.47 0.03916

3 Centroid_z 203.38 (60.1) 186.88 (65.91) 0.57 0.00052

2. Size

4 Volume� 3305.34 (6361.01) 345.45 (819.51) 0.90 2.55e-20

5 Surface Area� 1673.08 (2150.55) 345.04 (501.95) 0.87 4.45e-23

3. Shape

6 Sphericity 0.51 (0.21) 0.6 (0.29) 0.58 1.24e-05

7 Sphere Fit Factor 6.82 (8.31) 5.28 (5.82) 0.58 0.00724

8 Estimated Radius 7.61 (3.99) 3.59 (1.57) 0.90 5.34e-37

9 Minimum Enclosing Brick x 19.82 (12.12) 9.46 (5.51) 0.84 6.21e-29

10 Minimum Enclosing Brick y 19.63 (12.13) 10.11 (6.72) 0.82 3.11e-26

11 Minimum Enclosing Brick 16.49 (14.51) 4.97 (2.65) 0.92 1.24e-36

12 Maximum Brick length 24.08 (16.27) 11.31 (7.04) 0.84 6.69e-29

13 Elongation -0.25 (0.4) -0.31 (0.47) 0.57 0.0737

14 Flatness -0.56 (0.99) -1.01 (1.05) 0.66 7.33e-09

4. Radiodensity

15 HU_mean -209.18 (163.55) -465.23 (201.91) 0.83 1.52e-40

16 HU_variance 614546.92 (3444392.14) 295011.7 (609422.64) 0.56 0.0969

17 HU_skew -2.64 (10.09) -2.39 (1.2) 0.56 0.665

18 HU_kurtosis�� 31.36 (91.51) 10.55 (10.05) 0.74 7.19e-12

19 HU_entropy 7.89 (1.77) 6.76 (1.76) 0.82 1.20e-22

5. Texture Nodule

21 SILA_Tex 122.91 (34.32) 58.62 (38.1) 0.88 2.56e-47

22 Texture_Risk 2.17 (0.57) 1.36 (0.54) 0.82 7.47e-42

6. Texture Nodule Surrounding Lung

23 Vessels 1.88 (2.8) 0.75 (1.29) 0.74 2.42e-13

24 Background 9.49 (9.56) 9.59 (11.25) 0.52 0.886

25 SILA_Fibrosis 32.32 (17.84) 27.42 (22.96) 0.57 0.00141

26 SILA_low attenuation 35.54 (6.33) 32.69 (19.86) 0.55 0.0363

7. Nodule Surface

27 Number of Vertices 2711.4 (4745.67) 515.25 (697.45) 0.88 4.97e-24

28 Number of Faces 5419.18 (9488.83) 1026.56 (1395.09) 0.88 5.05e-24

29 Willmore Bending Energy_2 1574.75 (3792.16) 480.61 (721.39) 0.75 1.27e-12

30 Willmore Bending Energy 2269.82 (6283.03) 802.67 (1116.04) 0.70 1.01e-09

31 Minimum Mean Curvature -0.92 (0.65) -0.28 (0.46) 0.82 4.37e-31

32 Maximum Mean Curvature 3.57 (2.44) 3.27 (1.82) 0.51 0.0731

33 Average Positive Mean Curvature 0.34 (0.11) 0.58 (0.2) 0.87 3.73e-39

34 Skew Positive Mean Curvature 2.89 (2.04) 2.01 (1.2) 0.66 2.15e-10

35 Minimum Gaussian Curvature -1.01 (0.87) -0.87 (0.84) 0.58 0.0381

36 Maximum Gaussian Curvature 15.43 (30.41) 12.6 (21.14) 0.52 0.172

37 Average positive Gaussian Curvature 0.29 (0.29) 0.61 (0.52) 0.79 7.37e-21

38 Skew Positive Gaussian Curvature 7.57 (3.82) 4.66 (2.09) 0.78 1.46e-24

39 Minimum Sharp 8.82e-05 (9.35e-04) 8.86e-04 (2.41e-03) 0.79 6.01e-07

(Continued)
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exemplars (Normal, Ground Glass, Honeycombing, Reticular, {mild, moderate, severe} lower

attenuation areas) were ordinated to compute the SILA for the parenchyma surrounding the

nodule (Figure D in S1 File shows the operator dependent variations in the SILA mappings for

the texture and surface characterization. The 95% C.I for the maximum nodule-specific SILA

differences across the 3 operators was 0.217–0.271 and 0.236–0.276 respectively for the texture

and surface characterization).

Multivariate model

Quantitative methods were developed to characterize independent radiological variables

assessing various radiologic nodule features. Univariate analysis of the discriminatory power

of each radiologic variable and receiver operative curve (ROC) analysis were performed for

each variable and an area under the curve (AUC) calculated. Statistical significance was calcu-

lated and adjusted for multiple comparisons using Bonferroni correction. Spearman rank

correlations between all pairs of variables were calculated and displayed via a heat map. Multi-

variate analysis was performed using least absolute shrinkage and selection operator (LASSO)

method for both variable selection and regularization in order to enhance the prediction accu-

racy and interpretability of the multivariate statistical model. To increase the stability of the

modeling, LASSO was run 1,000 times and the variables that were selected by at least 50% of

the runs were included into the final multivariate model.[26] The bootstrapping method was

then applied for the internal validation, and the optimism-corrected AUC was reported for the

final model.

