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ABSTRACT: We theoretically analyze the differential cross sections (DCSs) for the state-to-
state reaction, H + HD(vi = 0, ji = 0, mi = 0) → H2(vf = 0, jf = 1,2,3, mf = 1,..,jf) + D, over the
whole range of scattering angles, where v, j, and m are the vibrational, rotational, and helicity
quantum numbers for the initial and final states. The analysis extends and complements
previous calculations for the same state-to-state reaction, which had jf = 0,1,2,3 and mf = 0, as
reported by Xiahou, C.; Connor, J. N. L. Phys. Chem. Chem. Phys. 2021, 23, 13349−13369.
Motivation comes from the state-of-the-art experiments and simulations of Yuan et al. Nature
Chem. 2018, 10, 653−658 who have measured, for the first time, fast oscillations in the small-
angle region of the degeneracy-averaged DCSs for jf = 1 and 3 as well as slow oscillations in
the large-angle region. We start with the partial wave series (PWS) for the scattering amplitude
expanded in a basis set of reduced rotation matrix elements. Then our main theoretical tools
are two variants of Nearside-Farside (NF) theory applied to six transitions: (1) We apply
unrestricted, restricted, and restrictedΔ NF decompositions to the PWS including
resummations. The restricted and restrictedΔ NF DCSs correctly go to zero in the forward and backward directions when mf >
0, unlike the unrestricted NF DCSs, which incorrectly go to infinity. We also exploit the Local Angular Momentum theory to provide
additional insights into the reaction dynamics. Properties of reduced rotation matrix elements of the second kind play an important
role in the NF analysis, together with their caustics. (2) We apply an approximate N theory at intermediate and large angles, namely,
the Semiclassical Optical Model of Herschbach. We show there are two different reaction mechanisms. The fast oscillations at small
angles (sometimes called Fraunhofer diffraction/oscillations) are an NF interference effect. In contrast, the slow oscillations at
intermediate and large angles are an N effect, which arise from a direct scattering, and are a “distorted mirror image” mechanism. We
also compare these results with the experimental data.

1. INTRODUCTION

The H + H2 → H2 + H reaction and its isotopic variants are
important benchmarks in the theory of chemical reaction
dynamics. In particular, measurements and calculations of
state-to-state differential cross sections (DCSs) can provide
detailed information on the dynamics and mechanism of this
class of reactions.
Recently, an important experimental advance has been

reported by Yuan et al.1 for the H + HD → H2 + D reaction.
They have measured, for the first time, fast oscillations in the
small-angle region of the degeneracy-averaged DCSs (abbre-
viated as daDCSs). They reported daDCSs for the following
two transitions.

v j v jH HD( 0, 0) H ( 0, 1, 3) Di i 2 f f+ = = → = = +
(R1)

In reaction (R1), vi, ji and vf, jf are the initial and final
vibrational and rotational quantum numbers of the diatomic

molecules, respectively. The experiment of Yuan et al.1 used a
high-resolution molecular-beam apparatus, crossed at 150°,
with a velocity map imaging product detection at a
translational energy of 1.35 eV. These daDCS measurements
are the current state-of-the-art. Related experimental work can
be found in refs 2−5.
The purpose of the present paper is to analyze and

quantitatively understand the daDCSs of Yuan et al.1 To do
this, we start with the helicity (or body-f ixed) representation for
the scattering amplitude. We then have to consider the
following 16 state-to-state DCSs
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v j m

v j m j j

H HD( 0, 0, 0)

H ( 0, 0, 1, 2, 3, , , 0, , ) D

i i i

2 f f f f f

+ = = =

→ = = = − ··· ··· + +
(R2)

where mi and mf are the helicity quantum numbers for the
initial and final states, respectively.
In our earlier paper6 (denoted XC1), which is a companion

to this one, we studied theoretically the DCSs for the four
state-to-state transitions in reaction (R2) with mf = 0, namely

v j m

v j m

H HD( 0, 0, 0)

H ( 0, 0, 1, 2, 3, 0) D

i i i

2 f f f

+ = = =

→ = = = + (R3)

In particular, we analyzed the dynamics of the angular
scattering for reaction (R3) in order to understand the
physical content of the structure in the four helicity-resolved
DCSs.6 We discovered: glory scattering at small angles, broad
or “hidden” nearside rainbows, Nearside-Farside (NF)
interference effects (sometimes called Fraunhofer diffraction/
oscillations), a “CoroGlo” test to distinguish corona and
forward glory scattering, and a “distorted mirror image”
mechanism present at intermediate and large angles.6

In this paper, we focus on the DCSs for state-to-state
transitions with nonzero helicities. This reduces the number of
DCSs in reaction (R2) to 12. A further reduction is possible
because the DCSs for mf = −1, −2, −3 are equal to those for
mf = +1, +2, +3, respectively. This leaves the following six
DCSs to be analyzed.

v j m

v j m j

H HD( 0, 0, 0)

H ( 0, 1, 2, 3, 1, , ) D

i i i

2 f f f f

+ = = =

→ = = = ··· + (R4)

We will often write 000 → 011, 000 → 021, 000 → 031, 000
→ 022, 000 → 032, and 000 → 033 for the six transitions or,
more simply, 011, 021, 031, 022, 032, and 033.
There is a fundamental difference between DCSs with mf = 0

and those with mf > 0 for reactions of the type (R3) and (R4).
All DCSs with mf > 0 are identically equal to zero in the
forward (θR = 0°) and backward (θR = 180°) directions in the
center-of-mass reference frame, which is a consequence of the
conservation of angular momentum. Furthermore, the partial
wave series (PWS) for the scattering amplitude for mf = 0 uses
a basis set of Legendre polynomials, whereas for mf > 0 the basis
set consists of reduced rotation matrix elements (also called
Wigner or little d functions), which simplify to associated
Legendre functions when mi = 0. This means the theoretical
analysis is more complicated and difficult for the mf > 0 case
compared to mf = 0.
Now there has been one previous NF analysis of DCSs for

chemical reactions with mf > 0, which was made more than 20
years ago.7 In this work, Dobbyn et al.7 made the following
important observation (on page 1117):
“...although the PWS becomes more complicated for more

general types of collisions, this has little impact on the physical
insight provided by a NF analysis”.
Thus, in this paper, (two variants of) NF theory will be used

to provide physical insight into the reaction dynamics. Note
that the NF theory was used extensively in XC1.6 In particular,
an NF analysis has the advantage that the semiclassical
(asymptotic) picture is still evident, even though semiclassical
techniques, such as the stationary phase or saddle point
methods, are not applied. Note that Yuan et al.1 have

conjectured on the role an NF analysis plays in explaining
oscillatory structures in their DCSs. The two NF theories we
use are

(1) For a PWS with a basis set of Wigner functions, we use
three NF decompositions: unrestricted (unresNF),8

restricted (resNF),9,10 and restrictedΔ (resΔNF).7 The
unresNF decomposition is a straightforward general-
ization8 of the NF decomposition for a Legendre
PWS.8,11 The unresNF DCSs incorrectly diverge as θR
→ 0°, 180°. In contrast, the resNF and resΔNF DCSs
correctly go to zero as θR → 0°, 180°.7,9,10

