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Summary

Protective efficiency of a combination of four recom-
binant Brucella abortus (B. abortus) proteins,
namely, ribosomal protein L7/L12, outer membrane
protein (OMP) 22, OMP25 and OMP31, was evaluated
as a combined subunit vaccine (CSV) against B.
abortus infection in RAW 264.7 cell line and murine
model. Four proteins were cloned, expressed and
purified, and their immunocompetence was anal-
ysed. BALB/c mice were immunized subcutaneously
with single subunit vaccines (SSVs) or CSV. Cellular
and humoral immune responses were determined by
ELISA. Results of immunoreactivity showed that
these four recombinant proteins reacted with
Brucella-positive serum individually but not with
Brucella-negative serum. A massive production of
IFN-c and IL-2 but low degree of IL-10 was observed
in mice immunized with SSVs or CSV. In addition,
the titres of IgG2a were heightened compared with

IgG1 in SSV- or CSV-immunized mice, which indi-
cated that SSVs and CSV induced a typical T-helper-
1-dominated immune response in vivo. Further
investigation of the CSV showed a superior protec-
tive effect in mice against brucellosis. The protection
level induced by CSV was significantly higher than
that induced by SSVs, which was not significantly
different compared with a group immunized with
RB51. Collectively, these antigens of Brucella could
be potential candidates to develop subunit vaccines,
and the CSV used in this study could be a potential
candidate therapy for the prevention of brucellosis.

Introduction

Brucella spp. are Gram-negative, facultative intracellular,
non-motile and non-spore forming pathogens that cause
brucellosis in humans and animals worldwide, which threa-
ten their health (Gheibi et al., 2018). Brucellosis has caused
huge economic losses to developing countries (Yagupsky
and Baron, 2005). The genus Brucella has been classified
into eleven species based on its primary preferred host,
such as B. melitensis, B. abortus, B. suis, B. ovis, B. canis,
B. neotomae, B. microti, B. papionis, B. pinnipedialis, B. ceti
and B. inopinata (Moreno, 2014). Brucella infections induce
various clinical symptoms in animals and humans, for
example, recurrent fever, arthritis, neurological symptoms
and infertility or abortion (Atluri et al., 2011).
Vaccine immunization is the most efficient mean for

prevention and control of animal brucellosis (Avila-
Calderon et al., 2013). Subunit vaccine is the hot spot in
the research and development of Brucella vaccine. Sub-
unit vaccines do not use living Brucella, thereby eliminat-
ing safety (Pasquevich et al., 2011). Subunit vaccines
are safe for animals because they cannot cause abor-
tion. In general, purified proteins as subunit vaccines
can stimulate immune responses in animals. Conse-
quently, many protective antigens for brucellosis have
been used to develop single subunit vaccines (SSVs).
More studies have been reported on the protective effi-
ciency of recombinant Brucella proteins as subunit vac-
cine against Brucella infection. These single SSVs
include outer membrane protein (OMP) 10 (Im et al.,
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2018; Shim et al., 2020), OMP19 (Im et al., 2018; Shim
et al., 2020), OMP28 (Im et al., 2018), BP26 (Gupta
et al., 2019), 50S ribosomal protein L7/L12 (Gupta et al.,
2019), VIRB10 (Pathak et al., 2018), BCSP31 (Xu et al.,
2019) and P39 (Tadepalli et al., 2017). Based on previ-
ous results, combined subunit vaccine (CSV) using more
than two recombinant proteins could confer higher poten-
tial immune response against Brucella infection than
SSV. These CSVs include L7/L12-SOmp2b (Golshani
et al., 2018a,b), L7/L12-TOmp31-SOmp2b (Golshani
et al., 2018a,b), L7/L12-Omp25 (Paul et al., 2018; Gupta
et al., 2020) and Adk-SecB (Huy et al., 2020a,b).
Amongst these CSVs, recombinant proteins L7/L12 and
OMPs are considered as potential immunogens, which
can induce strong protective effects against Brucella
infection. Therefore, in this study, we evaluated the abil-
ity of a combination of four B. abortus recombinant pro-
teins, namely, L7/L12, OMP22, OMP25 and OMP31, as
SSVs or CSV to induce immune response against B.
abortus infection in BALB/c mice.
OMPs are integral proteins that are located on the

outer membrane of Brucella. The weight and size of these
OMPs are different. They are divided into three groups
(Verstreate et al., 1982). L7/L12, OMP22, OMP25 and
OMP31 belong to the third group (Cloeckaert et al.,
2002). OMP22 name refers to its calculated mass of
22 kDa but was called previously OMP3b (Guzman-Verri
et al., 2002). The antigenic protein OMP22 plays an
essential role in the pathogenicity of Brucella (Cloeckaert
et al., 2002; Saadi et al., 2017). OMP25 is conserved
amongst the Brucella species. OMP25 mutant strain of
Brucella is shown to be attenuated in mice emphasizing
on the role of OMP25 in Brucella virulence (Edmonds
et al., 2002). OMP25 could induce Th1- and Th2-type
immune responses (Goel and Bhatnagar, 2012). In
Brucella-infected macrophages, OMP25 could inhibit
TNF-a production (Jubier-Maurin et al., 2001). OMP31
antigen is an essential protein of Brucella, which is a criti-
cal factor for bacterial pathogenicity (Vishnu et al., 2017;
Shirdast et al., 2021). The recombinant protein L7/L12
was considered as a potential immunogen and demon-
strated to induce strong protective effects against Brucella
infection (Oliveira and Splitter, 1994; Golshani et al.,
2015). Thus, in the present study, we assessed the ability
of purified recombinant proteins, including L7/L12,
OMP22, OMP25 and OMP31, to prevent brucellosis when
administered to BALB/c mice alone or in combination.