Table 1. (Continued)

ID Variables Cancer mean (SD)

n = 408

Control mean (SD)

n = 318

AUC P value

40 Maximum Sharp 38.99 (62.98) 22.44 (52.57) 0.59 0.00028

41 Average Sharp 0.59 (0.43) 1.01 (0.78) 0.71 1.89e-15

42 Skew Sharp 7.95 (7.45) 4.25 (3.53) 0.72 3.16e-12

43 Minimum Curved 0.01 (0.03) 0.07 (0.1) 0.82 6.44e-18

44 Maximum Curved 5.72 (4.21) 4.8 (3.05) 0.53 0.00143

45 Average Curved 0.58 (0.19) 0.96 (0.32) 0.86 1.89e-38

46 Skew Curved 2.87 (2.26) 1.79 (1.25) 0.69 5.44e-12

47 Minimum Shape Index -0.98 (0.01) -0.98 (0.02) 0.63 9.85e-07

48 Maximum Shape Index 0.98 (0.16) 0.55 (0.61) 0.82 1.46e-17

49 Average Shape Index -0.29 (0.18) -0.55 (0.13) 0.88 5.51e-43

50 Skew Shape Index 1.63 (0.91) 1.72 (1.42) 0.54 0.306

51 Intrinsic Curvature Index 37.78 (118.81) 15.7 (21.56) 0.64 1.49e-06

52 Extrinsic Curvature Index 113.69 (284.16) 39.41 (57.05) 0.73 5.04e-11

8. Distribution of the nodule surface exemplars

53 SILA morpheme 36.02 (11.24) 19.71 (12.61) 0.84 5.21e-40

54 Morpheme Average Curvature 0.74 (0.23) 1.05 (0.32) 0.81 1.10e-29

55 Morpheme Skew Curvature 2.33 (1.73) 1.57 (1.04) 0.66 4.20e-10

56 Local SILA Average 27.65 (8.71) 15.3 (9.26) 0.84 5.08e-40

57 Local SILA Skew 0.71 (0.42) 0.49 (0.68) 0.60 1.46e-07

�: One case (ID 516) is the outlier and was removed from the calculations.

��: One case (ID 534) is the outlier and was removed from the calculations.

https://doi.org/10.1371/journal.pone.0196910.t001
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Results

Study participants

We reviewed 649 LDCT of cancers diagnosed in the screening arm of the NLST that included

353 adenocarcinomas, 136 squamous cell carcinomas, 28 large cell carcinomas, 75 non-small

cell carcinomas, 49 small cell carcinomas and 5 carcinoid tumors. After exclusion of cases lack-

ing HRCT data, cases with no apparent lesion on last HRCT prior to the cancer diagnosis,

cases with nodules invading the mediastinum, cases with missing outcome data, and lesion

with size < 7mm or >30 mm, 408 LDCT scans with malignant nodules were selected and ana-

lyzed. A stratified random sample of non-lung cancer control nodules (size between 7 and 30

mm) was selected on a 1:1 basis, and 318 benign nodules were selected and included in the

analysis (Fig 1). The demographic and clinical characteristics of individuals included in the

study are summarized in Table 1.

In order to prevent overfitting of the model, we only considered quantitative imaging vari-

ables that were known a priori to be potentially associated with the benign or malignant nature

of lung nodules (see supplemental material). Quantitative methods were developed to charac-

terize independent radiological variables assessing various radiologic nodule features including

1. Nodule location, 2. Nodule size, 3. Nodule shape, 4. Nodule radiodensity 5. Nodule texture,

6. Texture/radiodensity of the nodule-free surrounding lung, 7. Nodule surface characteristics

and 8. Distribution of the nodule surface characteristics exemplars using 726 nodules identi-

fied from the NLST dataset (benign, n = 318 and malignant, n = 408). (Table 2)

Multivariate analysis

In order to select the optimal variables, adjust the regression coefficients to optimize the trans-

portability (external validity) of the model and determine the degree of optimism of the model

and perform optimism-corrected analysis of the performance of the model by ROC analysis,

all 57 quantitative imaging variables were included in the LASSO regression model. Multivari-

ate analysis using LASSO on all features yielded a multivariate model with 8 selected features

Fig 1. Flow chart of nodule selection.

https://doi.org/10.1371/journal.pone.0196910.g001
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(selected with frequency > 50% after introducing bootstrap to reduce variability after 1000

runs) with an AUC estimate of 0.941. (Fig 2) These 8 features include: 1. Offset carina cen-

troid_z (Nodule location), 2. Minimum enclosing brick (Nodule shape), 3. Nodule flatness

(Nodule shape), 4. SILA nodule texture (Nodule texture), 5. Maximum shape index (Nodule

surface Characteristics), 6. Average shape index (Nodule surface Characteristics), 7. Average

positive mean curvature (Nodule surface Characteristics) and 8. Minimum mean curvature

(Nodule surface Characteristics), all with P<0.01. To correct overfitting (internal validation)

we used the bootstrapping technique to estimate the optimism of the AUC. The optimism-cor-

rected AUC is 0.939 (Fig 2). Using Youdan’s index, we obtained the optimal cutoff at 0.478

with sensitivity 0.904 and specificity 0.855. A subset analysis of nodules with size between 7

Table 2. Demographics and clinical characteristics of cancer and control (n = 726).