The properties of the caustics of Wigner functions as
well as those for reduced rotation matrix elements of the
second kind play an important role in the definitions of
resNF and resΔNF.7,9,10 We also perform a resummation
for a PWS of Wigner functions,12 since it is well-known
that a resummation can improve the physical effective-
ness of an NF decomposition.13−19 In fact, the present
paper is the first time that resummation theory has been
combined with the resNF and resΔNF decompositions.
The above remarks apply, in particular, to NF analyses

of the full DCSs for the six transitions. We also report
the results (including resummations) of the unresNF
decomposition for the Local Angular Momentum (LAM),
since this provides important additional insights into the
reaction dynamics.13−16

(2) A simple approximate N model, the Semiclassical Optical
Model (SOM), which was originally introduced by
Herschbach.20,21 It is particularly useful for under-
standing structures in a DCS at intermediate and large
angles for direct reactions.6,7

This paper is organized as follows: Section 2 summarizes the
partial wave theory and explains our conventions and
definitions for the DCSs and LAMs. This section also includes
a discussion of the caustic properties that we need and
summarizes the unresNF, resNF, and resΔNF decompositions.
Section 3 outlines the resummation for a PWS of Wigner
functions. The properties of the input scattering matrices for
the six transitions are presented in Section 4; we use the same
accurate scattering matrix elements employed by Yuan et al.1 in
a simulation of their experiments. In Section 5, we discuss in
detail the behavior of the unresNF, resNF, and resΔNF DCSs at
small and large angles, as this has not been done before. Our
results for the full and NF DCSs and LAMs, including
resummations, are presented and discussed in Sections 6 and 7,
respectively. The SOM DCSs at intermediate and large angles
are presented and discussed in Section 8. We report daDCSs in
Section 9, where we make comparisons with the experimental
data. Our conclusions are in Section 10. Most of our results are
presented graphically.
Appendix A proves that the state-to-state mi = 0 DCSs for mf

= −1, −2, −3 and mf = +1, +2, +3 are equal, respectively. In
applications of the NF theory, it is essential to use
unambiguous and consistent definitions for the special
functions (of the first and second kinds) employed in the
various NF decompositions. In Appendix B, we gather together
the precise mathematical definitions that we use, since there is
often more than one definition in the literature.
We also emphasize the following: This paper complements

and extends XC1,6 where additional discussions and references
can be found. These two papers illustrate the potency of the
NF theory for divers applications.
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2. PARTIAL WAVE THEORY
2.1. Partial Wave Series. We start with the helicity (or

body-fixed) PWS representation of the scattering amplitude for
reaction (R4) at a fixed translational (or total) energy22,23

f
k

J S d

j m j

( )
1

2i
(2 1) ( )

1, 2, 3 and 1, ...,

j m
J m

j m
J

m
J

000 0 R
0,0

000 0 ,0 R

f f f

f f
f

f f f
∑θ θ= + ̃

= =

→
=

∞

→

(1)

where k0,0 is the translational wavenumber for relative motion
in the initial channel, J is the total angular momentum
quantum number, S̃000→0jfmf

J is a modified scattering matrix

element, and dmf,0
J (θR) is a reduced rotation matrix element

(also called a Wigner function or “little d” function) as defined
by Edmonds.24 The reactive scattering angle θR is the angle
between the incoming H atom and the outgoing H2 molecule
in the center-of-mass reference frame. Thus, θR = 0° and θR =
180° define the forward and backward directions, respectively.
In practice, the upper limit of J = ∞ in the PWS is replaced by
a finite value, J = Jmax. This assumes that all partial waves with
J > Jmax can be neglected. In our applications, there are ∼40
numerically significant coherent partial waves, which makes the
direct physical interpretation of the PWS very difficult or
impossible. In addition, a constant phase has been omitted
from eq 1.
The corresponding state-to-state DCS is given by

f

j m j

( ) ( )

1, 2, 3 and 1, ...,

j m j m000 0 R 000 0 R
2

f f f

f f f f
σ θ θ= | |

= =

→ →

(2)

The PWS representation (1) is also valid for mf = 0, as further
analyzed in detail for the H + HD reaction in XC1;6 however,
DCSs with mf = 0 will only be needed in Section 9, when we
discuss daDCSs. In passing, we note that the PWS (1) remains
valid for mf < 0, provided the starting value of the summation is
replaced by J = |mf|. This is only needed in Appendix A. In the
remainder of this paper, we will often drop the channel labels
from f, k, S̃, σ, etc. to keep the notation simple. We will also
write S̃J ≡ S̃J.
To provide additional insight into the reaction dynamics, we

also perform a Local Angular Momentum analysis.13−16 The
LAM analysis provides information on the total angular
momentum variable that contributes to the scattering at an
angle θR under semiclassical conditions. It is defined by

f
LAM( )

d arg ( )
dR

R

R
θ

θ
θ

=
(3)

Note that the arg in eq 3 is not necessarily the principal value
in order that the derivative be well-defined.
Next we describe the unrestricted NF decomposition for the

full PWS (1), which is the simplest NF decomposition, and we
point out a limitation when mf > 0.
2.2. Unrestricted Nearside-Farside Decomposition

(unresNF). We exactly decompose f(θR) by writing it as the
sum of two subamplitudes N and F, namely8

f f f( ) ( ) ( )R
(N)

R
(F)

Rθ θ θ= + (4)

This is accomplished by exactly decomposing the dmf,0
J (θR) in

eq 1 into traveling angular functions of degree J and order mf

d d d( ) ( ) ( )m
J

m
J

m
J

,0 R ,0
(N)

R ,0
(F)

Rf f f
θ θ θ= + (5)

where, for θR ≠ 0,π
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2
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2i

( )m
J
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(N,F)

R ,0 R ,0 Rf f f
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θ θ
π

θ= ±
(6)

In eq 6, the emf,0
J (θR) are reduced rotation matrix elements of the

second kind (also known as “little e” functions) and defined in
Appendix B. We see in eq 6 that the dmf,0

J(N,F)(θR) are linear
combinations of reduced rotation matrix elements of the first
and second kinds or, equivalently, from Appendix B, a linear
combination of Jacobi functions of the first and second kinds.
Using eqs 4−(6), the N and F subamplitudes are given by

(θR ≠ 0,π)

f
k

J S d

j m j

( )
1

2i
(2 1) ( )

1, 2, 3 and 1, ...,

J m
J m

J(N,F)
R ,0

(N,F)
R

f f f

f

f
∑θ θ= + ̃

= =
=

∞

(7)

which is called the unrestricted NF decomposition. The adjective
“unrestricted” is added because eq 7 can be used for all θR ∈
(0,π) with no restriction on the sum over J. We also sometimes
write unresNF. The corresponding N and F DCSs are given by

f( ) ( )(N,F)
R

(N,F)
R

2σ θ θ= | | (8)