Results

Purification and immunoreactivity of recombinant
proteins

The four genes encoded for L7/L12, OMP22, OMP25
and OMP31 were cloned, expressed and purified. Using

SDS-PAGE and Coomassie brilliant blue staining, the
target molecular masses for rL7/L12, rOMP22, rOMP25
and rOMP31 were approximately 77.55, 82.38, 82.22
and 87.56 kDa respectively (Fig. 1A). Meanwhile, the
immunoreactivity of these purified proteins was evalu-
ated by Western blot assay, and the results indicated
that all purified proteins strongly reacted with S2308-
vaccinated mouse serum (Fig. 1B).

Humoral immunoreaction analysis by inducing IgG1 and
IgG2a antibodies in mice immunized with SSVs and
CSV

In this study, sera of mice were collected at week 8 after
the last immunization for subsequent immunological
analyses. ELISA was utilized to measure the presence
of SSV- and CSV-specific IgG1 and IgG2a antibodies in
serum samples. The results showed that after complet-
ing the immunization, SSVs and CSV induced signifi-
cantly higher humoral immunity than the PBS and
adjuvant-immunized groups, whereas no difference in
the humoral immune response was observed between
the PBS and adjuvant-immunized groups (Fig. 2). In the
rL7/L12, rOMP22, rOMP25 and rOMP31 groups, the
IgG2a/IgG1 ratio was 1.03, 1.06, 1.06 and 1.07 respec-
tively (Fig. 2). The CSV group induced the highest IgG1
and IgG2a production in which the IgG2a/IgG1 ratio was
1.15. Furthermore, the titres of IgG2a induced by these
purified proteins were higher than those of IgG1,

Fig. 1. SDS-PAGE identification and Western blot analysis of the
recombinant proteins. (A) SDS-PAGE identification of the rL7/L12
(77.55 kDa), rOMP22 (82.38 kDa), rOMP25 (82.22 kDa) and
rOMP31 (87.56 kDa). Lanes: M, protein marker; 1, expression pro-
duct of rL7/L12; 2, expression product of rOMP22; 3, expression
product of rOMP25; 4, expression product of rOMP31. (B) Western
blot identification of the recombinant proteins using mouse anti-rL7/
L12 polyclonal antibody, mouse anti-rOMP22 polyclonal antibody,
mouse anti-rOMP25 polyclonal antibody and mouse anti-rOMP31
polyclonal antibody. Lanes: 1, expression products of rL7/L12; 2,
expression product of rOMP22; 3, expression product of rOMP25; 4,
expression product of rOMP31; M, protein marker.
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indicating that these proteins induced a Th1-dominant
immune response in mice.

Production of cytokines in mice immunized with SSVs
and CSV

The presence of cytokines in sera was assessed by
ELISA to investigate the cell-mediated immune
response. Sera were collected from all mice at week 8
after the last immunization. The secretion of IFN-c and
IL-2 in the SSV and CSV groups was significantly
increased compared with that of the PBS or adjuvant
control group (P < 0.01, Fig. 3A and B). The CSV group
displayed considerably increased IFN-c production by
2.41-fold and IL-2 production by 2.88-fold compared with
PBS (Fig. 3A and B). However, the RB51 group remark-
ably induced the highest IFN-c and IL-2 levels, which
play an important role in resisting against Brucella infec-
tion (Fig. 3A and B). By contrast, IL-10 production was
decreased in all experimental groups compared with the
PBS or adjuvant group (Fig. 3C). The CSV group
showed decreased IL-10 production by 1.85-fold com-
pared with PBS (Fig. 3C). In addition, the CSV group
induced higher IFN-c and IL-2 levels than IL-10 levels of
approximately 1.75-fold and 1.58-fold, respectively, com-
pared with PBS. The IFN-c and IL-2 levels induced by
SSVs and CSV were significantly higher than the IL-10
level, thereby suggesting that SSVs and CSV induced a
Th1-dominant immune response in mice. Moreover, the
production of proinflammatory cytokines (TNF-a, IL-1b
and IL-6) was significantly increased in the SSV and
CSV groups compared with the PBS or adjuvant group

(Fig. 3D–F). In particular, CSV-immunized mice pro-
duced 2.16-, 1.95- and 4.72-fold increases in the levels
of TNF-a, IL-1b and IL-6 proinflammatory cytokines,
respectively, compared with the PBS group.
In addition, the levels of IFN-c, IL-2, IL-10, TNF-a, IL-