Lung Cancer Cases (n = 408) Nodule-Positive Controls (n = 318) p Value

Age, mean ± SD, y 63.7 ± 5.3 61.2 ± 5.0 <0.001

Sex, n (%) 0.45

Male 230 (56.4) 189 (59.4)

Female 178 (43.6) 129 (40.6)

Race, n (%) 0.03

White 385 (94.4) 286 (89.9)

Black, Asian, other 23 (5.6) 32 (10.1)

Ethnicity, n (%) 0.31

Hispanic or Latino 405 (98.4) 313 (99.3)

Neither Hispanic nor Latino 3 (1.6) 5 (0.7)

Smoking, n (%) 0.37

Current 221 (54.2) 161 (50.6)

Former 187 (45.8) 157 (49.4)

Pack-years smoked, mean ± SD

Current smokers 64.8 ± 25.8 55.5 ± 20.9 <0.001

Former smokers 66.7 ± 30.6 55.2 ± 26.9 <0.001

Self-reported history of COPD, n (%)

Yes 43 (10.5) 18 (5.7) 0.02

No 365 (89.5) 300 (94.3)

FH of lung cancer, n (%) 0.08�

Yes 113 (28.9) 69 (22.8)

No 278 (71.1) 233 (77.2)

Missing n = 17 n = 16

Stage, n (%) —

I 298 (73.0) —

II 29 (7.1) —

III 55 (13.5) —

IV 20 (5.0) —

Carcinoid, unknown 6 (1.5) —

Histologic subtype, n (%) —

Adenocarcinoma 290 (71.1) —

Squamous cell carcinoma 81 (19.9) —

Other, NOS, unknown 37 (9.1) —

P Values calculated using Fisher’s exact test for categorical variables, Student’s t test for continuous variables.

� P value for family history of lung cancer was calculated without missing data.

https://doi.org/10.1371/journal.pone.0196910.t002
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mm and 15 mm yielded an AUC of 0.9477 with an optimism-corrected AUC of 0.9409

(n = 169 nodules).

Offset carina centroid_z captures the location of the nodule in the vertical axis in relation-

ship to the carina, the minimal enclosing brick and flatness capture shape and volume, SILA

texture is a summary variable capturing the nodule texture, maximum and average shape

index capturing the complexity of the nodule surface and average positive mean curvature and

minimum mean curvature representing the degree of curvature of the outer surface of the nod-

ule account for the surface characteristics of the nodule.

Discussion

In this study, we report the development and the performance of an internally-validated multi-

variate radiomic model to differentiate malignant and benign screen-identified indeterminate

lung nodules. Using a large lung cancer screening dataset of images obtained with a broad

spectrum of CT scanners, acquisition protocols and reconstruction kernels, we demonstrate

that our automated radiomic approach reliably distinguishes benign from malignant nodules.

This approach, if externally validated, could inform management of screen-identified pulmo-

nary nodules and potentially minimize morbidity, mortality, health care costs, radiation expo-

sure and patient anxiety associated with the currently accepted approach for the evaluation

and management of indeterminate pulmonary nodules.

To eliminate “agnostic” variables with unknown or improbable clinical significance we pre-

selected quantitative imaging features with known potentially associations to the benign or

malignant nature of lung nodules for our model. In addition to standard nodule descriptors

such as size and location we include variables capturing nodule surface characteristics, density

and characteristics of the nodule-free surrounding lung. Although a number of these addi-

tional features may influence the subjective assessment by trained radiologist, they currently

cannot be accurately measured clinically.[27] While predictive in the univariate analysis fea-

tures of the immediate nodule-free surrounding lung, as determined by quantitative estimates

Fig 2. Receiver operating curve analysis.

https://doi.org/10.1371/journal.pone.0196910.g002
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of low-attenuation (emphysema), groundglass and reticular changes within 10 mm of the seg-

mented boundaries of the nodule were not found to be useful predictors after LASSO selection

of candidate predictors. Interestingly, nodule size was not one of the eight selected variables.

The only potential variable related to size was the minimum enclosing brick. In order to evalu-

ate the performance of our model without the nodule size as a variable, the optimism-cor-

rected AUC was calculated after removing each variable (Table 3). The AUC for the 7-variable

model without minimum enclosing brick was 0.929, suggesting that nodule size did not exert a

disproportionate influence on the final model.

If externally validated the excellent diagnostic test performance of our multivariate model

could significantly advance the management of patients with screen-detected indeterminate

pulmonary nodules. The development of this model based on a large and technically heteroge-

neous screening dataset including a geographically diverse population and various CT scan-

ners and acquisition protocols, strengthen the external validity of our study.[2, 24] In addition,

all analyzable nodules from the NLST were included in modeling which used model selection

through shrinkage (LASSO) and bootstrap analysis, allowing adjustment for overfitting and

validation of the modeling process.[26]

One the main limitations to broad implementation of lung cancer screening remains the

large number of false positive screening CT. In order to mitigate this problem and decrease

unnecessary patient complications, radiation exposure and patient anxiety, the nodule size

threshold for a positive screening study was raised to 6 mm.[28–30] This size threshold has

accordingly been endorsed by several other societies such as the Fleischner Society.[31] We

selected a threshold of 7 mm in our study for its similarity with this threshold, and also for

consistency with the DECAMP-1 study we are planning to use for external validation

(NCT01785342). While this 6mm threshold is unquestionably an improvement over the NLST

criteria, the number of false positive CT remains substantial, and this problem is likely to per-

sist as screening is more broadly implemented and eligible individuals are screened over longer

time periods. Another potentially fruitful avenue of research is the applications of longitudinal

volumetric assessment of screen-identified lung nodules, which have been associated with a

substantial reduction in the incidence of false-positive CT as well.[32, 33] In fact, the recent

European position statement on lung cancer screening endorses volumetric analysis for lung

nodule assessment.[34] While some blood or bronchoscopy-based biomarkers have been pro-

posed to facilitate nodule classification, they require additional invasive procedures, which

may be difficult to generalize at the population level.[25, 35–39] Leveraging existing and cur-

rently unexploited data to refine the sensitivity and specificity of LDCT would therefore be

Table 3. Model performance after removal of individual variables.