With the help of eqs 2 and (8), we obtain

f f

( ) ( ) ( )

2 ( ) ( ) cos(arg ( ) arg ( ))

R
(N)

R
(F)

R

(N)
R

(F)
R

1/2 (N)
R

(F)
R

σ θ σ θ σ θ

σ θ σ θ θ θ

= +

+ [ ] −
(9)

Equation 9 is the Fundamental Identity for Full and NF DCSs
and is exact.25

Similarly, we can define (unrestricted) N and F LAMs

f
LAM ( )

d arg ( )
d

(N,F)
R

(N,F)
R

R
θ

θ
θ

=
(10)

There is an exact Fundamental Identity for Full and NF LAMs
analogous to eq 9, although more complicated in form.25 As
before, the args in eq 10 are not necessarily principal values in
order that the derivatives be well-defined.
However, there is a problem with the unrestricted

decomposition for mf > 0. Although the unresNF decomposition
(5)−(7) is mathematically exact, its physical usefulness requires
that the dmf,0

J (θR) and emf,0
J (θR) oscillate as θR varies in the range

of (0°,180°). Figures 1 and 2 examine this point by showing
plots of the little d and little e functions, respectively, versus θR/
deg for J = 10, mi = 0, and (a) mf = 0 (the Legendre case), (b)
mf = 1, (c) mf = 2, (d) mf = 3. Note that the little d function has
J − mf zeros and the little e function has J − mf + 1 zeros. We
make the following observations about Figures 1 and 2:

• We see that the little e function diverges as θR → 0°,
180°, which means that the N,F components of eq 6
also diverge. Then we have the unfortunate situation
in the interesting forward and backward regions that
σ(N,F)(θR)→∞, whereas σ(θR) → 0; i.e., although the
NF decomposition (5)−(7) is mathematically exact, it is
not physically meaningful at small and large angles.

• We see there are angular regions where the little d and
little e functions are oscillatory (which can be called
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classically allowed regions) separated from two non-
oscillatory regions (classically forbidden regions) when
θR is close to 0°, 180°. We can distinguish between these
regions using the notion of caustics, which are discussed
next.

2.3. Caustic Properties of dmf,0
J (θR) and emf,0

J (θR). The
boundaries between the two classically forbidden regions and
the classically allowed region in Figures 1 and 2 can be
conveniently characterized by two caustic angles,9,10 denoted
θR min
(J,mf) and θR max

(J,mf) , for given values of J and mf. They are defined
by the divergence of the primitive Wentzel-Kramers-Brillouin
(WKB) approximation for two linearly independent solutions
of the second-order differential equation satisfied by the little d
and little e functions, which become the associated Legendre
differential equation because mi = 0.
The caustic angles can be found from eq (5.13) of ref 26,

and they are determined by sin θR = mf/J, which results in

m Jsin ( / )J m

J m J m

R min
( , ) 1

f

R max
( , )

R min
( , )

f

f f

|
}
oooo
~
ooo

θ

θ π θ

=

= −

−

(11)

For J = 10, the caustics occur at: θR min
(10,mf) = 0° (mf = 0), 5.7° (mf

= 1), 11.5° (mf = 2), 17.5° (mf = 3). The corresponding values
for θR max

(10,mf) are 180° (mf = 0), 174.3° (mf = 1), 168.5° (mf = 2),

162.5° (mf = 3). These caustic angles are marked on Figures 1
and 2 as vertical pink lines. Note that the caustics for the
Legendre case (mf = 0) are always at 0° and 180° for all values
of J ≥ 1. The caustic angles are shown in a different way in
Figure 3 on a (θR/deg, J) plot

9,10 for mf = 1,2,3 and J = 1(1)30.
This figure shows clearly that θ R min

(J,mf) → 0 and θ R max
(J,mf) → π as J

increases for a fixed value of mf.

The above discussion implies that the dmf,0
J(N,F)(θR) values only

exhibit an oscillatory behavior (for a given J and mf) in the
angular range

J m J m
R min
( , )

R R max
( , )f fθ θ θ< < (12)

This in turn implies that the NF decomposition (7) should
work best when θR satisfies the inequality (12).
An inspection of Figure 3 shows, for given values of θR, J,

and mf, that there is a minimum value of J, denoted Jmin
(mf)(θR),

such that θR satisfies the inequality (12). For mf > 0, we have

J m( ) int( /sin )m
min
( )

R f R
f θ θ= (13)

where int(x) ≡ integer part of x. Sometimes, +1 is added to the
right-hand-side of eq 13 to exclude the case where J = mf. In
practice, it makes little difference whether +1 is added or
not.9,10 We confirmed this is the case in our calculations for all
six transitions. The physical reason is that the PWS (1)
receives its main numerical contribution from partial waves
with J ≫ mf, helped by the (2J + 1) factor.
The comments just given lead us to introduce the restricted

nearside-farside decomposition, denoted resNF, which we discuss
next.

2.4. Restricted Nearside-Farside Decomposition
(resNF). The decomposition in which partial waves with J <
Jmin
(mf)(θR) are omitted from eqs 1 and (7) defines resNF.9,10 The
restricted N,F subamplitudes are given by

Figure 1. Plots of dmf, mi

J (θR) vs θR/deg for J = 10, mi = 0 (a) mf = 0,
(b) mf = 1, (c) mf = 2, (d) mf = 3. The vertical pink lines indicate the
caustic angles at (a) 0°, 180°, (b) 5.7°, 174.3°, (c) 11.5°, 168.5°, (d)
17.5°, 162.5°.

Figure 2. Plots of emf, mi

J (θR) vs θR/deg for J = 10, mi = 0 (a) mf = 0,
(b) mf = 1, (c) mf = 2, (d) mf = 3. The vertical pink lines indicate the
caustic angles at (a) 0°, 180°, (b) 5.7°, 174.3°, (c) 11.5°, 168.5°, (d)
17.5°, 162.5°.

Figure 3. Values of θR min
(J, mf)/deg and θR max

(J, mf)/deg (black solid circles) on
a (θR/deg, J) plot for mi = 0 and mf = 1,2,3. Passing through the black
solid circles are the curves, J = mf/sin θR, colored red for mf = 1,
orange for mf = 2, and green for mf = 3.
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And the corresponding resNF DCSs are
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Note that resNF is an approximate decomposition because it
omits partial waves from classically forbidden regions of θR;
that is, it neglects the following terms in the PWS (1)
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The contribution of each partial wave in eq 16 is nonoscillatory
and small in magnitude. Notice that eqs 13 and (14) are, in
general, discontinuous functions of θR. As a result, the
corresponding DCSs also exhibit discontinuities, although, as
we shall see in Section 5, they are usually small and confined to
small and large angles. In addition, there is no global LAM for
resNF because of the discontinuities. Having identified the
Δf(θR) term of eq 16, we can include it in the resNF
decompositionthis gives rise to the restrictedΔ nearside-
farside decomposition, denoted resΔNF, which we discuss next.
2.5. RestrictedΔ Nearside-Farside Decomposition

