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BACKGROUND: Studies examining the nonfatal health outcomes of 
exposure to air pollution have been limited by the number of pollutants 
studied and focus on short-term exposures.

METHODS: We examined the relationship between long-term 
exposure to fine particulate matter with an aerodynamic diameter 
<2.5 micrometers (PM2.5), NO2, and tropospheric ozone and hospital 
admissions for 4 cardiovascular and respiratory outcomes (myocardial 
infarction, ischemic stroke, atrial fibrillation and flutter, and pneumonia) 
among the Medicare population of the United States. We used a doubly 
robust method for our statistical analysis, which relies on both inverse 
probability weighting and adjustment in the outcome model to account 
for confounding. The results from this regression are on an additive scale. 
We further looked at this relationship at lower pollutant concentrations, 
which are consistent with typical exposure levels in the United States, and 
among potentially susceptible subgroups.

RESULTS: Long-term exposure to fine PM2.5 was associated with an 
increased risk of all outcomes with the highest effect seen for stroke with 
a 0.0091% (95% CI, 0.0086–0.0097) increase in the risk of stroke for 
each 1-µg/m3 increase in annual levels. This translated to 2536 (95% CI, 
2383–2691) cases of hospital admissions with ischemic stroke per year, 
which can be attributed to each 1-unit increase in fine particulate matter 
levels among the study population. NO2 was associated with an increase 
in the risk of admission with stroke by 0.00059% (95% CI, 0.00039–
0.00075) and atrial fibrillation by 0.00129% (95% CI, 0.00114–0.00148) 
per ppb and tropospheric ozone was associated with an increase in the 
risk of admission with pneumonia by 0.00413% (95% CI, 0.00376–
0.00447) per parts per billion. At lower concentrations, all pollutants were 
consistently associated with an increased risk for all our studied outcomes.

CONCLUSIONS: Long-term exposure to air pollutants poses a significant 
risk to cardiovascular and respiratory health among the elderly population 
in the United States, with the greatest increase in the association per unit 
of exposure occurring at lower concentrations.

Long-Term Association of Air Pollution and  
Hospital Admissions Among Medicare Participants 
Using a Doubly Robust Additive Model 
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Recent studies looking at the nonfatal health ef-
fects of air pollution have shifted their focus from 
short- to long-term exposure.1–17 The effect esti-

mates from studies on long-term exposure tend to be 
larger than studies on short-term exposure.9,18 Further-
more, more studies are now exploring multiple air pol-
lutants simultaneously in recognition of the fact that air 
pollution is a mixture of compounds with varying tox-
icities.7,15,19 These changes suggest that current regula-
tions may need to be amended. Some pollutants such 
as tropospheric ozone (O3) do not have any national 
regulations on long-term exposure.

As research on the effect of long-term exposure to 
air pollution and health continues to proliferate, most 
of the current studies focus on mortality outcomes and 
estimate effects on a multiplicative scale, which are 
more difficult to interpret clinically because they de-
pend on the distribution of other risk factors.10,11,20,21 
Cox proportional hazards models, for example, result 
in hazard ratios that are often interpreted interchange-
ably with relative risks, even though they are not the 
same.22 Multiplicative models also make it more diffi-
cult to evaluate effect modification and identify vulner-
able subpopulations. Cox proportional hazards models 
have multiplicative interactions built in to the model, 
which limits interpretability of further interactions in 
the model. Moreover, the Cox proportional hazards 
model provides an estimate of the effect of exposure 
that is conditional on the covariates and the baseline 
hazard. This makes use of those coefficients to estimate 
the attributable cases or risk problematic. In an additive 
model, the coefficients represent the risk difference as 
a result of exposure and the coefficients for interaction 

terms represent the additional risk difference in the sub-
population without reference to the baseline hazard or 
conditional on the distribution of the covariates. In addi-
tion, few studies use the propensity score–based doubly 
robust method that is often required to sway regulatory 
policy.7,23–25 This limits knowledge on nonfatal outcomes 
and limits our ability to make convincing inferences to 
convince regulators. The studies that use causal meth-
ods often explore a single pollutant at a time and not 
the variety of compounds that comprise air pollution.