Removing Variable Corrected AUC with optimism correction using

bootstrapping

Difference from full

model

Uncorrected AUC without

bootstrapping

Difference from full

model

Flatness 0.9394114 0.0001422 0.9405 -0.0005

SILA_Tex 0.9280794 -0.0111898 0.9294 -0.0116

Avg_PosMeanCurv 0.9399478 0.0006786 0.9411 0.0001

Max_SI 0.9387773 -0.0004919 0.9402 -0.0008

Avg_SI 0.9396861 0.0004169 0.9409 -1E-04

Centroid_Z 0.9366246 -0.0026446 0.9381 -0.0029

Min.Enclosing.

Brick

0.9289959 -0.0102733 0.9312 -0.0098

Min_MeanCurv 0.9397763 0.0005071 0.9411 0.0001

All 8 variables 0.9392692 0.941

https://doi.org/10.1371/journal.pone.0196910.t003
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desirable. Our radiomics classifier compares favorably to currently existing clinical, blood or

tissue or radiology-based prediction models and focuses specifically on lung nodule variables

considered clinically relevant. Rather than replacing current clinical-based assessment of lung

nodules based on size or volumetric analysis, we believe that our classifier could represent an

adjunct diagnostic tool to inform clinical decisions for intermediate risk indeterminate pulmo-

nary nodules. This radiomics approach would also not require additional expensive imaging

such as PET-CT as required by other additive models.[7, 8, 10]

There are several limitations to our work. First, our model has not yet been externally vali-

dated before it is used clinically. The prevalence of malignancies in our cohort is > 50%, which

is distinctly more than in a typical screening cohort including similar size lesions (12%). Con-

sequently, it is unclear how our model will perform in independent screening cohorts with a

more typical nodule prevalence. If our model cannot be validated it may have to be adjusted

based on the validation cohort. However, we used an optimal internal validation model

(LASSO), which not only surpasses conventional internal validation approaches (split sample

and cross validation), but also penalizes the model to avoid overfitting and optimizes the gen-

eralizability of the model.

Second, the model was developed from a very heterogeneous sample of the NLST CT data-

set and we found the selected radiomic features to be robust and stable across CT platforms,

acquisition protocols and reconstructions kernels, which we believe strengthens the reproduc-

ibility of our model.

Third, the semi-automatic segmentation technique used in this study with manual adjust-

ment by the investigators could admittedly introduce operator-driven variability in radiomic

analysis. However, we have recently analyzed the reproducibility of radiomic analysis of ade-

nocarcinomas using the same segmentation technique and found excellent Intraclass Correla-

tion Coefficient (0.828 (95% CI 0.76, 0.895) for the Vanderbilt cohort of 50 adenocarcinomas.

[40] We believe that these results support the external validity of our work.

Fourth, the relatively small number of cases did not allow us to exclude the influence of

clinical or demographic variables known to affect lung cancer risk. We did, however, include

additional clinical variables known to strongly influence the risk of lung cancer (age and smok-

ing history in pack-years) and found that these variables did not improve the performance of

the model. Finally, it is unclear whether our model will extend to other lung nodule cohorts,

such as incidentally-detected lung nodules. Future validation of our model in other settings is

indeed warranted.

Finally, it should be noted that all lung cancer cases suitable for analysis from the NLST were

included in our study, some of which were at advanced stage (see Table 2). This could poten-

tially limit the external validity of our model when applied to indeterminate pulmonary nodules.

However most of the included cancer cases were stage I which should mitigate this risk.

In summary, we present a promising novel radiomics CT-based approach to lung nodule

classification, which we believe could revolutionize our approach to screen-detected indeter-

minate pulmonary nodules and mitigate the risks inherent in lung cancer screening by mini-

mizing unnecessary mortality, morbidity, radiation exposure, patient anxiety and healthcare

costs.

Supporting information

S1 File. Figure A. Analysis of the CALIPER texture features within the lung nodules. The tex-

ture features within the shaded region do not appear within the lung nodules.

Figure B Three dimensional scatter plot showing the pairwise Dice Similarity Coefficient

(DSC) between the nodules segmented by the Radiologist (Rx), Pulmonologist (Px) and Image
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Analyst (IA).

Table A Algorithmic components of nodule surface characterization and the strategy used

during the pilot study and current improvements.

Table B. List of quantitative metrics used in the discrimination of benign and malignant nod-

ules. The pval, 95% CI and the probability plot correlation coefficient (PPCC) are given in the

last column for benign (N = 319) and malignant (N = 338) nodules.

Figure C Mosaic showing the glyphs (A, D), the nodule distribution within the upper, middle,

lower left and right lung (B, E) and the Score Indicative of Lesion Abnormality (SILA) for the

NLST malignant and benign nodules used in this study. The glyphs are ordered in Panels A

and D based on the nodule-specific SILA values; the SILA values in Panels C and F are color

coded in green, yellow and red based on the previously developed CANARY categorization.

Figure D Three dimensional scatter plot showing the variations in the SILA (Score Indicative

of Lung Abnormality) between the nodules segmented by 3 operators. Panels A and B respec-

tively show the SILA values for the nodule texture and surface. The nodules (N = 266)

described in section 2.2.1 were used for this analysis.

(DOCX)

Author Contributions

Conceptualization: Tobias Peikert, Srinivasan Rajagopalan, Ronald A. Karwoski, Richard A.

Robb, JoRean Sicks, Brian J. Bartholmai, Fabien Maldonado.