(resΔNF). The resΔNF decomposition is obtained when we
combine eq 16 with eq 14 to obtain an improved version of
resNF. We have for the subamplitudes7

f f f( )
1
2

( ) ( )res (N,F)
R R
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And the corresponding resΔNF DCSs are

f

j m j

( ) ( )

1, 2, 3 and 1, ...,

res (N,F)
R

res (N,F)
R

2

f f f
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Notice that resΔNF is an exact NF decomposition, unlike eq 14,
which is approximate. Similar to resNF, eq 17 is also a
discontinuous function of θR, although the discontinuities are
usually small in the corresponding DCSs and confined to small
and large anglesexamples are provided in Section 5. In
addition, there is again no global LAM for resΔNF because of
these discontinuities.
Note: If, for a given θR, we have that Jmin

(mf)(θR) is equal to mf,
then unresNF, resNF, and resΔNF become equivalent.
Practical Remark. It can often happen that Jmin

(mf)(θR), for
particular values of θR and mf, can exceed Jmax, that is, Jmin

(mf)(θR)
> Jmax. For example, Jmin

(mf = 3)(θR = 0.1°) = 1718, but Jmax = 40.
Then many computer programs applied directly to eqs 14−
(18) will crash as they attempt to use values of S̃J that are
undefined for J > Jmax, when the upper limit of J = ∞ has been
replaced by J = Jmax. This problem can be avoided by adding
sufficient S̃J ≡ 0 to the PWS for J > Jmax.

3. RESUMMATION OF THE PARTIAL WAVE SERIES
It is well-established that a resummation of a Legendre PWS
can significantly improve the physical effectiveness of an NF

decomposition.13−19 Totenhofer et al.19 have provided an
extensive discussion of the Legendre case. This same
improvement in NF physical effectiveness occurs for a basis
set of little d functions, although this has only been studied for
a single example, namely, Ar + HF rotationally inelastic
scattering.12

It has been found previously that the biggest effect for
cleaning the N,F DCSs and N,F LAMs of unphysical
oscillations occurs on going from resummation order, r = 0
(no resummation, i.e., eq 1) to resummation order, r = 1.
There is usually a smaller cleaning effect for further
resummations, r = 1 to r = 2 and r = 2 to r = 3.
Whiteley et al.12 have resummed the PWS (1), which we

now write as f r=0(θR), from r = 0 to r = 1. We do not repeat the
derivation here, which exploits the recurrence relation obeyed
by the little d functions; rather, we simply write down the final
result for the resummed representation for f r=1(θR). From eq
(3.9) of ref 12 with mi = 0, we have
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where β ≡ β1 ≡ β1
(r=1) is the resummation parameter, and
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with

a J S J m m m(2 1) , 1, 2, ...J
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and
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Equation 19 also assumes that (1 + β cos θR) ≠ 0. Notice that
eq 20 is valid for J = mf, as proven in the Appendix of ref 12.
For this case, we see from eq 22 that gmf

mf = 0.
An NF decomposition of eq 19 can now be made
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with the corresponding N,F subamplitudes given by (θR ≠ 0,π)
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and the corresponding N,F r = 1 DCSs are
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Similar equations apply to the resNF and resΔNF decom-
positions. For the unrestricted NF decomposition, the NF r =
1 LAMs are given by
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Notice that the full amplitudes, f r=0(θR) and f r=1(θR), are
independent of β and numerically the same for a given value of
θR. This is also true for the full LAMs, LAMr=0(θR) and
LAMr=1(θR).
In our applications, we need to choose a value for the

resummation parameter β. We extend the prescription used by
Anni et al.13 and solve the linear equation
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This results in
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These values are used in the resummation calculations of
Sections 5−7. The general result is
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4. PROPERTIES OF THE INPUT SCATTERING MATRIX
ELEMENTS

We use the same S matrix elements that were computed by
Yuan et al.1 and used for the mf = 0 analyses in XC1.6 The
Boothroyd-Keogh-Martin-Peterson potential energy surface
number two (BKMP2) was employed.27 Converged S matrix
elements were obtained for translational energies Etrans up to
3.5 eV. All our results are for Etrans = 1.35 eV, which is the same
translational energy as that employed in the molecular-beam
experiments. The masses used are mH = 1.0078 u and mD =
2.0141 u, with the initial translational wavenumber being k =
11.692 a0

−1. For each transition, Jmax is ∼40.
Figure 4 shows graphs of |S̃J| versus J for the three transitions

000 → 011, 000 → 021, 000 → 031, while Figure 5 shows
plots for the remaining three transitions 000 → 022, 000 →
032, 000 → 033. Figures 6 and 7 display the corresponding
plots for arg S̃J/rad versus J. Note that all the curves start at J =
mf. A perusal of Figures 4−7 reveals the following:

• For five of the transitions, the global maximum in an |S̃J|
plot is at the first peak as J increases from J = mf. The
exception is the 031 case, where the maximum occurs at
the second peak. The peaks are then followed by
subsidiary local maxima; these play an important role in
the interpretation of the intermediate- and large-angle
scattering using the SOM in Section 8. The overall
shapes of the mf = 1,2,3 curves in Figures 4 and 5 are
similar to those for the four mf = 0 transitions, with the

Figure 4. Plots of | S̃J | vs J at Etrans = 1.35 eV. The black solid circles
are the numerical S matrix data, {| S̃J |}, at integer values of J, which
have been joined by straight lines. The transitions are (a) 000 → 011,
(b) 000 → 021, and (c) 000 → 031.
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Figure 5. Plots of | S̃J | vs J at Etrans = 1.35 eV. The black solid circles
are the numerical S matrix data, {| S̃J |}, at integer values of J, which
have been joined by straight lines. The transitions are (a) 000 → 022,
(b) 000 → 032, and (c) 000 → 033.

Figure 6. Plots of arg S̃J/rad vs J at Etrans = 1.35 eV. The black solid
circles are the numerical S matrix data, {arg S̃J/rad}, at integer values
of J, which have been joined by straight lines. The transitions are (a)
000 → 011, (b) 000 → 021, and (c) 000 → 031.
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exception that the global maxima of the |S̃J| curves are
always at J = 0 when mf = 0 (see Figure 1 of XC1 (i.e.,
ref 6)).

• Figures 6 and 7 show that the plots of arg S̃J/rad versus J
are roughly quadratic in shape. The kinks in some of the
curves are seen to correspond to near-zeros in |S̃J|, where
the phase of S̃J varies more rapidly with J. The curves in
Figures 6 and 7 have similar properties to the arg S̃J/rad
plots for mf = 0 (see Figure 2 of XC1 (i.e., ref 6)).

• Note that, in the NF analysis, only the values of S̃J at J =
0,1,2,... are used. To help guide the eye, the points (black
solid circles) in Figures 4−7 have been joined by straight
lines. This was also done in Figures 1 and 2 of XC1.6

When we want a smooth continuation of the {S̃J} to real
values of J, for example, for use in an asymptotic
(semiclassical) analysis, we would typically use a cubic
B-spline interpolation.6 Notice also that the kinks do not
affect the NF analysis nor the asymptotic analysis, as
explained in XC1.6

We next consider in more detail the properties of the
unresNF, resNF, and resΔNF decompositions.

