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mRNA Lipid nanoparticles (LNPs) have recently been propelled

onto the center stage of therapeutic platforms due to the

success of the SARS-CoV-2 mRNA LNP vaccines (mRNA-1273

and BNT162b2), with billions of mRNA vaccine doses already

shipped worldwide. While mRNA vaccines seem like an

overnight success to some, they are in fact a result of decades

of scientific research. The advantage of mRNA-LNP vaccines

lies in the modularity of the platform and the rapid

manufacturing capabilities. However, there is a multitude of

choices to be made when designing an optimal mRNA-LNP

vaccine regarding efficacy, stability and toxicity. Herein, we

provide a brief on what we consider to be the most important

aspects to cover when designing mRNA-LNPs from what is

currently known and how to optimize them. Lastly, we give our

perspective on which of these aspects is most crucial and what

we believe are the next steps required to advance the field.
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Introduction
Generally, mRNA-LNP design is comprised of several

elements: (1) mRNA sequence design and nucleotide

modification choice, (2) Optimization of a LNP formula-

tion to encapsulate and deliver mRNA and (3) long-term
www.sciencedirect.com 
storage. Each one of these phases entails a plethora of

choices and considerations to make. Currently, mRNA-

LNPs are evaluated based on their ability to express

encoded mRNA, their immunogenicity due to recogni-

tion of mRNA as a foreign entity by intracellular RNA

sensors, LNP formulation stability and toxicity. All these

are examined in light of the route of administration and

therapeutic goal. Importantly, the design of an optimal

therapeutic mRNA-LNP for systemic administration dif-

fers from an optimal intra-muscularly administered

mRNA-LNP vaccine. We will focus on the optimal

design of efficacious mRNA-LNP vaccines regarding

expression, stability, and toxicity. We will summarize

what is currently known from the literature, from our

own experience and from comparison of the two recently

greenlighted mRNA vaccines for SARS-CoV-2, Moder-

na’s mRNA-1273 and Pfizer/BioNTech’s BNT162b2.

While many elaborative reviews covering the theories

behind each component exist, we aim to provide a brief

on what is currently known and what we deem to be most

important.

Optimizing mRNA sequence and
modifications for mRNA-LNP vaccines
The main considerations for mRNA sequence and modi-

fication selection are: (1) expression of encoded mRNA,

(2) immunogenicity due to recognition of mRNA as a

foreign entity by intracellular RNA sensors and (3)

mRNA stability. These are controlled by designing

mRNA with modified nucleotides, sequence modifica-

tions and mRNA capping modalities (Figure 1).

Nucleotide modifications

Nucleotide modifications are considered the most impor-

tant breakthrough that initiated the mRNA therapeutics

field. Non-modified mRNA molecules are recognized by

cellular RNA sensors which result in innate immunity

activation [1,2]. While activation of innate immune path-

ways can be advantageous in the context of vaccination by

serving as an adjuvant, these innate immune responses

may also be detrimental to mRNA therapy, since they

dramatically reduce mRNA translation [3,4]. In 2005, a

groundbreaking study by Kariko and colleagues demon-

strated that incorporation of naturally occurring, chemi-

cally modified nucleosides such as pseudouridine (C),

thiouridine (s2U), and 5-methylcytidine (m5C) resulted

in a significant reduction in the immunogenicity of the

mRNA [5]. Most importantly, several studies demon-

strated that incorporation of modified nucleosides

resulted in enhanced stability of the RNA molecule,
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Figure 1
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Optimizing mRNA sequence and modifications for mRNA-LNP vaccines.

A scheme representing the mRNA construct elements to consider when designing an mRNA-LNP vaccine.
and increased protein translation [6–8,9�], including the

N1-methylpseudouridine modification which has been

employed in both mRNA-1273 and BNT162b2 [10,11].

Contrastingly, CureVac’s sequence-optimized candidate,

CVnCoV, is exclusively composed of unmodified nucleo-

sides. This approach implements sequence-engineered,

unmodified mRNA, to provide a robust and balanced

immune response. However, preliminary phase 2b/3 data

indicates that the vaccine candidate was substantially less

effective than the other two leading mRNA vaccines by

Pfizer/BioNTech and Moderna) (NCT04652102) [12,13].