To address this gap, our study examines the relation-
ship between average annual fine particulate matter 
(fine particulate matter with an aerodynamic diameter 
<2.5 micrometers [PM2.5]), NO2, and O3, and 4 cardio-
vascular and respiratory hospitalization outcomes (myo-
cardial infarction [MI]; ischemic stroke; atrial fibrillation 
and flutter; and pneumonia) using a doubly-robust ad-
ditive model (DRAM) in fee-for-service Medicare benefi-
ciaries across the contiguous United States from 2000 
to 2016. In these models, we adjusted for multiple pol-
lutants. We further evaluated effect measure modifica-
tion (EMM) by demographic characteristics to identify 
particularly susceptible subpopulations.

METHODS
The data and materials used in this study will not be made 
available publicly or to other researchers because of restric-
tions in the data use agreement with the Centers for Medicare 
and Medicaid Services (CMS). However, CMS data are pub-
licly available to researchers on completion of separate data 
use agreements. In this study, we examined the relationship 
between long-term exposure to (1) PM2.5, NO2, and O3 and 
(2) first hospital admissions with several cardiovascular and 
respiratory diseases on an additive scale.

Study Population
Our full cohort consisted of all fee-for-service Medicare ben-
eficiaries who were 65 years of age or older and who lived in 
the contiguous United States between 2000 and 2016. These 
data were derived from the Medicare denominator file and the 
Medicare Provider Analysis and Review file. We created a sepa-
rate dataset for each outcome of interest. Patients entered the 
cohort on January 1 of the year after enrollment and were 
followed until they developed the outcome of interest, died, 
were censored, or reached the end of the follow-up time.

Exposure Assessment
PM2.5, O3, and NO2 levels were derived from high-resolution 
spatiotemporal ensemble models, each of which combined 
estimates from 3 different machine learning algorithms, 
including a neural network, a gradient boosting machine, and 
a random forest.26–28

The models used hundreds of predictors including land use 
terms, chemical transport model predictions, meteorologic 
variables, and satellite measurements to estimate daily levels 
of the pollutants on a scale of 1 km × 1 km. The advantage 
of using these machine learning techniques is that they make 

Clinical Perspective

What Is New?
•	 Long-term exposure to air pollution was associated 

with an increased risk of hospital admissions with 
cardiovascular and respiratory outcomes on an 
additive scale among the elderly population of the 
United States.

•	 Each unit increase in levels of particulate matter, 
nitrogen dioxide, and ozone were associated with 
thousands of additional admissions each year.

What Are the Clinical Implications?
•	 Air pollution should be considered as a risk factor 

for cardiovascular and respiratory disease.
•	 The risk persists even at levels below current 

national and international guidelines.
•	 Patients should be conscious of the air quality in 

the region where they live to avoid harmful expo-
sure over long periods of time.
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no assumptions about the functional form of the relationships 
between the predictors and the outcome. The quality of the 
estimates was assessed using 10-fold cross-validation against 
measured values at Environmental Protection Agency moni-
toring sites across the United States. The resulting R2 values of 
0.89, 0.84, and 0.86 for the annual averages of PM2.5, NO2, 
and O3, respectively, show excellent model performance.26–28 
Grid-cell values were averaged across zip codes. Exposure was 
assigned on the basis of the residential zip code of the ben-
eficiary. Long-term exposure in our study is defined as the 
calendar year average of daily estimates.

Outcome Assessment
The dataset contains all hospital admissions for Medicare fee-
for-service beneficiaries from 2000 through 2016. Medicare 
used International Classification of Diseases, Ninth Revision 
(ICD-9) codes through the end of the third quarter of 2015 
and then switched to International Classification of Diseases, 
Tenth Revision (ICD-10). Primary discharge codes for myo-
cardial infarction were defined as ICD-9 codes 410.X0 and 
410.X1 and ICD-10 code I21 as the primary discharge code. 
Primary discharge codes for ischemic stroke were defined 
as ICD-9 codes 433.X1, 434.X1, and 436, and ICD-10 code 
I63 as the primary discharge code. Primary discharge codes 
for pneumonia were defined as ICD-9 codes 003.22, 011.6, 
055.1, 073.0, 115.05, 115.15, 115.95, 480, 481, 482, 483, 
484, 485, 486, 487.0, 488.01, 488.11, 488.81, 516.3, 
517.1, and 997.32, and ICD-10 codes A01.03, A02.22, 
A20.2, A21.2,A22.1, A37.X1, A42.0, A43.0, A48.1, A54.84, 
A69.8, B01.2, B05.2, B06.81, B25.0, B37.1, B38.0,B39.0, 
B44.0, B44.1, B58.3, B59, B77.81, J15, J09.X1, J10.0, J11.0, 
J12, J13, J14, J17, J18, J84.2, J85.1, and J95.851 as primary 
discharge codes. Primary discharge codes for atrial fibrillation 
and flutter were defined as ICD-9 code 427.3 and ICD-10 
code I48 as the primary discharge codes.