5. PROPERTIES OF THE UNRESTRICTED, RESTRICTED
AND RESTRICTEDΔ NEARSIDE-FARSIDE
DECOMPOSITIONS INCLUDING RESUMMATIONS

In Sections 2.2, 2.4, and 2.5, we developed the theory for the
unresNF, resNF, and resΔNF decompositions, respectively, for r =
0; the extension of the theory to r = 1 was given in Section 3.
In the present section, we investigate in detail how these three
decompositions (including resummations) influence the
corresponding N,F DCSs at small and large angles, as this
has not been investigated before. In Figure 8, we plot four N
DCSs for the 000 → 011 transition at large angles, namely, for
θR = 140◦−180◦. The upper panel shows DCSs for r = 0, and
the lower panel shows DCSs for r = 1.
We begin our discussion with the resN DCS (lilac dashed

curve) and the resΔN DCS (red solid curve) in Figure 8. We
note the following:

• By construction, the resN and resΔN DCSs tend to zero as
θR →180◦. Their discontinuities are clearly visible on the
scale of the drawings. The density of jumps increases as
θR →180◦; this is expected from Figure 3.

• The resΔN DCS is usually smaller than the resN DCS for
both r = 0 and r = 1. Now both the resN subamplitude
and the Δf(θR)/2 term in eq 17 are complex-valued
quantities, which means that destructive interference can
occur, resulting in the resΔN DCS being smaller than the
resN DCS.

• The first discontinuity for increasing θR occurs at θR ≈
150° for r = 0 but at θR ≈ 161◦ for r = 1. This behavior
can be understood because Jmin

(mf=1)(θR), which is equal to
int(mf/sin θR) by eq 13, jumps from J = 1 at θR ≈ 149.9°
to J = 2 at θR ≈ 150.0°, causing a discontinuity in the
PWS (14) and in the resulting resΔN and resN DCSs.
In contrast, for r = 1, the J = mf = 1 term is put equal

to zero by the choice of β in eq 27, resulting in the PWS
(25) starting at J = mf + 1 = 2. Then the first jump
occurs for J = 2 at θR ≈ 160.5° to J = 3 at θR ≈ 160.6°.

• Because of congestion in the graphs, it is difficult for the
eye to follow the jumps in the resΔN and resN DCSs in
Figure 8, especially as θR → 180°. However, it is the
general trend in these DCSs that is of interest. We

Figure 7. Plots of arg S̃J/rad vs J at Etrans = 1.35 eV. The black solid
circles are the numerical S matrix data, {arg S̃J/rad}, at integer values
of J, which have been joined by straight lines. The transitions are (a)
000 → 022, (b) 000 → 032, and (c) 000 → 033.
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therefore made least-squares-fits to the resΔN DCSs.
These are shown as red dashed curves for r = 0 and r = 1
in Figure 8a,b, respectively.

We also plotted the unresN DCSs (purple long-dashed
curves) for r = 0 and r = 1 in Figure 8. As expected, they tend
to infinity as θR → 180°. The beneficial effect of cleaning can
be seen because the unresN r = 0 DCS starts to diverge at θR ≈
150°, whereas for r = 1, the unresN DCS diverges at a larger
angle, namely, θR ≈ 170°.
The results discussed above for the 000 → 011 transition

have all been for N DCSs at large angles. We also did a similar
analysis for the N DCSs at small angles and obtained analogous
results (not shown). In addition, we also calculated unresF, resF,
and resΔF DCSs at large and small angles and obtained
comparable results (also not shown). Finally, we performed
unresNF, resNF, and resΔNF analyses for the remaining five

transitions at large and small angles, again finding similar
results (not shown) to the 011 case.
The least-squares-fits to the resΔNF DCSs are used in the

next section, where we report NF analyses of the full DCSs for
all the transitions.

6. FULL AND NEARSIDE-FARSIDE DCSs INCLUDING
RESUMMATIONS

Figure 9 shows logarithmic plots of the full and resΔN, resΔF r =
1 DCSs versus θR for the 000 → 011, 000 → 021, and 000 →
031 transitions. The corresponding DCSs for the 000 → 022,
000 → 032, and 000 → 033 transitions are displayed in Figure
10. For clarity of viewing, notice that, at large and small angles,
least-squares-fits to the resΔN and resΔF DCSs are plotted, as
explained in Section 5. We use the following color conventions
for the DCSs in Figures 9 and 10 as well as in some other
figures.

• Full PWS: black solid, with the label, “PWS”.
• resΔN r = 1 PWS: red solid, with the label, “PWS/N/

resΔ”.
• Fit to resΔN r = 1 PWS: red dashed, with the label, “Fit to

PWS/N/resΔ”.
• resΔF r = 1 PWS: blue solid, with the label, “PWS/F/

resΔ”.
• Fit to resΔF r = 1 PWS: blue dashed, with the label, “Fit

to PWS/F/resΔ”.
We first examine the full DCS for the 000 → 011 transition

in Figure 9a. As θR increases from 0° to 180°, we observe the
following.

• The DCS = 0 a0
2 sr−1 at θR = 0° followed by the next

observation listed here.
• Fast oscillations in an angular range extending up to θR

≈ 50°, accompanied by a decreasing DCS. This behavior
merges into the next observation listed here.

• An increasing DCS with slow oscillations, which extend
into the large-angle region.

• The DCS = 0 a0
2 sr−1 at θR = 180°.

The full DCSs for the remaining five transitions exhibit
similar properties to the 011 case and are not discussed
separately. We can also compare with the four full DCSs for
the mf = 0 case shown in Figure 3 of XC1.6 We see that the mf
= 0 and mf > 0 DCSs are alike, the main difference being (a)
the mf = 0 DCSs are nonzero at θR = 0°,180° unlike the mf > 0
DCSs, (b) the angular regions separating the fast and slow
oscillations are slowly varying for mf = 0, whereas there are
pronounced minima when mf > 0.
Next, we examine the resΔN, resΔF r = 1 DCSs in Figures 9

and 10, making use of the exact Fundamental Identity for Full
and N,F DCSs given by eq 9, which is also valid for the r = 1
case.25 In angular regions where there are fast oscillations, we
see that the resΔN and resΔF r = 1 DCSs are varying relatively
slowly with θR, which tells us that the fast oscillations in the full
DCSs arise from NF interference. Another name for the fast
oscillations is Fraunhofer diffraction/oscillations. In contrast,
the slow oscillations are seen to be resΔN-dominated. Thus, we
have the important result from the NF analysis that the fast and
slow oscillations arise from different physical mechanisms. This
is also the case for the mf = 0 DCSs.6

We can extract useful information from the periods ΔθR of
the fast oscillations. A simple NF model shows that these
oscillations are analogous to the interference pattern from the

Figure 8. Plots of four PWS N DCSs in the large-angle region from θR
= 140° to θR = 180° for the transition 000 → 011 at Etrans = 1.35 eV
for (a) r = 0 and (b) r = 1. Purple long-dashed curve: PWS/N/unres.
Lilac dashed curve: PWS/N/res. Red solid curve: PWS/N/resΔ. Red
dashed curve: Least-squares-fit to PWS/N/resΔ.
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Figure 9. Plots of log σ(θR) vs θR/deg at Etrans = 1.35 eV for r = 1.
Black curve: PWS. Red solid curve: PWS/N/resΔ. Blue solid curve:
PWS/F/resΔ. Red dashed curves: least-squares-fits to PWS/N/resΔ
in the small- and large-angle regions. Blue dashed curves: Least-
squares-fits to PWS/F/resΔ in the small- and large-angle regions. The
transitions are (a) 000 → 011, (b) 000 → 021, and (c) 000 → 031.