Data curation: Tobias Peikert, Fenghai Duan, Srinivasan Rajagopalan, Ronald A. Karwoski,

Ryan Clay, Ziling Qin, JoRean Sicks, Brian J. Bartholmai, Fabien Maldonado.

Formal analysis: Tobias Peikert, Fenghai Duan, Srinivasan Rajagopalan, Ronald A. Karwoski,

Richard A. Robb, Ziling Qin, JoRean Sicks, Brian J. Bartholmai, Fabien Maldonado.

Funding acquisition: Fabien Maldonado.

Investigation: Tobias Peikert, Fenghai Duan, Srinivasan Rajagopalan, Ryan Clay, Richard A.

Robb, Ziling Qin, JoRean Sicks, Fabien Maldonado.

Methodology: Tobias Peikert, Fenghai Duan, Srinivasan Rajagopalan, Ronald A. Karwoski,

Ryan Clay, Richard A. Robb, Ziling Qin, JoRean Sicks, Brian J. Bartholmai, Fabien

Maldonado.

Project administration: Srinivasan Rajagopalan, Fabien Maldonado.

Resources: Tobias Peikert, Srinivasan Rajagopalan, Ronald A. Karwoski, Ryan Clay, Richard

A. Robb, Fabien Maldonado.

Software: Tobias Peikert, Fenghai Duan, Srinivasan Rajagopalan, Ronald A. Karwoski, Rich-

ard A. Robb, Fabien Maldonado.

Supervision: Tobias Peikert, Srinivasan Rajagopalan, Richard A. Robb, Fabien Maldonado.

Validation: Tobias Peikert, Srinivasan Rajagopalan, Ronald A. Karwoski, Richard A. Robb,

Fabien Maldonado.

Visualization: Tobias Peikert, Srinivasan Rajagopalan, Richard A. Robb, Fabien Maldonado.

Writing – original draft: Tobias Peikert, Fabien Maldonado.

Writing – review & editing: Tobias Peikert, Fenghai Duan, Srinivasan Rajagopalan, Ronald

A. Karwoski, Ryan Clay, Richard A. Robb, Ziling Qin, Brian J. Bartholmai, Fabien

Maldonado.

Radiomics classifier for screen-detected nodules

PLOS ONE | https://doi.org/10.1371/journal.pone.0196910 May 14, 2018 12 / 15

https://doi.org/10.1371/journal.pone.0196910


References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018; 68(1):7–30. https://doi.

org/10.3322/caac.21442 PMID: 29313949.

2. National Lung Screening Trial Research T, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al.

Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;

365(5):395–409. https://doi.org/10.1056/NEJMoa1102873 PMID: 21714641; PubMed Central PMCID:

PMCPMC4356534.

3. Tanoue LT, Tanner NT, Gould MK, Silvestri GA. Lung cancer screening. Am J Respir Crit Care Med.

2015; 191(1):19–33. https://doi.org/10.1164/rccm.201410-1777CI PMID: 25369325.

4. Gould MK, Tang T, Liu IL, Lee J, Zheng C, Danforth KN, et al. Recent Trends in the Identification of Inci-

dental Pulmonary Nodules. Am J Respir Crit Care Med. 2015; 192(10):1208–14. https://doi.org/10.

1164/rccm.201505-0990OC PMID: 26214244.

5. Oudkerk M, Devaraj A, Vliegenthart R, Henzler T, Prosch H, Heussel CP, et al. European position state-

ment on lung cancer screening. The Lancet Oncology. 2017; 18(12):e754–e66. https://doi.org/10.1016/

S1470-2045(17)30861-6 PMID: 29208441

6. Kauczor HU, Bonomo L, Gaga M, Nackaerts K, Peled N, Prokop M, et al. ESR/ERS white paper on lung

cancer screening. Eur Radiol. 2015; 25(9):2519–31. https://doi.org/10.1007/s00330-015-3697-0 PMID:

25929939; PubMed Central PMCID: PMCPMC4529446.

7. Al-Ameri A, Malhotra P, Thygesen H, Plant PK, Vaidyanathan S, Karthik S, et al. Risk of malignancy in

pulmonary nodules: A validation study of four prediction models. Lung Cancer. 2015; 89(1):27–30.

https://doi.org/10.1016/j.lungcan.2015.03.018 PMID: 25864782.

8. Herder GJ, Golding RP, Hoekstra OS, Comans EF, Teule GJ, Postmus PE, et al. The performance of

(18)F-fluorodeoxyglucose positron emission tomography in small solitary pulmonary nodules. European

Journal of Nuclear Medicine & Molecular Imaging. 2004; 31(9):1231–6. https://doi.org/10.1007/s00259-

004-1552-7 PMID: 15175835.

9. McWilliams A, Tammemagi MC, Mayo JR, Roberts H, Liu G, Soghrati K, et al. Probability of cancer in

pulmonary nodules detected on first screening CT. N Engl J Med. 2013; 369(10):910–9. https://doi.org/

10.1056/NEJMoa1214726 PMID: 24004118; PubMed Central PMCID: PMCPMC3951177.

10. Soardi GA, Perandini S, Motton M, Montemezzi S. Assessing probability of malignancy in solid solitary

pulmonary nodules with a new Bayesian calculator: improving diagnostic accuracy by means of

expanded and updated features. European Radiology. 2015; 25(1):155–62. https://doi.org/10.1007/

s00330-014-3396-2 PMID: 25182626.

11. Swensen SJ, Silverstein MD, Edell ES, Trastek VF, Aughenbaugh GL, Ilstrup DM, et al. Solitary pulmo-

nary nodules: clinical prediction model versus physicians. Mayo Clin Proc. 1999; 74(4):319–29. https://

doi.org/10.4065/74.4.319 PMID: 10221459.