Covariate Assessment
We obtained data on individual-level covariates sex, race, age 
group, and Medicaid eligibility from the Medicare denomina-
tor file. We used data from the US Census and the American 
Community Survey to find zip code–level socioeconomic data: 
proportion of the population >65 years of age living below 
the poverty line, population density, median value of owner 
occupied properties, proportion of the population listed as 
Black, median household income, proportion of housing units 
occupied by the owner, proportion of the population identi-
fied as Hispanic, and proportion of the population >65 years 
of age who had not graduated from high school. Measured 
data were available for 2000 and 2010 through 2016. Data 
for all other years and missing values were obtained using 
linear interpolation and extrapolation.

The lung cancer hospitalization rate in each zip code was 
used as a proxy for smoking and was derived from Medicare 
Provider Analysis and Review.29–31

We derived zip code–level data on mean body mass 
index and the smoking rate from the Behavioral Risk Factor 
Surveillance System. Behavioral Risk Factor Surveillance 
System data were collected at the county level and then 
linked to relevant zip codes and temporally interpolated using 
linear regression to fill in missing values.

We obtained zip code–level data on several access-to-
care variables: proportion of Medicare beneficiaries with at 
least 1 hemoglobin A1c test in a year; proportion of elderly 
diabetic beneficiaries who had a lipid panel test in a year; 
proportion of beneficiaries who had an eye examination in a 
year; proportion of  beneficiaries with at least 1 ambulatory 
doctor visit in a year; and proportion of female beneficiaries 
who had a mammogram during a 2-year period. These were 
obtained from the Dartmouth Atlas of Health Data. Data 
were collected at the hospital service area–level and linked 
to the relevant zip code. Missing values were filled in using 
linear interpolation. We also included region of residence to 
account for geographic differences and distance to hospital 
as a variable to measure access to health care. The distance to 
the nearest hospital was calculated from the centroid of the 
residential zip code of the patient. Hospital locations across 
the United States were derived from an ArcGIS dataset.32

Observations with missing exposure or covariate infor-
mation were assumed to be missing at random and were 
excluded from further analysis. These represented less than 
1% of the data.

Statistical Analysis
We examined the relationship between long-term exposure 
to PM2.5, NO2, O3, and admissions with cardiovascular and 
respiratory outcomes using a doubly robust additive model 
(DRAM). Specifically, confounding is accounted for through 2 
mechanisms: first, in inverse probability weights of exposure; 
and second, by adjustment in the outcome regression model. 
If either of the models is correctly specified, the estimated 
coefficient is unbiased.33 The equation for this model is as 
follows:

Pr Admissions x s vij ij ij( ) = + + ( ),β β γ0
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where Pr Admissionsij( )  represents the probability of the 
outcome for individual i in year j, x represents the exposure, 
v represents the vector of covariates, and γ represents the 
parameterization (eg, coefficients) of the covariates. In this 
case, the parametrization was assumed to be linear. This 
equation is weighted using stabilized inverse probability 
weighting for exposure from the following formula:

SW
f x

f x vij =
( )
( )
|

where x represents the exposure and v represents the covari-
ates. In this case, we defined f(x|v) as the probability density 
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of the exposure on the basis of a linear regression with the 
exposure of interest as the outcome and the covariates and 
other pollutants as the predictors. For example, in the model 
for PM2.5, we adjusted for individual and socioeconomic and 
behavioral covariates as well as O3 and NO2. The same covari-
ates and other pollutants were adjusted for in the outcome 
regression model as well.

Assuming that (1) the underlying true out-
come regression model follows the additive structure 
Pr Admissions x s vij ij ij( ) ’ , ,= + + ( )β β γ0  where s' may or may not 

be the same as s; and (2) either the inverse probability weighting 
or the functional form of s is correctly specified (ie, s = s'), 
the resulting risk difference estimate is consistent. To account 
for outliers, we trimmed the weights: values >99th percentile 
were given the value at the 99th percentile and values <1st 
percentile were given the value at the 1st percentile.