1b and IL-6 cytokines in the splenocytes of the immu-
nized mice at week 8 after the last immunization were
detected. The splenocytes of vaccinated mice were stim-
ulated with heat-killed S2308, ConA (positive control), or
complete RPMI 1640 medium (negative control). When
stimulated with heat-killed S2308, spleen cells from
SSVs, CSV and RB51 produced significantly higher
amounts of IFN-c, IL-2, TNF-a, IL-1b and IL-6 relative to
that of PBS- or adjuvant-dosed mice (P < 0.01, Fig. 4).
By contrast, IL-10 production was decreased in all
experimental groups compared with the PBS or adjuvant
group (Fig. 4C). ConA stimulation induced the production
of all cytokines in splenocytes from all groups, whereas
no cytokine production was induced by RPMI 1640 med-
ium (Fig. 4). Except for IL-10, no cytokine production
was induced by PBS or adjuvant stimulation in any of
the groups (Fig. 4). However, no statistically significant
difference in the production of IFN-c, IL-2, IL-10, TNF-a,
IL-1b and IL-6 was observed between SSVs or CSV and
RB51. Collectively, these results indicated that immu-
nization with SSVs and CSV could induce cellular
immune response.

Measurement of lymphocyte proliferation

Lymphocyte proliferation ratios were detected to assess
cellular immunity. At week 8 after the last immunization,
lymphocyte transformation rates in immunized mice were
significantly higher than those in the PBS or adjuvant
control groups (P < 0.01, Fig. 5). Although the lympho-
cyte proliferation ratios of the live vaccine group (RB51)
were slightly higher than those of the SSV and CSV
groups, no significant differences were observed
(P > 0.05, Fig. 5). The lymphocyte proliferation ratios in
the SSV groups were slightly lower than those in the
CSV group, but the difference was not significant
(P > 0.05). These results indicated that SSVs and CSV
significantly promoted cellular immune responses.

Cytokine production in RAW 264.7 cells

Macrophages have been shown to constitute an impor-
tant site for Brucella intracellular replication within tis-
sues. Here, cytokine production from cell culture
supernatant was measured using ELISA. Significantly
higher IFN-c, IL-2 and IL-12p70 production levels were
observed in SSV- and CSV-treated cells than in PBS-
treated ones (P < 0.01), and this difference increased
with time (Fig. 6A–C). By contrast, the IL-10 level was

Fig. 2. IgG1 and IgG2a antibody production in the sera of mice
immunized with different vaccines. BALB/c mice were immunized
with purified rL7/L12, rOMP22, rOMP25 and rOMP31 for SSVs,
CSV, PBS, adjuvant or pCold-TF at weeks 0, 2, 4 and 6. As another
positive control, mice were immunized with 1 9 106 CFU of RB51
at day 0. Serum samples were obtained from tail veins at week 8
after the last immunization. IgG1 and IgG2a antibody titre was
determined by ELISA. The data are presented as the means � SD
(n = 5 per group). Asterisks indicate statistically significant differ-
ences (*P < 0.05, **P < 0.01).
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decreased in SSV- and CSV-treated cells (Fig. 6D).
CSV-treated cells significantly induced 1.38-fold higher
in IFN-c, 1.38-fold higher in IL-2 and 1.36-fold higher in
IL-12p70 production at 12 h post-infection and continu-
ously increased at 24 and 48 h. However, the IL-10 level
showed a 3.45-fold, 4.21-fold and 6.09-fold decrease at
12, 24 and 48 h post-infection, compared with PBS-
treated cells respectively (Fig. 6).

Immunization with SSVs and CSV confer protection in
mice

The protective capacity provided by the CSV was deter-
mined by challenging mice immunized with 1 9 106 CFU

of S2308. Four weeks post-challenge, the infection in
each mouse was evaluated by determining the CFU in
the spleen. The rL7/L12, rOMP22, rOMP25 and rOMP31
groups conferred significant degree of protection with
1.07-, 1.30-, 1.19- and 1.69-log units of protection com-
pared with control mice receiving PBS, respectively. Mice
immunized with adjuvant exhibited induced 0.09-log unit
of protection compared with the PBS groups, but the
result was not significant. Furthermore, immunization with
CSV resulted in significantly higher degree of protection
with 2.17- and 2.18-log units of protection compared with
control mice receiving PBS and adjuvant respectively. By
contrast, we immunized mice with the live-attenuated vac-
cine RB51. The RB51 group displayed the highest degree

Fig. 3. Cytokine concentration in the sera of immunized mice. BALB/c mice were immunized with purified rL7/L12, rOMP22, rOMP25 and
rOMP31 for SSVs, CSV, PBS or adjuvant, respectively, at weeks 0, 2, 4 and 6. As another positive control, mice were immunized with
1 9 106 CFU of RB51 at day 0. Serum samples were obtained from tail veins at week 8 after the last immunization. Concentration of IFN-c (A),
IL-2 (B), IL-10 (C), TNF-a (D), IL-1b (E) and IL-6 (F) was analysed by ELISA. The data are presented as the means � SD (n = 5 per group).
Asterisks indicate statistically significant differences (*P < 0.05, **P < 0.01).
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of protection and induced 2.75-log unit of protection than
the PBS group. The difference in the degree of protection
amongst the SSV, RB51 and CSV groups was not signifi-
cantly different (Table 1).