12. Foley F, Rajagopalan S, Raghunath SM, Boland JM, Karwoski RA, Maldonado F, et al. Computer-

Aided Nodule Assessment and Risk Yield Risk Management of Adenocarcinoma: The Future of Imag-

ing? Semin Thorac Cardiovasc Surg. 2016; 28(1):120–6. https://doi.org/10.1053/j.semtcvs.2015.12.

015 PMID: 27568149; PubMed Central PMCID: PMCPMC5003324.

13. Maldonado F, Boland JM, Raghunath S, Aubry MC, Bartholmai BJ, Deandrade M, et al. Noninvasive

characterization of the histopathologic features of pulmonary nodules of the lung adenocarcinoma spec-

trum using computer-aided nodule assessment and risk yield (CANARY)—a pilot study. J Thorac

Oncol. 2013; 8(4):452–60. https://doi.org/10.1097/JTO.0b013e3182843721 PMID: 23486265; PubMed

Central PMCID: PMCPMC3597987.

14. Maldonado F, Duan F, Raghunath SM, Rajagopalan S, Karwoski RA, Garg K, et al. Noninvasive Com-

puted Tomography-based Risk Stratification of Lung Adenocarcinomas in the National Lung Screening

Trial. Am J Respir Crit Care Med. 2015; 192(6):737–44. https://doi.org/10.1164/rccm.201503-0443OC

PMID: 26052977; PubMed Central PMCID: PMCPMC4595679.

15. Maldonado F, Peikert T, Bartholmai BJ, Rajagopalan S, Karwoski RA. Appreciating the shades of gray:

a case for Computer-Aided Nodule Assessment and Risk Yield (CANARY)-based risk stratification of

lung adenocarcinomas. J Thorac Dis. 2016; 8(10):E1438–E40. https://doi.org/10.21037/jtd.2016.10.33

PMID: 27867653; PubMed Central PMCID: PMCPMC5107459.

16. Raghunath S, Maldonado F, Rajagopalan S, Karwoski RA, DePew ZS, Bartholmai BJ, et al. Noninva-

sive risk stratification of lung adenocarcinoma using quantitative computed tomography. J Thorac

Oncol. 2014; 9(11):1698–703. https://doi.org/10.1097/JTO.0000000000000319 PMID: 25170645;

PubMed Central PMCID: PMCPMC4254143.

17. Wilson R, Devaraj A. Radiomics of pulmonary nodules and lung cancer. Transl Lung Cancer Res. 2017;

6(1):86–91. https://doi.org/10.21037/tlcr.2017.01.04 PMID: 28331828; PubMed Central PMCID:

PMCPMC5344835.

Radiomics classifier for screen-detected nodules

PLOS ONE | https://doi.org/10.1371/journal.pone.0196910 May 14, 2018 13 / 15

https://doi.org/10.3322/caac.21442
https://doi.org/10.3322/caac.21442
http://www.ncbi.nlm.nih.gov/pubmed/29313949
https://doi.org/10.1056/NEJMoa1102873
http://www.ncbi.nlm.nih.gov/pubmed/21714641
https://doi.org/10.1164/rccm.201410-1777CI
http://www.ncbi.nlm.nih.gov/pubmed/25369325
https://doi.org/10.1164/rccm.201505-0990OC
https://doi.org/10.1164/rccm.201505-0990OC
http://www.ncbi.nlm.nih.gov/pubmed/26214244
https://doi.org/10.1016/S1470-2045(17)30861-6
https://doi.org/10.1016/S1470-2045(17)30861-6
http://www.ncbi.nlm.nih.gov/pubmed/29208441
https://doi.org/10.1007/s00330-015-3697-0
http://www.ncbi.nlm.nih.gov/pubmed/25929939
https://doi.org/10.1016/j.lungcan.2015.03.018
http://www.ncbi.nlm.nih.gov/pubmed/25864782
https://doi.org/10.1007/s00259-004-1552-7
https://doi.org/10.1007/s00259-004-1552-7
http://www.ncbi.nlm.nih.gov/pubmed/15175835
https://doi.org/10.1056/NEJMoa1214726
https://doi.org/10.1056/NEJMoa1214726
http://www.ncbi.nlm.nih.gov/pubmed/24004118
https://doi.org/10.1007/s00330-014-3396-2
https://doi.org/10.1007/s00330-014-3396-2
http://www.ncbi.nlm.nih.gov/pubmed/25182626
https://doi.org/10.4065/74.4.319
https://doi.org/10.4065/74.4.319
http://www.ncbi.nlm.nih.gov/pubmed/10221459
https://doi.org/10.1053/j.semtcvs.2015.12.015
https://doi.org/10.1053/j.semtcvs.2015.12.015
http://www.ncbi.nlm.nih.gov/pubmed/27568149
https://doi.org/10.1097/JTO.0b013e3182843721
http://www.ncbi.nlm.nih.gov/pubmed/23486265
https://doi.org/10.1164/rccm.201503-0443OC
http://www.ncbi.nlm.nih.gov/pubmed/26052977
https://doi.org/10.21037/jtd.2016.10.33
http://www.ncbi.nlm.nih.gov/pubmed/27867653
https://doi.org/10.1097/JTO.0000000000000319
http://www.ncbi.nlm.nih.gov/pubmed/25170645
https://doi.org/10.21037/tlcr.2017.01.04
http://www.ncbi.nlm.nih.gov/pubmed/28331828
https://doi.org/10.1371/journal.pone.0196910


18. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour

phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;

5:4006. https://doi.org/10.1038/ncomms5006 PMID: 24892406; PubMed Central PMCID:

PMCPMC4059926.