We ran 200 bootstraps of the weighted outcome regres-
sion for each analysis. The median value was used as the coef-
ficient of interest and the 2.5 percentile and 97.5 percentile 
constituted the 95% CI.

We evaluated effect modification by sex, race, Medicaid 
eligibility, and age group using stratification. The coefficients 
from each stratum were compared with one another to iden-
tify vulnerable subpopulations. We also conducted a sub-
group analysis on person-years with pollutant levels below 
international regulations. For PM2.5, we restricted to individu-
als with levels <10 µg/m3 for all years; for NO2, we restricted 
to individuals with levels <20 ppb for all years; and for O3, 
we restricted to individuals with levels <40 ppb for all years 
with effect measure modification analyses for these subsets 
as well. As a sensitivity analysis, we calculated E-values for 
our main results. E-values measure the magnitude of the 
relationship a hypothetical unmeasured confounder would 
have to have with both the exposure and the outcome to 
fully account for the effect estimate that has been found.34 A 
schematic of how the study was constructed and carried can 
be seen in Figure 1.

All data cleaning and statistical analyses were conducted 
in R Statistical Software (version 3.6.1) and the inverse 
probability weighting and outcome regression estimates 
were obtained using the “biglm” package.35 Data cleaning 
and analysis was completed on the Research Computing 
Environment as part of Research Computer at Harvard 
University Faculty of Arts and Sciences.

This study was approved by the Harvard School of Public 
Health Institutional Review Board.

RESULTS
The cohort consisted of 63 006 793 Medicare benefi-
ciaries who used the fee-for-service program from 2000 
to 2016 in the contiguous United States. Demographic 
characteristics for these individuals can be seen in Ta-
ble 1. There are slightly more women than men, and 
most participants are White. Of the observations used 
in the analyses, 85% were not Medicaid-eligible, and 
about half were between 64 and 75 years of age. The 
majority of the observations came from the southern 
and midwestern regions of the United States.

Table  2 shows the distribution of air pollutants 
across the contiguous United States from 2000 to 
2016. Annual average levels of PM2.5 and NO2 were 
generally low, below the Environmental Protection 
Agency annual standard of 12 µg/m3 and 53 ppb. O3 
does not have an annual standard level, but the levels 
are below the daily standard of 70 ppb.36 This dis-
tribution also reveals that our lower exposure analy-
sis, which was subset to only include individuals with 
lower values, was largely consistent with prevailing 
levels that a person might typically experience.

The distribution of weights across person-years in 1 
of our datasets (MI)  can be seen, after trimming, in Ta-
ble 3. The distribution across years is largely consistent, 
and no observation received extreme weight values.

The results of our primary analysis can be seen in 
Figure  2A and Table  4. Long-term exposure to PM2.5 
was associated with a statistically significant increase 
in the risk of all outcomes. This translated to thou-
sands of hospital admissions attributable to air pol-
lution per year. For example, there were 2536 (95% 
CI, 2383–2691) additional admissions for each 1 µg/
m3 increase in PM2.5 for ischemic stroke,  637 (95% 
CI, 483–814) for myocardial infarction, 1575 (95% CI, 
1426–1691) for atrial fibrillation, and 2489 (95% CI, 
2245–2738) for pneumonia. Long-term exposure to 

Figure 1. Study design schematic.
Flow chart of how study was conducted step-by-step.
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NO2 was associated with an increased risk of stroke 
and atrial fibrillation and showed a negative effect for 
admissions of MI and pneumonia. Long-term exposure 
to O3 led to mixed results; it increased the risk of pneu-
monia admissions, but the coefficient was negative for 
stroke and atrial fibrillation. The E-values suggested 
that the PM2.5 model was the most robust to unmea-
sured confounding (the E-values are reported on the 
multiplicative scale). This meant that if an unmeasured 
confounder exits, it would need to have a stronger 
relationship with both the exposure and the outcome 
to fully explain away the harmful effects we observed. 
In general, the trend showed higher E-values for rela-
tionships where we found harmful effects versus those 
that had negative coefficients.

We further looked at hospital admissions for indi-
viduals who had low pollutant concentration through-
out the follow-up period (Figure 2B). For all pollutants, 
the association of hospital admissions increased for 

cardiovascular and respiratory outcomes with larger 
effect size estimates. This shows that the greatest in-
crease in the risk of admissions per unit change in ex-
posure occurs at lower concentrations of air pollutants.