While the inferior efficacy of CureVac’s vaccine candidate

could be attributed to the inclusion of unmodified nucleo-

sides, several other dissimilarities between the candidates

should be taken into account, such as differences in non-

coding elements and storage conditions (see Table 1).

Therefore, when considering nucleotide modifications,

there is a tradeoff to consider between potential innate

adjuvant responses driven by unmodified nucleosides and

enhanced protein expression attributed to modified

nucleosides. Currently, both FDA authorized mRNA

vaccines incorporate modified nucleotides.

mRNA capping

mRNA capping dramatically increases translation effi-

ciency and intra-cellular mRNA stability by binding to

the eukaryotic translation initiation factor 4E (eIF4E)

[14,15]. Capping of in vitro transcribed (IVT) mRNA is

frequently performed using a cap analog, which can be

added during the IVT process or post-transcription. How-

ever, the mRNA can be reversely capped which results in

rapid degradation and poor translation. To avoid reverse

50 cap incorporation, anti-reverse cap analogs (ARCA)

have been developed, which ensure correct capping

orientation [16]. Further modifications were developed

over the years to improve the performance of ARCA, with
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the recently developed ‘CleanCap’ analog (TriLink Bio-

technologies, San Diego, CA, USA) most frequently used

nowadays in mRNA companies [17]. Therefore, stable,

correctly oriented caps need to be incorporated for an

effective mRNA-LNP vaccine.

UTR selection

UTR selection also needs to be considered, since they

greatly affect mRNA decay and translational efficiency. 50

UTR features such as start codons and secondary struc-

tures may compromise ribosome recruitment, scanning

and start codon recognition, and thus should be avoided.

Grossly, the 50 UTR sequences are critical for protein

expression while the 30 UTRs are more likely to affect

mRNA half-life [18–20]. For example, the b globin 30

UTR and a duplication of the b-globin 30 UTR stabilize

are widely used to stabilize mRNA [21].

ORF design

ORF sequence design also carries a critical impact on

translation efficiency and immunogenicity of the mRNA

due to recognition by cellular sensors. In addition to the

nucleotide modifications mentioned, codon optimization

has been demonstrated to significantly enhance protein

expression by incorporating frequent codons and/or

codons with higher tRNA abundances [22]. Another form

of sequence optimization is enrichment of guanine-cyto-

sine (GC) content, which has been shown to increase

steady-state mRNA levels in vitro and protein expression

in vivo, and has been employed by CureVac in its recent

SARS-CoV-2 mRNA vaccine candidate, CVnCoV

(NCT04652102) [22,23]. Furthermore, the mRNA

sequence dictates the secondary structure. Interestingly,

this secondary structure can influence mRNA degrada-

tion by hydrolysis. Recently, specially designed algo-

rithms that design optimal mRNA sequences for maximal
www.sciencedirect.com
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Table 1

Comparison of mRNA and LNP formulation elements of three SARS-CoV-2 mRNA LNP vaccines

BNT162b2 (Pfizer/BioNTech) mRNA-1273 (Moderna) CVnCoV (CureVac)

Approval Status [48–50]

FDA Approved August 23, 2021

Emergency Use Authorization

(EUA) December 18, 2020
Phase 2b/3 (NCT04652102)Submitted for full Approval

August 25, 2021

Lipid Formulation (%

Molar ratio of Ionizable:

Cholesterol: Neutral

lipid: PEGylated lipid)

[9�]