19. Grove O, Berglund AE, Schabath MB, Aerts HJ, Dekker A, Wang H, et al. Quantitative computed tomo-

graphic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in

lung adenocarcinoma. PLoS One. 2015; 10(3):e0118261. https://doi.org/10.1371/journal.pone.

0118261 PMID: 25739030; PubMed Central PMCID: PMCPMC4349806.

20. Hawkins S, Wang H, Liu Y, Garcia A, Stringfield O, Krewer H, et al. Predicting Malignant Nodules from

Screening CT Scans. J Thorac Oncol. 2016; 11(12):2120–8. https://doi.org/10.1016/j.jtho.2016.07.002

PMID: 27422797.

21. Kalpathy-Cramer J, Mamomov A, Zhao B, Lu L, Cherezov D, Napel S, et al. Radiomics of Lung Nod-

ules: A Multi-Institutional Study of Robustness and Agreement of Quantitative Imaging Features.

Tomography. 2016; 2(4):430–7. https://doi.org/10.18383/j.tom.2016.00235 PMID: 28149958; PubMed

Central PMCID: PMCPMC5279995.

22. Parmar C, Leijenaar RT, Grossmann P, Rios Velazquez E, Bussink J, Rietveld D, et al. Radiomic fea-

ture clusters and prognostic signatures specific for Lung and Head & Neck cancer. Sci Rep. 2015;

5:11044. https://doi.org/10.1038/srep11044 PMID: 26251068; PubMed Central PMCID:

PMCPMC4937496.

23. Wu W, Parmar C, Grossmann P, Quackenbush J, Lambin P, Bussink J, et al. Exploratory Study to Iden-

tify Radiomics Classifiers for Lung Cancer Histology. Front Oncol. 2016; 6:71. https://doi.org/10.3389/

fonc.2016.00071 PMID: 27064691; PubMed Central PMCID: PMCPMC4811956.

24. National Lung Screening Trial Research T, Aberle DR, Berg CD, Black WC, Church TR, Fagerstrom

RM, et al. The National Lung Screening Trial: overview and study design. Radiology. 2011; 258(1):243–

53. https://doi.org/10.1148/radiol.10091808 PMID: 21045183; PubMed Central PMCID:

PMCPMC3009383.

25. Daly S, Rinewalt D, Fhied C, Basu S, Mahon B, Liptay MJ, et al. Development and validation of a

plasma biomarker panel for discerning clinical significance of indeterminate pulmonary nodules. J

Thorac Oncol. 2013; 8(1):31–6. https://doi.org/10.1097/JTO.0b013e31827627f8 PMID: 23201823.

26. EW S. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating:

New York, NY: Springer; 2009.

27. van Riel SJ, Ciompi F, Winkler Wille MM, Dirksen A, Lam S, Scholten ET, et al. Malignancy risk estima-

tion of pulmonary nodules in screening CTs: Comparison between a computer model and human

observers. PLoS One. 2017; 12(11):e0185032. https://doi.org/10.1371/journal.pone.0185032 PMID:

29121063; PubMed Central PMCID: PMCPMC5679538.

28. Pinsky PF, Gierada DS, Black W, Munden R, Nath H, Aberle D, et al. Performance of Lung-RADS in the

National Lung Screening Trial: a retrospective assessment. Ann Intern Med. 2015; 162(7):485–91.

https://doi.org/10.7326/M14-2086 PMID: 25664444; PubMed Central PMCID: PMCPMC4705835.

29. Lung CT Screening Reporting and Data System (Lung-RADS™) [cited 2017 May 29]. Available from:

https://www.acr.org/Quality-Safety/Resources/LungRADS.

30. Callister ME, Baldwin DR, Akram AR, Barnard S, Cane P, Draffan J, et al. British Thoracic Society

guidelines for the investigation and management of pulmonary nodules. Thorax. 2015; 70 Suppl 2:ii1–

ii54. https://doi.org/10.1136/thoraxjnl-2015-207168 PMID: 26082159.

31. MacMahon H, Naidich DP, Goo JM, Lee KS, Leung AN, Mayo JR, et al. Guidelines for Management of

Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology.

2017:161659. https://doi.org/10.1148/radiol.2017161659 PMID: 28240562.

32. Field JK, Duffy SW, Baldwin DR, Brain KE, Devaraj A, Eisen T, et al. The UK Lung Cancer Screening

Trial: a pilot randomised controlled trial of low-dose computed tomography screening for the early detec-

tion of lung cancer. Health Technol Assess. 2016; 20(40):1–146. https://doi.org/10.3310/hta20400

PMID: 27224642; PubMed Central PMCID: PMCPMC4904185.

33. Horeweg N, van Rosmalen J, Heuvelmans MA, van der Aalst CM, Vliegenthart R, Scholten ET, et al.

Lung cancer probability in patients with CT-detected pulmonary nodules: a prespecified analysis of data

from the NELSON trial of low-dose CT screening. Lancet Oncol. 2014; 15(12):1332–41. https://doi.org/

10.1016/S1470-2045(14)70389-4 PMID: 25282285.

34. Oudkerk M, Devaraj A, Vliegenthart R, Henzler T, Prosch H, Heussel CP, et al. European position state-

ment on lung cancer screening. Lancet Oncol. 2017; 18(12):e754–e66. https://doi.org/10.1016/S1470-

2045(17)30861-6 PMID: 29208441.