Discussion

Brucella spp. are intracellular pathogens that reside in
host cells, including professional and non-professional
phagocytes. The brucellae reside within macrophages
where they replicate in a specialized compartment,

namely, the Brucella-containing vacuole (BCV) (Celli and
Gorvel, 2004). The membrane of the BCV contains
endoplasmic reticulum (ER) proteins (Roy, 2002). Once
inside the host macrophage, Brucella must fight against
a variety of harmful conditions, including oxidative stress,
decreased pH, scarcity of nutrients and pursuit of cellular
and humoral immunity (Roop et al., 2009). However, the
immune systems of mammals play an important role in
resisting against pathogens. Furthermore, the activated
macrophages, dendritic cells and cytokines are predomi-
nant in protection against Brucella.

Fig. 4. Production of IFN-c, IL-2, IL-10, TNF-a, IL-1b and IL-6 in stimulated splenocytes from BALB/c mice inoculated with PBS, adjuvant,
pCold-TF, SSV, CSV and RB51. At week 8 after the last immunization, mice (n = 5 per group) were euthanized and spleen cells were isolated
and stimulated with heat-killed S2308, ConA or RPMI 1640 medium as control. Splenocyte culture supernatants were harvested after 72 h stim-
ulation. IFN-c (A), IL-2 (B), IL-10 (C), TNF-a (D), IL-1b (E) and IL-6 (F) concentrations in the supernatant were measured by ELISA. Asterisks
indicate statistically significant differences (*P < 0.05, **P < 0.01).
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At present, vaccination is the effective way to prevent
and control animal brucellosis. An ideal vaccine for bru-
cellosis should be avirulent or attenuated for vaccinated

animals to prevent Brucella infections, while not interfer-
ing with serological diagnoses (Schurig et al., 2002). In
addition, it should be able to prevent abortion and viru-
lence reversion and promote long periods of protection
(Oliveira et al., 2010). However, current vaccines have
major disadvantages that limit their application, although
they can prevent infection in animals. Therefore, the
development of a safe and effective vaccine is an ardu-
ous task.
Recently, some researchers have found that subunit

vaccine was safe and non-infectious. Some studies have
demonstrated that multivalent subunit vaccines prepared
with multiple immunogens may provide better immune
protection than monovalent vaccines (Hop et al., 2018;
Gupta et al., 2019; Nazifi et al., 2019; Huy et al., 2020a,
b; Rezaei et al., 2020; Shim et al., 2020). Therefore, the
development of multivalent subunit vaccine may be an
effective way to develop new generation vaccines.
Outer membrane proteins (OMPs) belong to surface

antigens of Brucella. OMPs are considered as suitable
candidates to produce recombinant proteins for preven-
tion and diagnosis because of their protected
sequences, antigenicity and high pathogenicity (Ducrotoy
et al., 2016). OMPs played an important role in stimulat-
ing cellular and humoral immunity, which were recog-
nized as protective and potentially immunogenic

Fig. 5. Changes in T lymphocyte proliferation ratio in mice. Mice
were immunized with purified rL7/L12, rOMP22, rOMP25 and
rOMP31 for SSVs, CSV, PBS or adjuvant at weeks 0, 2, 4 and 6.
As another positive control, mice were immunized with
1 9 106 CFU of RB51 at day 0. Peripheral blood samples were col-
lected at week 8 after the last immunization. The ratio of T lympho-
cyte proliferation was tested. The values shown are means � SD.
Asterisks indicate statistically significant differences (*P < 0.05,
**P < 0.01).

Fig. 6. Cytokine concentration in RAW 264.7 cell culture supernatants. After infection, 50 ll of cell culture supernatant was collected and anal-
ysed for cytokine production including IFN-c (A), IL-2 (B), IL-12 (C) and IL-10 (D). The data are represented as the means � SD of duplicate
samples from at least two independent experiments. Asterisks indicate statistically significant differences (*P < 0.05, **P < 0.01).
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antigens (Sharghi et al., 2017). OMPs of Brucella were
classified as 36- to 38-kDa OMPs (group 1 proteins), 31-
to 34-kDa OMPs (group 2 proteins) and 25- to 27-kDa
OMPs (group 3 proteins) based on their apparent molec-
ular mass (Cloeckaert et al., 2002). Amongst these,
OMP22 (also known as OMP3b), OMP25 (also known
as OMP3a) and OMP31 belong to group 3 proteins. In
addition, ribosomal protein L7/L12 functionally consti-
tutes the 50S ribosome and plays an important role in
controlling protein translational accuracy (Kirsebom and
Isaksson, 1985). Based on previous reports, L7/L12,
OMP22, OMP25 and OMP31 could stimulate strong
immunity against Brucella infection (Goel and Bhatnagar,
2012; Zheng et al., 2015; Du et al., 2016; Minhas et al.,
2021). Therefore, in this study, a combination of four
recombinant proteins L7/L12, OMP22, OMP25 and
OMP31 can activate strong immune responses against
Brucella infection in RAW 264.7 cells and BALB/c mice.
Host immunity involves cellular immunity and humoral