46.3:42.7:9.4:1.6 50:38.5:10:1.5 50:38.5:10:1.5

N:P Molar Ratio [9�] 6

Cap [51–53] Cap-1

50-UTR [54] 50 -untranslated region derived from

human alpha-globin RNA with an

optimized Kozak sequence

Undisclosed 50 UTR: Artifacts from restriction and

transcription site, plus Kozak sequence

S protein antigen [53,55] Codon-optimized sequence encoding

full-length SARS-CoV-2 spike (S)

glycoprotein containing mutations

K986P and V987P

Codon-optimized sequence

encoding full-length SARS-CoV-2

spike (S) glycoprotein containing

mutations K986P and V987P

Codon-optimized and engineered

sequence encoding full-length SARS-

CoV-2 spike (S) glycoprotein containing

mutations K986P and V987P

Modified nucleotides [54] N1-methyl-pseudouridine N1-methyl-pseudouridine Unmodified nucleotides

30-UTR [54] 30 UTR comprising two sequence

elements derived from the amino-

terminal enhancer of split (AES) mRNA

and the mitochondrial encoded 12S

ribosomal RNA

Undisclosed 30 UTR comprising human alpha-globin

30 UTR sequence element

Poly(A) Tail [52,53] A 110-nucleotide poly(A)-tail consisting

of a stretch of 30 adenosine residues,

followed by a 10-nucleotide linker

sequence and another 70 adenosine

residues.

Undisclosed 64 Poly (A) tail

Storage [9�,56] �60�C to �80�C for six months �15�C to

�25�C for two weeks 2�C–8�C for 5 days

�15�C to �20�C for six months

2�C–8�C for 30 days

2�C–8�C for three months

Buffer [9�] PBS Tris Undisclosed

Cryoprotectant [9�] Sucrose Sucrose Undisclosed
base stacking regions have been reported to significantly

improve mRNA stability [24�].

Poly(A) tail

The poly(A) tail also contributes to mRNA translation

and stability by reducing RNA exonuclease activity. In

addition, the poly(A) tail binds to poly(A)-binding pro-

teins (PABP), which recruit eIF4G and eIF4E, increasing

the affinity to the mRNA cap and promoting a circular

mRNA structure and efficient translation. Contrastingly,

PABP has also been shown to participate in microRNA-

mediated inhibition of translation [25]. When considering

the length of the poly(A) tails, there is no consensus.

While it is suggested that longer poly(A) tails (120–150

nucleotides) increase mRNA stability, the dual effect of

PABP-mediated inhibition of translation warrants further

optimization. For example, Lima et al. demonstrated that

mRNAs with high translation efficiency actually had short

poly(A) sequences (�33�34 nucleotides) [25]. mRNA

created by IVT can be polyadenylated in two ways: either

by encoding the poly(A) on the DNA template used or by

enzymatic addition by poly(A) polymerase to the mRNA
www.sciencedirect.com 
after IVT. Encoding the poly(A) tail on the DNA plasmid

ensures the production of a defined poly(A) tail length,

whereas enzymatic polyadenylation of the mRNA pro-

duces varying lengths of poly(A) tails and is therefore, less

favorable.

LNP formulation considerations
LNPs, the mRNA vehicles, both protect mRNA payloads

from degradation and enable their efficient delivery into

target cells. Generally, LNPs are a lipid formulation

comprised of various ratios of a neutral structural lipid,

cholesterol, a PEG-lipid and the ionizable lipid.

Ionizable lipid

The ionizable lipid is considered the most important

component and generally sets apart different mRNA-

LNPs. Libraries of ionizable lipids are constantly

screened to find the optimal lipid to enhance expression

and provide better immune responses in mRNA-LNP

vaccines while retaining low toxicity profiles [26,27].

Ionizable lipids are comprised of: (1) an ionizable head

group, (2) a linker region and (3) the hydrocarbon chains
Current Opinion in Biotechnology 2022, 73:329–336
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Figure 2
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LNP formulation considerations.

(a) A scheme representing the elements of the ionizable lipid. (b) Chemical structures of the three clinically approved ionizable lipids. ALC-0315

(Pfizer/BioNtech’s BNT162b), SM-102 (Moderna’s SM-102) and Dlin-MC3-DMA (siRNA LNPs — Alnylam’s Patisiran) [34].
(Figure 2a). While ionizable lipids structures vary, some

common grounds for effective ionizable lipids for mRNA-

LNP vaccines have emerged.