Figure 10. Plots of log σ(θR) vs θR/deg at Etrans = 1.35 eV for r = 1.
Black curve: PWS. Red solid curve: PWS/N/resΔ. Blue solid curve:
PWS/F/resΔ. Red dashed curves: least-squares-fits to PWS/N/resΔ
in the small- and large-angle regions. Blue dashed curves: least-
squares-fits to PWS/F/resΔ in the small- and large-angle regions. The
transitions are (a) 000 → 022, (b) 000 → 032, and (c) 000 → 033.
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well-known “Young’s double-slit experiment”, as explained in a
molecular scattering context in Appendix A of ref 28. This
analogy was also used in XC1,6 and it yields the simple relation

J/rad /R effθ πΔ ≈ (28)

where Jeff is an effective total angular momentum variable
characteristic of the NF oscillations. For example, for the mf =
0 DCSs, we have Jeff = Jg + 1/2, where Jg is the glory angular
momentum variable, defined as the position of a local
maximum in a plot of arg S̃(J)/rad versus J (see Figure 2 of
XC16). Figures 9 and 10 show that ΔθR usually lies in the
range of ΔθR = 6°−7°, which is similar to the mf = 0 DCSs.
Then eq 28 gives Jeff = 30.0−25.7. An inspection of Figures 6
and 7 shows that these values for Jeff are also close to a local
maximum in the arg S̃(J)/rad plots.

7. FULL AND NEARSIDE-FARSIDE LAMs INCLUDING
RESUMMATIONS

A full and N,F LAM analysis provides information on the value
of the total angular momentum variable that contributes to the
scattering at an angle θR, under semiclassical conditions. An
important tool16,25 for interpreting a LAM plot is the exact
Fundamental Identity for Full and N,F LAMs, which is also valid
for r = 1 and is analogous to the identity for DCSs given by eq
9.

Figure 11 shows a full and N,F LAM plot for the 000 → 011
transition using the unresNF decomposition for r = 0 and r = 1.
We first make the following observations on the full LAM.

• The full LAM shows oscillations at small angles. At
intermediate and larger angles it becomes monotonic
and increases except for θR around 140°.

• The full LAM changes from F dominance to N
dominance as θR increases in the small-angle region.
This is the same behavior shown by the F and N r = 1
DCSs in Figure 9a.

• The spike at θR ≈ 46.2° corresponds to the minimum in
the full DCSsee Figure 9a. Thus, the full LAM plot
provides a clear indication of a change in the mechanism
for the reaction as θR increases.

Next, we examine the N and F r = 0,1 LAMs in Figure 11
and note the following.

• The effect of cleaning the N,F r = 0 LAMs is very
striking, with nonphysical oscillations for θR ≲ 50° being
replaced by slower variations in the N,F r = 1 LAMs.

• It is known that N and F LAMs that are nearly zero, or
oscillate about zero, are nonphysical.13,15,16 It can be
seen in Figure 11 that this occurs for both the r = 0 and r
= 1 F LAMs when θR ≳ 50°. The corresponding curves
are drawn in a fainter blue compared to the F LAMs for
θR ≲ 50°.

• An averaging of the N and F r = 1 LAMs for 10° ≤ θR ≤
45° gives −28.1 and 28.2, respectively. The value J ≈ 28
is consistent with the information obtained from the
periodicity of the fast oscillations in Section 6. An
inspection of Figure 6a shows that J ≈ 28 is close to a
local maximum in the arg S̃(J)/rad plot.

• The N r = 1 LAM for θR ≳ 50° is close to the full N
LAM. And both of them monotonically increase (except
for θR ≈ 140°) and are similar to the LAM for a hard-
sphere collision.13 This implies that the SOM model,
which is an approximate N theory incorporating hard-
sphere dynamics, should be approximately valid at
intermediate and large scattering angles. This point is
confirmed in Section 8.

The properties of the full and N,F r = 0,1 LAMs for the
other transitions are similar to those for the 011 case and are
not shown separately. Overall, we can say that the information
given by the LAM analysis is consistent and complementary to
that in the DCS plots of Figures 9 and 10.

8. SEMICLASSICAL OPTICAL MODEL (SOM) DCSs AT
INTERMEDIATE AND LARGE ANGLES

The SOM is a simple procedure, introduced by Hersch-
bach,20,21 for calculating the DCSs of state-to-state reactions.
In XC1,6 we applied the SOM to the four mf = 0 transitions
and showed that the SOM provided valuable insights into
structures in the DCSs at intermediate and large angles. In
particular, we found that the SOM and PWS DCSs are
distorted mirror images of the corresponding PJ ≡ |S̃J|

2 versus J
plots, with J = 0,1,2,.... The theory for the SOM has been given
in XC1,6 and below we just state the working equations when
mf > 0.
The SOM DCS is given by

d P J( ) ( /2) ( ( ))SOM R
2

Rσ θ θ= (29)

with PJ ≡ P(J) and

J kd( ) cos( /2)R Rθ θ= (30)

where J = mf, mf + 1,.... In eqs 29 and (30), d is the sum of the
radii of two hard spheres representing the reactants and is the
only adjustable parameter in the theory. The above equations
assume that J ≤ kd; otherwise, σSOM (θR) ≡ 0. Notice that the
SOM only depends on the value of the modulus |S̃J| and is

Figure 11. Plots of LAM (θR) vs θR/deg at Etrans = 1.35 eV for the 000
→ 011 transition, showing results for both r = 0 and r = 1. Black
curve: PWS. Red solid curve: PWS/N/r = 1. Red dashed curve: PWS/
N/r = 0. Blue solid curve: PWS/F/r = 1. Blue dashed curve: PWS/F/r
= 0. The fainter blue solid and dashed curves show where the F
LAM(θR) is not physically significant.
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independent of arg S̃J. In NF terminology, the SOM is an
approximate N theory, which should work best for direct
rebound reactions, in particular, at intermediate and backward
angles in the DCS.
The SOM and PWS DCSs are compared in Figures 12 and

13 for the six transitions in the range of θR = 50°−180°. Now,
for the mf = 0 case, we obtained values of d by fitting the SOM
DCS to the PWS DCS at, or close to, θR = 180°. This does not
work for mf > 0 because the PWS DCSs are equal to 0 a0