immunity during Brucella infection. The former is charac-
terized by the production of IgG2a antibodies, whereas
the latter is characterized by the production of IgG1 anti-
bodies. IgG1 and IgG2a antibodies play an important
role in the clearance of Brucella by macrophages (Per-
kins et al., 2010). Based on previous reports, the
immune responses peaked after three independent
immunizations of recombinant proteins (Hop et al.,
2015). BALB/c mice were intraperitoneally (i.p.) injected
with PBS, adjuvant, pCold-TF, SSVs or CSV to detect
the effect of humoral immunity. Serum samples from
mice were collected at 2, 4, 6, 8 and 10 weeks after the
last immunization. Antibodies were detected in the sera
of mice at 2 weeks after the last immunization, and IgG1
and IgG2a levels increased with time, and the IgG1 and

IgG2a levels peaked at week 8 after the last vaccination
(data not shown). IFN-c can stimulate Th1 differentiation,
which elicits the production of IgG2a from activated
plasma cells (Motaharinia et al., 2013). IFN-c is required
for macrophage bactericidal activity, which activates
macrophages to enhance killing and inhibit microbial
replication (Dorneles et al., 2015). IFN-c plays an impor-
tant role in eradicating intracellular Brucella during the
early stages of infection (Luo et al., 2006). In the present
study, the production of IFN-c was increased in CSV-
immunized mice and CSV-infected RAW 264.7 cells
compared with control. TNF-a and IL-6 are known as
key effectors in mediating macrophages against Brucella
infection. TNF-a is important for the influx of phagocytes
to the site of infection and for macrophage activation,
and it is critically involved in immune responses to intra-
cellular pathogens (Zhan et al., 1996). IL-1b can induce
the expression of several chemokines and adhesion
molecules to enhance the phagocytic activity of neu-
trophils and monocytic cells (Hielpos et al., 2018). The
present results showed that the production of proinflam-
matory cytokines TNF-a, IL-6, IL-2 and IL-1b was ele-
vated in the CSV group. IL-12 promotes efficient
immune responses against intracellular pathogens. Dur-
ing Brucella infection, IL-12 controls the intracellular
growth of Brucella strains within macrophages (Macedo
et al., 2008). We found that CSV-infected RAW 264.7
cells induced IL-12 production compared with the PBS
group. By contrast, cytokine IL-10 can inhibit activity of
macrophages and increase resistance of Brucella infec-
tion (Fernandes and Baldwin, 1995). The results in the
present study showed that CSV-immunized mice and
CSV-infected RAW 264.7 cells displayed decreased pro-
duction of IL-10 compared with control. However, the
concentration of IFN-c was greater than that of IL-10 in
the CSV group in vitro and in vivo. Furthermore, the
levels of humoral immune response mediated by IgG
antibodies in the serum are important for evaluating the
immunogenicity of brucellosis. Elevated IgG1 and IgG2a
antibody production in sera in SSV- and CSV-vaccinated
mice was observed compared with PBS or adjuvant-
immunized ones. These results indicated that SSVs and
CSV induced strong cellular and humoral immune
responses in vivo and in vitro.
Despite the absence of virulent for the host, the ideal

vaccine must induce higher protection. Therefore, we
detected the protection of the SSVs and CSV in BALB/c
and found the superior protective effect conferred by
SSVs and CSV. Immunization with SSVs or CSV con-
ferred a significant level of protection compared with the
PBS and adjuvant groups. Although the live-attenuated
vaccine (RB51) conferred the highest protection against
Brucella infection in this study, which was higher than
mice immunized with SSVs or CSV, this difference was

Table 1. Protection conferred by different vaccines against S2308
in mice.

Vaccine
or control

Protection criteria

Log CFU of bacteria
in spleens (mean � SD)

Units of
protectionb Significanta

PBS 5.92 � 0.23 — —
Adjuvant 5.83 � 0.20 0.09 P > 0.05
pCold-TF 5.38 � 0.38 0.54 P < 0.05
rL7/L12 4.85 � 0.21 1.07 P < 0.01
rOMP22 4.62 � 0.19 1.30 P < 0.01
rOMP25 4.73 � 0.14 1.19 P < 0.01
rOMP31 4.23 � 0.38 1.69 P < 0.01
CSV 3.65 � 0.36 2.27 P < 0.01
RB51 3.17 � 0.23 2.75 P < 0.01

a. Significant differences from PBS-immunized mice were estimated
by Student’s t-test.
b. Log units of protection = average of log CFU in spleens of control
PBS-immunized mice minus the average of log CFU in spleens of
vaccinated mice.
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not significant. We also found that adjuvant could elicit
protection against Brucella infection, but its protective
effect was not significant.
In conclusion, our study clearly indicated that a combi-

nation of four different immunogenic antigens, namely,
rL7/L12, rOMP22, rOMP25 and rOMP31, could signifi-
cantly induce cell-mediated immunity response and
humoral immunity response as compared with the PBS
and adjuvant groups. In addition, CSV maintained a pro-
tective efficacy against Brucella infection similar to that
of the RB51 vaccine strain. Therefore, CSV may be a
suitable CSV candidate. However, this study was con-
ducted in a murine model, which is not a natural host of
B. abortus. Therefore, the efficacy and safety of this vac-
cine in livestock should be further investigated.