The ionizable head group: mRNA-1273 and BNT162b2

vaccines each comprise a different ionizable lipid, how-

ever, they both contain an amino-alcohol head group with

pKas of 6.75 and 6.09, respectively [28]. A study by

Moderna claimed that the optimal range of ionizable

lipid pKa for eliciting an adaptive immune response

following an mRNA vaccine is 6.6–6.9, whereas a pKa

range of 6.2–6.6 has been shown to be optimal for protein

expression following IV delivery [27]. Interestingly, this is

consistent with mRNA-1273 ionizable lipid’s pKa, yet not

with BNT162b2.

The linker region connects the head group with the lipid

hydrocarbon tails, also gains attention for its effect on

the in-vivo activity of RNA-LNPs. It is currently

hypothesized that the linker region contributes to

head group pKa and RNA-LNP endosomal escape

potential [29]. Research into linker region optimiza-

tion is an ongoing process. Ionizable lipid libraries

with various linker structures have been designed

and screened for their ability to delivery of RNA-

LNPs more efficiently [30].
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The lipid tails of the ionizable lipids are also to be consid-

ered. Lipid structure (and hence LNP structure) affects

expression efficiency, by altering endosomal escape, sta-

bility during storage and toxicity [31]. Interestingly, stud-

ies have claimed correlations between various unsatura-

tion degrees and symmetry of hydrophobic tails to more

efficient and stable LNPs. For example, branched hydro-

carbon lipid tails may create a more cone-shaped structure

that enhances endosomal escape [32�]. Furthermore,

ester linkages are introduced into lipid hydrocarbon

chains to improve the ionizable lipid’s pharmacokinetic

properties. The first FDA-approved ionizable lipid DLin-

MC3-DMA (MC3) raised some concerns due to its long

tissue half-life post-administration. This propelled the

development of biodegradable ionizable lipids to improve

lipid metabolism and prevent toxicities. Introducing one

or more ester linkages, in the hydrocarbon tails as well as

the linker region, leads to in-vivo cleavage by esterases,

which dramatically improves the pharmacokinetic prop-

erties of the lipids, and reduces toxicities [26]. Studies

constantly attempt to find the optimal ester bond position

in the chains. It is assumed that placing these bonds too

close to the head group-linker region reduces overall

LNP efficacy by altering head group pKa. Therefore, it

is preferable to locate them further downstream in the

lipid tails [26,29]. Currently, both mRNA-1273 and
www.sciencedirect.com
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BNT162b2 contain branched hydrocarbon tails with bio-

degradable linkages (Figure 2b).

Polyethylene glycol (PEG)-lipid

Polyethylene glycol (PEG) lipids generally comprise

<2.5% of the total formulation. Nevertheless, they

play a key role in controlling particle size and elongate

shelf-life stability by preventing aggregation and

fusion of LNPs. However, PEG-lipids need to be

balanced since at high concentrations they prevent

the delivery of RNA into cells. Recently, there have

been some reports of immune responses to PEG

molecules which have prompted the search for safe

and potent PEG alternatives for mRNA LNPs, such as

polysarcosine [33��]. Both mRNA-1273 and

BNT162b2 contain 1.5 and 1.6% PEG-lipid in formu-

lation, respectively [9].

Long-term preservation
The long-term storage and stability of mRNA-LNPs is

a major consideration in the design of the formula-

tions, and one which hasn’t been explored thoroughly,

given its high clinical relevance and effect on vaccine

distribution and ultimately, price. It’s astonishing to

look at the speed of development of Moderna’s

mRNA-1273, the first mRNA vaccine for SARS-

CoV-2 to reach clinical trials. From the first viral

genome publication, it took a mere two days to finalize

the vaccine sequence, 25 days to manufacture the first

dose and 63 days until the first participant was dosed in

the Phase 1 clinical study (NCT04283461) [35]. How-

ever, scaling up to supply a global vaccine demand is

challenging [36]. The ultra-low storage requirement of

currently approved mRNA vaccines (�80�C for

BNT162b2 and �20�C for mRNA-1273) due to

mRNA-LNP instability at room temperature is a sys-

tem constraint. Several studies have been carried out

with the purpose of finding optimal LNP freezing

conditions. Currently, it is accepted that to freeze

LNPs, cryoprotectants such as sucrose or trehalose

should be added after mRNA-LNP formulation [37].