2 sr−1

at θR = 180°. Instead, we obtained d by fitting the SOM DCS
at, or close to, the PWS peak nearest to θR = 180°. An
exception is the 000 → 031 transition in Figure 12c, for which
the second nearest peak was used (note, this DCS exhibits the
most detailed structure out of the six transitions). The values
we used for d are given in the figures.
It can be seen in Figures 12 and 13 that the SOM

reproduces the main features in the PWS DCSs, with larger
deviations as the PWS DCSs become more structured. This is
encouraging, considering the simplicity of the SOM, and, like
the mf = 0 case, it tells us that the SOM and PWS DCSs are
distorted mirror images of the corresponding PJ versus J plots.
As expected, the SOM does not reproduce the NF interference
(or Fraunhofer) oscillations in the PWS DCSs for θR ≲ 50°
(not shown). Finally, we note that the values for d lie in the
range of 1.44−1.97a0, which are much less than the sum of the
radii at the saddle point for the BKMP2 potential energy
surface, which is d‡ = rHH

‡ + rHD
‡ = 3.514 a0. This tells us, as

was also found for mf = 0, that the scattering at intermediate
and large angles arises mainly from small values of J or,
equivalently, from small-impact parameters.

9. DEGENERACY AVERAGED DIFFERENTIAL CROSS
SECTIONS (daDCSs)

In this section, we calculate degeneracy averaged DCSs
(daDCSs) and compare with the experimental daDCSs for
the two transitions vi = 0, ji = 0→ vf = 0, jf = 1 and vi = 0, ji = 0
→ vf = 0, jf = 3. The usual definition of a daDCS is

j( ) (2 1) ( )v j v j
m j

j

m j

j

v j m v j mR i
1

Ri i f f

i i

i

f f

f

i i i f f f
∑ ∑σ θ σ θ= +→

−

=− =−
→

(31)

In our applications, we have a single initial state, namely, vi = 0,
ji = 0, mi = 0, so eq 31 simplifies to

( ) ( )j
m j

j

j m00 0 R 000 0 Rf

f f

f

f f
∑σ θ σ θ=→
=−

→
(32)

A further simplification is possible when mi = 0 because, as
shown in Appendix A, DCSs for mf = −1,−2,−3 are equal to
those for mf = +1,+2,+3, respectively. We can write eq 32 in
the form

( ) ( ) 2 ( )j j
m

j

j m00 0 R 000 0 0 R
1

000 0 Rf f

f

f

f f
∑σ θ σ θ σ θ= +→ →

=
→

(33)

where the sum is zero if jf = 0. Equation 33 can also be written
in a more compact way, namely

( ) 2 ( )j
m

j

j m00 0 R
0

000 0 Rf

f

f

f f
∑σ θ σ θ= ′→

=
→

(34)

Figure 12. Plots of σ (θR) vs θR/deg at Etrans = 1.35 eV for the angular
range from θR = 50° to θR = 180°. Black curve: PWS. Red curve:
SOM. The transitions are (a) 000 → 011, (b) 000 → 021, and (c)
000 → 031.
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where the prime on the Σ sign means “multiply the first term in
the sum by 1/2”.
We can also substitute eqs 1 and (2) into eq 34, obtaining

k

J S d

( )
1

2

(2 1) ( )

j
m

j

J m
j m

J
m
J

00 0 R
0,0
2

0

000 0 ,0 R

2

f

f

f

f

f f f

∑

∑

σ θ

θ

= ′

+ ̃

→
=

=

∞

→
(35)

Equation 35 is a more explicit version of eq 1 of Yuan et al.1

Figure 14a compares the calculated daDCS using eq 35 for
the transition 00 → 01 with the experimental data. The
corresponding results for the 00 → 03 transition are in Figure
14b. A single scaling factor has been applied to the
experimental data to compare with the calculations.1 The
results in Figure 14a,b are an extension of the corresponding
figures of Yuan et al.1 because we included estimated
experimental uncertainties. These are a 10% error in the
measurements and an angular uncertainty of 1.5°.1 It can be
seen that the agreement between the calculated and
experimental daDCSs is very good, in particular, for the NF
interference (Fraunhofer) oscillations at θR ≲ 40°; these are
shown in more detail in the insets. In the experiments, also
note that ∼97% of the HD molecules in the molecular beam
are in their ground state, and the translational energy
uncertainty is ∼1.2%.1
If an experiment cannot resolve individual jf states, then it is

necessary to sum over these states. We have

( ) ( )
j

j00 0 R 00 0 R

f

f
∑σ θ σ θ=→ →

(36)

Figure 14c shows a plot of σ00→0(θR) versus θR over the whole
angular range. It can be seen that the structure in σ00→0(θR)
(black curve) is largely washed out, even though the individual
σ00→0jf(θR) in eq 36 (colored curves) possess distinct fast and
slow oscillations, although less pronounced than the helicity-
resolved DCSs in Figures 9 and 10. We can also relate our
results and notations to the figures in the Supporting
Information (SI) and main text of ref 1, with the following
clarifications noted.

(a) Figure 6(c) (SI) is a dimensionless plot, as is Figure 5c
(main text).1

(b) The three curves for K′ = 1,2,3 in Figure 5b (main text)
show 2 × σ000→03K′(θR).

1

(c) The units for the labels on the ordinates of Figures 6(a),
6(b), and 7 (SI) are a0

2 sr−1.1

(d) The red curve for K′ = 1 in Figure 6(b) (SI) shows 2 ×
σ000→011(θR).

1

(e) The red curve for K′ = 1 in Figure 7(c) (SI) shows 2 ×
103× [σ000→011(Jmax,θR) − σ000→011(Jmax −1,θR)] versus
Jmax at θR = 4°.1 Here Jmax makes explicit the finite upper
value for the PWS when used in eqs 1 and (2).

(f) The blue curve for K′ = 0 in Figure 7(c) (SI) shows
103× [σ000→010(Jmax,θR) − σ000→010(Jmax −1,θR)] versus
Jmax at θR = 0.4°, not 4°.1

(g) The three curves for K′ = 1,2,3 in Figure 7(d) (SI) show
2 × 103× [σ000→03K′(Jmax,θR) − σ000→03K′(Jmax − 1,θR)]
versus Jmax at θR = 6°.1

Figure 13. Plots of σ (θR) vs θR/deg at Etrans = 1.35 eV for the angular
range from θR = 50° to θR = 180°. Black curve: PWS. Red curve:
SOM. The transitions are (a) 000 → 022, (b) 000 → 032, and (c)
000 → 033.
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(h) The blue curve for K′ = 0 in Figure 7(d) (SI) shows 103

× [σ000→030(Jmax,θR) − σ000→030(Jmax − 1,θR)] versus Jmax
at θR = 6°.1

10. CONCLUSIONS
We have theoretically analyzed structures in the DCSs of the
ground-state reaction H + HD → H2 + D for the product
states 011, 021, 031, 022, 032, and 033. The calculations
extend and complement our previous analyses in XC16 for the
cases 000, 010, 020, and 030, making 10 DCSs in all. The
motivation comes from the experiments and simulations of
Yuan et al.,1 who have measured for the first time fast
oscillations in the small-angle region of the daDCSs for jf = 1
and 3 as well as slow oscillations in the large-angle region.
Our main theoretical tools were two variants of Nearside-