Experimental procedures

Ethical statement

The study was performed in strict accordance with the
experimental practices and standards approved by the
Animal Welfare and Research Ethics Committee at Shi-
hezi University (Permit No. SHZU-MO-0139). All animal
handling procedures were approved by the Committee
on the Ethics of Animal Experiments of Shihezi Univer-
sity (Authorization Number: 2021-2). The animal opera-
tion procedures were implemented on the basis of the
“Guidelines for Experimental Animals” of the Ministry of
Science and Technology (Beijing, China). All efforts were
made to minimize suffering during animal handling and
experimentation. The mice were kept in biosafety level 3
(BSL-3) animal facilities.

Bacterial strains and growth condition

The virulent, wild-type B. abortus 2308 strain (S2308)
and B. abortus RB51 vaccine strain were obtained from
the Center of Chinese Disease Prevention and Control
(Beijing, China). All Brucella strains were cultured in tryp-
tic soy agar (TSA) or tryptic soy broth (TSB, Difco, MI,
USA) at 37°C in 5% CO2. All experiments related to live
S2308 and RB51 were performed in a biosafety level 3
(BSL-3) laboratory. Escherichia coli (E. coli) strains
DH5a and BL21 were purchased from Invitrogen (Carls-
bad, CA, USA). E. coli cultures were grown at 37°C in a
Luria–Bertani (LB) medium (Difco, MI, USA) supple-
mented with 100 lg ml�1 of ampicillin (Sigma, Missouri,
USA) for the expression of recombinant proteins.

Vector, cell culture and mice

The pColdTM Trigger factor (TF) vector (pCold-TF) was
purchased from Takara (Shiga, Japan). The RAW 264.7
(ATCC) murine macrophage line (obtained from Cell

Resource Center, IBMS, CAMS/PUMC, Beijing, China)
was cultured in Dulbecco’s modified Eagle’s medium
(DMEM) basic (Gibco Life Technologies, Rockville, MD,
USA) supplemented with 10% fetal bovine serum (FBS,
Gibco Life Technologies, Rockville, MD, USA) without
antibiotics and incubated at 37°C in 5% CO2 (v/v) atmo-
sphere. Female 6-week-old BALB/c mice were obtained
from the Experimental Animal Center of the Academy of
Military Medical Science (Beijing, China). The animals
were provided with humane care and healthful conditions
during their stay in the facility. All experimental proce-
dures and animal care were performed in compliance
with institutional animal care regulations.

Cloning, expression and purification of recombinant
proteins

Expression of recombinant plasmids and purified recom-
binant proteins was performed as described previously
(Im et al., 2018; Huy et al., 2020a,b). In brief, the open
reading frames (ORFs) of the four B. abortus genes,
namely, L7/L12 (BAB1_1265, 375bp), omp22
(BAB1_1302, 639bp), omp25 (BAB1_0722, 642bp) and
omp31 (BAB1_1639, 786bp), were amplified by PCR
from the S2308 genome using their respective primer
pairs (Table 2). The amplified DNA fragments were
cloned into the pCold-TF vector to generate recombinant
plasmids, namely, pCold-L7/L12, pCold-Omp22, pCold-
Omp25 and pCold-Omp31. Then, these recombinant
plasmids were transformed into E. coli BL21 cells. After-
ward, the final clones obtained on LB agar plates sup-
plemented with ampicillin (100 lg ml�1) were inoculated
into LB broth supplemented with ampicillin overnight.
This overnight culture was used for further inoculation in
fresh LB broth induced with 1 mM of IPTG at 0.6 OD.
The induced and uninduced fragments were collected at
6 h after the induction. 12% SDS-PAGE analysis of the
collected fragments was performed using a 59 sample
lysis buffer. Five millilitres of induced bacterial pellet was
dissolved in lysis buffer to verify whether the protein was
soluble or could form inclusion bodies (50 mM of
NaH2PO4, 300 mM of NaCl, 10 mM of imidazole and
1 mg ml�1 of lysozyme), incubated on ice and then soni-
cated (Vibra cell, Sonics, USA) at 40 W amplitude for
10 min and 8 s of pulse. The sonicated suspension was
then centrifuged at 9000 g for 15 min at 4°C. Pellet and
supernatant were collected and checked for the
expressed recombinant protein by SDS-PAGE analysis
for insoluble and soluble protein respectively.
Recombinant proteins, namely, rL7/L12, rOMP22,