Zhao et al. investigated the long-term storage condi-

tions of lipid-like nanoparticles (LLNs). They report

that the addition of 5% sucrose or trehalose to LLNs-

mRNA formulations stored in liquid nitrogen, pre-

served the physicochemical properties of the particles,

and allowed maintenance of in vivo delivery efficacy

for three months [38].

Lyophilization of mRNA LNPs can also be accomplished

by the addition of lyoprotectants. For example, lyophili-

zation provides Moderna’s phase II mRNA-LNP CMV

vaccine (mRNA-1647) stability for at least 18 months at

5�C, however, lyophilization is an expensive and time-

consuming process [39,40].
www.sciencedirect.com 
Currently, both mRNA-1273 and BNT162b contain 10%

final concentration of sucrose in the final product, pre-

dilution [9�]. Of note, although sucrose is currently used

as a cryoprotectant in both authorized COVID-19 mRNA

vaccines, initial temperature requirements were differ-

ent, with Moderna’s mRNA-1273 stored at �15�C to

�20�C and Pfizer/BioNTech’s BNT162b2 at �60�C to

�80�C. Recent stability data has prompted an approval by

the European Medicines Agency (EMA) to store the

BNT162b2 vaccine at �15�C to �25�C for two weeks

[34]. While distribution and storage requirements have

been solved from an engineering perspective by design-

ing temperature-controlled shipping containers, biotech-

nological advances to improve stability at non-frozen

temperatures are still in demand.

A current hypothesis claims that freezing the LNPs

protects the mRNA strands within the LNPs rather

than stabilizes the LNPs themselves. LNPs may

degrade over time by aggregation, fusion or leakage

of mRNA from the LNPs, however, aggregation and

fusion can be solved by the addition of stabilizing lipids

such as PEG and mRNA leakage hasn’t been previously

reported [9�] Therefore, while LNP stability is impor-

tant, it is not the limiting factor for short-term non-

frozen LNP stability. mRNA degradation within LNPs

occurs at a faster rate and dictates the storage time and

temperature. This occurs mainly via chemical degrada-

tion by hydrolysis of the nucleic acid phosphodiester

backbone and oxidation in presence of water or acids/

bases. Initially, LNPs encapsulating smaller RNA pay-

loads such as siRNA contained a single phospholipid

outer layer with ionizable lipids inverted internally with

little to no water entrapped. However, recent reports

suggest that LNP-encapsulated  mRNA contain within

their core ionizable lipids, cholesterol and water. Some

studies indicate that up to 24% of the LNP core is made

of water, which affects mRNA stability within the LNP

[41]. This can perhaps explain why FDA-approved

siRNA LNPs (Patisiran) can be stored at 2�8�C for

24 months [42] while current mRNA-LNP COVID

vaccines can be stored for one month at this tempera-

ture pre-dilution [43,44].

Conclusion and General guidelines
The successful design of effective mRNA-LNPs encom-

passes multiple considerations and choices which need to

be made in accordance with the therapeutic purpose.

While there is no single recipe for a successful mRNA-

LNP, some common grounds do emerge when analyzing

what is currently known on successful mRNA vaccines

(Table 1).

In terms of mRNA sequence, modified and mRNA opti-

mized sequences are required for maximal protein

expression. Regarding formulation, currently approved

mRNA LNP vaccines contain similar ratios of lipids with
Current Opinion in Biotechnology 2022, 73:329–336
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a varying ionizable lipid and PEG-Lipid. Even though

the ionizable lipid is not identical in both vaccines, they

are somewhat structurally similar regarding the amino-

alcohol head group and branched hydrocarbon lipid tails

with ester bonds.