Farside theory: (1) We applied unrestricted, restricted, and
restrictedΔ NF decompositions, including resummations, to
the helicity PWS, which is expanded in a basis set of little d
functions. We analyzed in detail the properties of restricted and
restrictedΔ NF DCSs and showed that they correctly go to
zero in the forward and backward directions when mf > 0,
unlike the unrestricted NF DCSs, which incorrectly go to
infinity. We also calculated LAMs to obtain further insights
into the reaction dynamics. Properties of little e functions
played an important role in the NF analysis, as do the caustics
associated with the little d and little e functions. (2) We applied
an approximate N theory at intermediate and large angles,
namely, the Semiclassical Optical Model.
We showed that the fast oscillations at small angles

(sometimes called Fraunhofer diffraction or oscillations) arise
from an NF interference effect. In contrast, the slow
oscillations at large angles are an N effect and arise in the
DCS as a distorted mirror image of the corresponding PJ versus
J plot. We also compared with the experimental daDCSs,
obtaining very good agreement.
Our analyses confirm the earlier insight of Dobbyn et al.7

that as the PWS increases in complexity, this has little impact
on the physical insight provided by an NF analysis.

■ APPENDIX A
This Appendix proves the following identity for PWS DCSs
when mf = 1,2,3,...,jf (the identity is trivially true for mf = 0).

( ) ( )v j v j m v j v j m0 R 0 Ri i f f f i i f f f
σ θ σ θ=→ → − (A1)

That is, the DCSs for mf and −mf are equal when mi = 0. Now
the vibrational quantum numbers vi and vf do not change in the
following, so they will be omitted from now on to simplify the
notation. Note that all quantum numbers are integers.
We begin by writing the helicity or body-f ixed S matrix

element S̃jimi → jfmf

J as a linear combination of space-f ixed S
matrix elements, which are labeled by J, ji, jf and by li, lf, the
initial and final orbital angular momentum quantum numbers,
respectively. We have9,22,23
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× ̃ ⟨ − | ⟩
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−

→ (A2)

where ⟨j1 m1, j2 m2| jm⟩ is a Clebsch-Gordan coefficient with m
= m1 + m2.
For mi = 0, eq (A2) simplifies to

Figure 14. Plots of degeneracy averaged σ(θR) (daDCS) vs θR/deg at
Etrans = 1.35 eV. (a) The transition 00 → 01 (red), together with
experimental results and their estimated errors (blue). (b) The
transition 00 → 03 (purple), together with experimental results and
their estimated errors (blue). (c) Black curve: Degeneracy averaged,
σ(θR), for the 00 → 0 transition, which is summed over jf = 0,1,2,3.
The four colored curves show the degeneracy averaged σ(θR) for the
transitions 00 → 00 (orange), 00 → 01 (red), 00 → 02 (green), and
00 → 03 (purple).
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We next replace mf > 0 by −mf < 0 in eq (A3) to obtain
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Now we have the relation [ref 24, page 42, eq (3.5.17)]

j m j m jm j m j m j m, ( 1) ,j j j
1 1 2 2 1 1 2 21 2⟨ | ⟩ = − ⟨ − − | − ⟩+ +

so eq A4 becomes
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Next we note, from ref 24, page 46, eq (3.7.3), and page 49, eq
(3.7.14), that ⟨ji 0, J 0 | li0 ⟩ is zero unless ji + J + li = an even
number, which means we can introduce a factor of +1 =
(−1)ji+J+li into eq (A5). In addition, there is the conservation of
parity relation, (−1)ji+li = (−1)jf+lf, so for the phase factor we
find (−1)jf+J+lf = (−1)ji+J+li = +1 and obtain
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Comparing the right-hand sides of eq A3 and (A6) we see they
are the same, so

S Sj j m
J

j j m
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0 0i f f i f f
̃ = ̃→ − → (A7)

Now the PWS (1) for the scattering amplitude remains valid
for negative helicities, provided the starting value of the
summation is replaced by J = |mf|. When mf > 0 is replaced with
−mf < 0, in eq 1 we get
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Finally with the help of the relation [ref 24, page 60, eq
(4.2.5)]

d d( ) ( 1) ( )m
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J

,0 R ,0 Rf
f

f
θ θ= −−

together with the result, eq (A7), we find that the moduli of
the scattering amplitudes for mf and −mf are equal, which then
gives us the identity, eq (A1).

■ APPENDIX B
In the development and application of NF theory (NFology),
it essential to use unambiguous and consistent definitions for
the special functions (of the first and second kinds) used in the
various NF decompositions. Here we give the precise
mathematical definitions of the functions that we use, since
there is often more than one convention in the literature.

For the little d function, which is also known as a reduced
rotation matrix element (of the first kind) orWigner function, we
use the definition from ref 24, page 58, eq (4.1.23).
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The definition of PJ−mf

(mf,mf)(cos θR), a Jacobi polynomial, has
become standardized (ref 24, page 57). Note that the Jacobi
polynomial in eq (B1) is a special case of a Jacobi function of
the f irst kind.29 Important special values are
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where δmf 0 is a Kronecker delta function.
For the little e function, which is also called a reduced rotation

matrix element of the second kind, we use10
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where QJ−mf

(mf, mf)(cos θR) is a Jacobi function of the second kind,
which is a second independent solution of the Jacobi
differential equation. We use Szegö’s definition as given in
ref 29, page 78, eq (4.62.9). Note that QJ−mf

(mf, mf)(cos θR) is
defined “on the cut”, −1 < cos θR < + 1.
Since mi = 0 in our applications, we also have the following

important simplifications. From ref 24, page 59, eq (4.1.24),
we get

d
J m
J m

P( )
( )
( )

(cos )m
J

J
m

,0 R
f

f

1/2

Rf
f

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
θ θ=

− !
+ ! (B3)

and from section 2 in the Appendix of ref 10, we have
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In eqs B3 and (B4), PJ
mf(cos θR) and QJ

mf(cos θR) are Ferrers’
associated Legendre functions of the f irst and second kinds,
respectively.30 They are defined by (ref 24, page 22, eq
(2.5.10)).
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The PJ(cos θR) in eq (B5) is a Legendre polynomial of degree J,
which is a special case of a Legendre function of the first kind
of degree J. The QJ(cos θR) in eq (B5) is a Legendre function of
the second kind of degree J. Note: the other definition in
common use, but not used in this paper, is that of Hobson, in
which the right-hand-side of eq (B5) is multiplied by (−1)mf.
We also have the following simple results

d P( ) (cos )J
J0,0 R Rθ θ=

and
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e Q( ) (cos )J
J0,0 R Rθ θ=

The following asymptotic approximations are frequently
useful.7,10 They are valid for a fixed value of mf, J → ∞, and
0 < θR< π.
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