rOMP25 and rOMP31, were expressed in E. coli BL21
and were purified by chromatography through Ni-NTA
agarose (Qiagen) in accordance with the manufacturer’s
instructions. As described previously, these recombinant
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proteins were purified under denaturing conditions
because they were forming inclusion bodies (Pathak
et al., 2018). In brief, 50 ml of induced bacterial culture
was pelleted and washed with PBS two times. The
washed pellet was dissolved in 8 ml of lysis buffer [8 M
of urea, 100 mM of NaH2PO4, 10 mM of Tris-Cl, 20 mM
of b-mercaptoethanol, 1% Triton X-100, 1 mM of phenyl-
methylsulfonyl fluoride (PMSF), pH 8.0], sonicated for
10 min and incubated for 1 h with continuous stirring at
room temperature and 180 rpm. After 1 h incubation, the
lysed cell suspension was centrifuged at 9000 g for
30 min at room temperature and supernatant was col-
lected and mixed with Ni-NTA agarose (Qiagen) in 1:3
ratio (Super-flow Ni-NTA slurry: Lysate) for 1 h to allow
the rL7/L12, rOMP22, rOMP25 and rOMP31 69-His
tagged protein to bind with Ni2+ in the super-flow slurry.
The agarose super-flow Ni-NTA slurry-lysate mix was
then packed in a 15 ml column, and then flow-thru was
collected. Furthermore, the column was washed with
20 ml of wash buffer (8 M of urea, 100 mM of NaH2PO4

10 mM of Tris-Cl, 1% Triton X-100, 10% glycerol, pH
6.3) to remove the unbound or weakly bound non-
specific proteins. Then, the rL7/L12, rOMP22, rOMP25
and rOMP31 proteins were eluted from the column using
elution buffer (8 M of urea, 100 mM of NaH2PO4, 10 mM
of Tris-Cl, pH 4.5) in 1 ml of 5 fractions and further anal-
ysed on 12% SDS-PAGE. Refolding or dialysis of the
purified porin protein was performed against a decreas-
ing urea gradient (8, 6, 4, 2 and 1 M) and finally against
PBS. The expression and immunoreactivity of these
recombinant proteins were analysed by 12% SDS-PAGE
and Western blot as described previously (Li et al.,
2018a,b; Zhu et al., 2020).

Immunization of mice

Mice immunization was conducted as previously
described (Hop et al., 2018) with some modifications to
evaluate the immunogenicity of these expression pro-
teins. In brief, a total of 45 six-week-old female
pathogen-free (SPF) BALB/c mice were randomly dis-
tributed into eight groups of five mice each and reared

under identical environmental conditions. Each mouse
was i.p. injected with a mixture of incomplete Freund’s
adjuvant (IFA, Sigma-Aldrich, Missouri, USA) and
100 lg of purified pCold-TF, rL7/L12, rOMP22, rOMP25
or rOMP31 in a total volume of 200 ll at weeks 0, 2, 4
and 6 for the SSV groups, or 100 lg of purified rL7/L12,
rOMP22, rOMP25 and rOMP31 at a ratio of 1:1:1:1 in a
total volume of 200 ll at weeks 0, 2, 4 and 6 for the
CSV group. The reference vaccine group was i.p. inocu-
lated with 200 ll of PBS containing 1 9 106 CFU of
RB51. The negative control group was i.p. injected with
200 ll of PBS or adjuvant. Mice immunized with different
vaccines were performed in a BSL-3 laboratory. All the
performed procedures were approved by the Committee
on the Ethics of Animal Experiments of Shihezi Univer-
sity (Authorization Number: 2021-2).

Measurement of antibody levels from serum samples

The IgG1 and IgG2a antibody levels were detected
using indirect enzyme-linked immunosorbent assay
(iELIAS) as previously described to evaluate humoral
immunity induced by SSVs or CSV (Huy et al., 2020a,b).
Serum samples were obtained from peripheral blood (tail
vein) of immunized BALB/c mice at week 8 after the last
immunization (Zhang et al., 2013). The IgG1 and IgG2a
antibodies in serum samples obtained from immunized
mice were determined by iELISA as previously described
(Li et al., 2017). The high binding 96-Well Single-Break
Strip Plates were coated with fully inactivated bacteria at
100 ll overnight at 4°C. Horseradish peroxidase-
conjugated goat anti-mouse IgG1 and IgG2a antibodies
were used to measure. The absorbance at 450 nm
(OD450) of each well was detected at 30 min after sub-
strate addition. All assays were performed in triplicate.

Measurement of cytokine concentrations from serum
samples and splenocytes

The levels of IFN-c, IL-2, IL-10, TNF-a, IL-1b and IL-6 in
serum samples were determined using mouse cytokine
ELISA kits (ebioscience, San Diego, CA, USA) in

Table 2. Primers used in this study.