Interestingly, while studies are constantly attempting

to enhance protein expression from mRNA-LNPs [45],

it seems that for vaccine purposes there is a weak

correlation between the formulation’s protein expres-

sion level and the ability to elicit adaptive immune

responses [27,46�]. Therefore, the endpoint for screen-

ing formulations should be the ability to elicit an

adaptive immune response and not the overall protein

expression.

Stability and long-term storage are crucial for mRNA-

LNP formulations. From an analysis of the global health

innovation center at duke university, an estimated

4.1 Billion mRNA-LNP vaccine doses are planned to

be manufactured during 2021, note that the entire

SARS-CoV-2 vaccine landscape is projected at 12 Billion

doses for this year [47��]. The requirement to store these

vaccines at ultra-low temperatures is challenging. A

current hypothesis claims that the critical point is the

mRNA strand stability within the LNP rather than the

vehicle stability. Therefore, while algorithmic optimiza-

tion of mRNA structure and modifications can improve

stability, the best current vaccines should be formulated

with cryoprotectants such as sucrose and novel solutions

for LNP stability at non-frozen temperatures are still in

demand.

To sum up, mRNA-LNP vaccines are an effective mod-

ular vaccine platform that enables rapid manufacturing of

new vaccines and should be optimally designed consid-

ering the therapeutic target.

Conflict of interest statement
The authors declare the following competing financial

interest(s): D.P. receives licensing fees (to patents on

which he is an inventor) from, invested in, consults (or on

scientific advisory boards or boards of directors) for,

lectured (and received a fee) or conducts sponsored

research at TAU for the following entities: ART Bios-

ciences, BioNtech RNA Pharmaceuticals, Centricus,

Diagnostear Ltd., EPM Inc., Earli Inc., lmpetis Bios-

ciences, Kernal Biologics, Newphase Ltd., NLC Pharma

Ltd., NanoGhosts Ltd., Roche, SirTLabs Corporation,

and Teva Pharmaceuticals Inc.

CRediT authorship contribution statement
Edo Kon: Conceptualization, Writing - original draft. Uri
Elia: Conceptualization, Writing - original draft. Dan
Peer: Conceptualization, Writing - original draft.
Current Opinion in Biotechnology 2022, 73:329–336 
Acknowledgement

EK thanks the Yoran Institute for Human Genome Research for their
support.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest
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Kranz LM, Walzer KC, Hein S, Güler A et al.: BNT162b vaccines
protect rhesus macaques from SARS-CoV-2. Nature 2021,
592:283-289.

12. Kremsner PG, Guerrero RAA, Arana E: Efficacy and safety of the
CVnCoV SARS-CoV-2 mRNA vaccine candidate: results from
herald, a phase 2b/3, randomised, observer-blinded, placebo-
controlled clinical trial in ten countries in Europe and Latin
America. Lancet 2021.

13. Dolgin E: COVID vacine flop spotlights mRNA design
challenges. Nature 2021, 594:483.
www.sciencedirect.com

http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0005
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0005
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0005
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0010
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0010
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0010
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0015
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0015
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0015
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0015
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0015
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0020
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0020
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0020
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0020
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0020
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0025
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0025
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0025
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0025
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0030
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0030
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0030
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0030
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0035
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0035
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0035
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0035
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0035
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0040
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0040
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0040
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0040
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0040
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0040
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0045
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0045
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0045
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0050
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0050
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0050
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0050
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0050
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0055
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0055
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0055
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0055
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0060
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0060
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0060
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0060
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0060
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0065
http://refhub.elsevier.com/S0958-1669(21)00193-2/sbref0065


Designing optimal mRNA lipid nanoparticle vaccine Kon, Elia and Peer 335
14. Xu S, Yang K, Li R, Zhang L: mRNA vaccine era—mechanisms,
drug platform and clinical prospection. Int J Mol Sci 2020,
21:6582.

15. Weissman D: mRNA transcript therapy. Expert Rev Vaccines
2014, 14:265-281.
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