35. Ferguson JS, Van Wert R, Choi Y, Rosenbluth MJ, Smith KP, Huang J, et al. Impact of a bronchial

genomic classifier on clinical decision making in patients undergoing diagnostic evaluation for lung

Radiomics classifier for screen-detected nodules

PLOS ONE | https://doi.org/10.1371/journal.pone.0196910 May 14, 2018 14 / 15

https://doi.org/10.1038/ncomms5006
http://www.ncbi.nlm.nih.gov/pubmed/24892406
https://doi.org/10.1371/journal.pone.0118261
https://doi.org/10.1371/journal.pone.0118261
http://www.ncbi.nlm.nih.gov/pubmed/25739030
https://doi.org/10.1016/j.jtho.2016.07.002
http://www.ncbi.nlm.nih.gov/pubmed/27422797
https://doi.org/10.18383/j.tom.2016.00235
http://www.ncbi.nlm.nih.gov/pubmed/28149958
https://doi.org/10.1038/srep11044
http://www.ncbi.nlm.nih.gov/pubmed/26251068
https://doi.org/10.3389/fonc.2016.00071
https://doi.org/10.3389/fonc.2016.00071
http://www.ncbi.nlm.nih.gov/pubmed/27064691
https://doi.org/10.1148/radiol.10091808
http://www.ncbi.nlm.nih.gov/pubmed/21045183
https://doi.org/10.1097/JTO.0b013e31827627f8
http://www.ncbi.nlm.nih.gov/pubmed/23201823
https://doi.org/10.1371/journal.pone.0185032
http://www.ncbi.nlm.nih.gov/pubmed/29121063
https://doi.org/10.7326/M14-2086
http://www.ncbi.nlm.nih.gov/pubmed/25664444
https://www.acr.org/Quality-Safety/Resources/LungRADS
https://doi.org/10.1136/thoraxjnl-2015-207168
http://www.ncbi.nlm.nih.gov/pubmed/26082159
https://doi.org/10.1148/radiol.2017161659
http://www.ncbi.nlm.nih.gov/pubmed/28240562
https://doi.org/10.3310/hta20400
http://www.ncbi.nlm.nih.gov/pubmed/27224642
https://doi.org/10.1016/S1470-2045(14)70389-4
https://doi.org/10.1016/S1470-2045(14)70389-4
http://www.ncbi.nlm.nih.gov/pubmed/25282285
https://doi.org/10.1016/S1470-2045(17)30861-6
https://doi.org/10.1016/S1470-2045(17)30861-6
http://www.ncbi.nlm.nih.gov/pubmed/29208441
https://doi.org/10.1371/journal.pone.0196910


cancer. BMC Pulm Med. 2016; 16(1):66. https://doi.org/10.1186/s12890-016-0217-1 PMID: 27184093;

PubMed Central PMCID: PMCPMC4869188.

36. Silvestri GA, Vachani A, Whitney D, Elashoff M, Porta Smith K, Ferguson JS, et al. A Bronchial Geno-

mic Classifier for the Diagnostic Evaluation of Lung Cancer. N Engl J Med. 2015; 373(3):243–51.

https://doi.org/10.1056/NEJMoa1504601 PMID: 25981554; PubMed Central PMCID:

PMCPMC4838273.

37. Sozzi G, Boeri M, Rossi M, Verri C, Suatoni P, Bravi F, et al. Clinical utility of a plasma-based miRNA

signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J

Clin Oncol. 2014; 32(8):768–73. https://doi.org/10.1200/JCO.2013.50.4357 PMID: 24419137; PubMed

Central PMCID: PMCPMC4876348.

38. Vachani A, Pass HI, Rom WN, Midthun DE, Edell ES, Laviolette M, et al. Validation of a multiprotein

plasma classifier to identify benign lung nodules. J Thorac Oncol. 2015; 10(4):629–37. https://doi.org/

10.1097/JTO.0000000000000447 PMID: 25590604; PubMed Central PMCID: PMCPMC4382127.

39. Vachani A, Whitney DH, Parsons EC, Lenburg M, Ferguson JS, Silvestri GA, et al. Clinical Utility of a

Bronchial Genomic Classifier in Patients With Suspected Lung Cancer. Chest. 2016; 150(1):210–8.

https://doi.org/10.1016/j.chest.2016.02.636 PMID: 26896702.

40. Nakajima EC, Johnson T, Antic SL, Karwoski RA, Landman B, Chen H, et al. Assessing the reproduc-

ibility of computer-aided nodule assessment and risk yield (CANARY) method to characterize lung ade-

nocarcinomas [abstract]. Proceedings of the American Association for Cancer Research Annual

Meeting 2017; 2017 Apr 1–5; Washington, DC Philadelphia (PA): AACR; Cancer Res 2017;77(13

Suppl):Abstract nr 3723 doi:101158/1538-7445AM2017-3723. 2017.

Radiomics classifier for screen-detected nodules

PLOS ONE | https://doi.org/10.1371/journal.pone.0196910 May 14, 2018 15 / 15

https://doi.org/10.1186/s12890-016-0217-1
http://www.ncbi.nlm.nih.gov/pubmed/27184093
https://doi.org/10.1056/NEJMoa1504601
http://www.ncbi.nlm.nih.gov/pubmed/25981554
https://doi.org/10.1200/JCO.2013.50.4357
http://www.ncbi.nlm.nih.gov/pubmed/24419137
https://doi.org/10.1097/JTO.0000000000000447
https://doi.org/10.1097/JTO.0000000000000447
http://www.ncbi.nlm.nih.gov/pubmed/25590604
https://doi.org/10.1016/j.chest.2016.02.636
http://www.ncbi.nlm.nih.gov/pubmed/26896702
https://doi.org/10.1371/journal.pone.0196910