Primer 50-30 sequence

L7/L12-F Forward TCTAGAATGGCTGATCTCGCAAAGATC (Xba I) Amplification L7/L12
L7/L12-R Reverse CTGCAGTTACTTGAGTTCAACCTTGGC (Pst I)
OMP22-F Forward GGATCCATGTTCAAGCGTTCTATCACC (BamH I) Amplification OMP22
OMP22-R Reverse AAGCTTCTAGAATTTGTAGTTCAGGCC (Hind III)
OMP25-F Forward GGATCCATGCGCACTCTTAAGTCTCTC (BamH I) Amplification OMP25
OMP25-R Reverse CTGCAGTTAGAACTTGTAGCCGATGCC (Pst I)
OMP31-F Forward GGATCCATGTTTAGCTTAAAAGGGACTGTT (BamH I) Amplification OMP31
OMP31-R Reverse CTGCAGTTAGAACTTGTAGTTCAGACCGAG (Pst I)
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accordance with the manufacturer’s instructions. All
assays were performed in triplicate.
At week 8 after the last immunization, BALB/c mice

(n = 5 per group) were euthanized and their spleens
were removed aseptically. Single-cell suspensions were
obtained from the spleens by homogenization. The cells
were suspended in complete RPMI 1640 medium (Gibco
Life Technologies, Rockville, MD, USA) supplemented
with 2 mM of L-glutamine (Solarbio Science and Technol-
ogy, Beijing, China) and 10% (v/v) FBS. Erythrocytes
were eliminated with ACK lysis solution (150 mM of
NH4Cl, 1 mM of Na2-EDTA, pH 7.3). Splenocytes
(5 9 105 cells/well) were cultured in 96-well plates; the
cultures were stimulated by adding 40 lg of heat-killed
S2308 lysate/well, 1 lg of Concanavalin A (ConA) (posi-
tive control) or medium alone (negative control). The cells
were incubated at 37°C with 5% CO2 (v/v) for 72 h. Sub-
sequently, the clear culture supernatants were collected
and stored at �20°C until tested. IFN-c, IL-2, IL-10, TNF-
a, IL-1b and IL-6 levels in the supernatants were mea-
sured using mouse cytokine ELISA kits (eBioscience) in
accordance with the manufacturer’s instructions.

Methyl thiazol tetrazolium (MTT) assay

Fresh anticoagulated peripheral blood samples from five
mice (1.0 ml per mice) were collected in each group at
week 8 after the last immunization to evaluate the prolif-
eration of peripheral blood lymphocytes (PBL). The pro-
liferation of PBL was detected by the MTT method as
previously described (Mwanza et al., 2009; Zhu et al.,
2020). The optical density (OD) at 490 nm was mea-
sured using a spectrophotometer. Lymphocyte transfor-
mation rate (LTR) = (mean of Con A stimulation group �
mean of non-Con A stimulation group)/mean of non-Con
A stimulation group.

Measurement of cytokine concentrations in RAW 264.7
cells

RAW 264.7 cells of 2 9 105 cells/well were cultured in
96-well plates at 37°C under 5% CO2 overnight. Cells
were pretreated with SSVs or CSV for 4 h. The control
group was pretreated with PBS. The cells were washed
with PBS, incubated in fresh medium (DMEM with 10%
heat-inactivated FBS) and then infected with S2308 at
a multiplicity of infection (MOI) of 100. Culture plates
were centrifuged at 350 g for 5 min at room tempera-
ture and incubated at 37°C for 45 min. After washing
two times with medium without antibiotics, the infected
cells were incubated for 60 min in the presence of
50 lg ml�1 of gentamicin to kill extracellular bacteria.
Then, the cultures were placed in fresh DMEM contain-
ing 25 lg ml�1 of gentamicin (defined as time zero),

and treated with pCold-TF, SSVs or CSV for 12, 24 and
48 h. At 12, 24 and 48 h post-treatment, 50 ll of cell
culture supernatant from each well was collected to
evaluate the levels of IFN-c, IL-2, IL-12p70 and IL-10
using mouse cytokine ELISA kits (eBioscience) in
accordance with the manufacturer’s instructions. All
assays were performed in triplicate.

Protection induced by SSVs and CSV

Protective efficacy of SSVs and CSV was performed as
previously described (Golshani et al., 2018a,b; Li et al.,
2018a,b) with some modifications. In brief, mice were
immunized using the above-mentioned methods. At
week 8 after the last immunization, mice were i.p. chal-
lenged with approximately 1 9 106 CFU of S2308 viru-
lent strain in 200 ll of PBS. The mice were euthanized
at week 4 post-challenge, and their spleens were
removed aseptically. Each spleen was homogenized in
1 ml of PBS containing 0.1% (v/v) Triton X-100, ten-fold
serially diluted and then plated on TSA plates. Plates
were incubated at 37°C, and the number of CFU per
spleen was counted after 3 days. The unit of protection
was calculated as the mean log10 CFU of the PBS group
minus log10 CFU of the experimental group. Animal chal-
lenges with S2308 were performed in the BSL-3 labora-
tory. All the performed procedures were approved by the
Committee on the Ethics of Animal Experiments of Shi-
hezi University (Authorization Number: 2021-2).

Statistical analysis

Antibody response was expressed as the mean Log titre
� the standard deviation (SD). Cytokine production was
expressed as the mean cytokine concentration � SD.
The lymphocyte proliferation rate was expressed as the
mean percentages for analysis � SD. The protective effi-
ciency at different time points was expressed as the
mean Log CFU � SD. Statistical significance (P value)
was calculated with Student’s t-test using Statistical
Package for Social Science (SPSS) software version
19.0 (MS, Chicago, IL, USA). P values of < 0.05 were
considered statistically significant.
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