One of the advantages of our additive model is that 
effect measure modification can be measured on an ad-
ditive scale. We assessed effect modification by Med-
icaid eligibility, sex, race, and age group for all of our 
pollutants and outcomes. Figure 3A shows the results 
for this analysis and MI. The results vary by pollutant. 
For PM2.5, older beneficiaries were at a higher risk of 
admission as compared with younger beneficiaries, 
and White individuals had a higher risk of admission as 
compared with Black individuals. For NO2, the stratified 
analysis was generally negative. However, Black individ-
uals were at a higher risk than White individuals. For O3, 
those who were Medicaid-eligible, male, and younger 
had a higher probability of hospital admission with an 
MI as compared with those who were not Medicaid-
eligible, female, and older, respectively.

The results of the EMM analysis for ischemic stroke 
can be seen in Figure 3B. For PM2.5, older participants 
had a significantly higher risk of admission than young-
er individuals. For NO2, those who were not Medicaid-
eligible were at a higher risk than those who were 
Medicaid-eligible and Black individuals were at a higher 
risk than White individuals. The results for the stratified 
ozone analysis showed negative coefficients.

Figure 3C shows the results of the EMM analysis 
for atrial fibrillation and flutter. For PM2.5, those not 
Medicaid-eligible, White, and older were at increased 
risk of admission. Similarly, for NO2, those who were 
not Medicaid-eligible and older had a higher prob-
ability of being admitted with atrial fibrillation than 
those who were Medicaid-eligible and younger. For 
ozone, the stratified analyses showed a generally 
protective effect.

The results for the EMM analysis of pneumonia 
are shown in Figure  3D. For PM2.5, those who were 
Medicaid-eligible, Black, or in older age groups are at 
increased risk of admission with pneumonia as com-
pared with those who are not. In contrast, the stratified 
analyses for NO2 and pneumonia show a negative ef-
fect estimate for most subsets. Last, exposure to ozone 
was associated with a higher probability of admission 
with atrial fibrillation and flutter among those who are 
Medicaid-eligible, White, or in older age groups.

Table 1.  Demographic Characteristics of Medicare Fee-for-Service 
Patients

Variable N (%)

Individual characteristics (N=63 006 793)

  Sex

    Female 34 725 250 (55.11)

    Male 28 281 543 (44.89)

  Race

    White 53 207 613 (84.45)

    Black 5 511 770 (8.75)

    Other 4 287 410 (6.80)

Demographic characteristics, person-years (N=538 173 801)

  Medicaid eligibility

    Yes 76 042 269 (14.13)

    No 462 131 532 (85.87)

  Age group, y

    65–74 277 788 354 (51.62)

    75–84 181 809 593 (33.78)

    ≥85 78 575 854 (14.60)

  US region

    Northeast 105 812 685 (19.66)

    Midwest 132 107 154 (24.55)

    South 209 831 299 (38.99)

    West 90 422 663 (16.80)

Table 2.  Exposure Distribution of Pollutants Across Person-Years

Variable Minimum
10th  
Percentile

25th  
Percentile Mean Median

75th  
Percentile

90th  
Percentile Maximum

PM2.5 (µg/m3) 0.01 6.36 8.11 10.21 10.05 12.29 14.32 30.92

NO2 (ppb) 0.01 8.13 11.51 19.50 17.44 25.88 33.88 127.63

O3 (ppb) 18.31 33.88 36.56 38.77 38.75 40.92 43.74 65.09

O3 indicates tropospheric ozone; and PM2.5, fine particulate matter with an aerodynamic diameter <2.5 micrometers. 
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Table 3.  Distribution of Inverse Probability Weights Across Years for Myocardial Infarction, After Trimming

Pollutant 
and year Minimum 10th 25th Mean Median 75th 90th Maximum

PM2.5

  2000 0.159 0.342 0.614 1.301 1.024 1.386 2.319 8.414

  2001 0.159 0.359 0.652 1.285 1.031 1.366 2.212 8.414

  2002 0.159 0.457 0.746 1.320 1.059 1.360 2.199 8.414

  2003 0.159 0.462 0.731 1.264 1.041 1.341 2.054 8.414

  2004 0.159 0.543 0.806 1.306 1.072 1.359 2.089 8.414

  2005 0.159 0.425 0.696 1.258 1.030 1.339 2.112 8.414

  2006 0.159 0.645 0.873 1.292 1.076 1.337 1.980 8.414

  2007 0.159 0.563 0.812 1.275 1.060 1.325 1.996 8.414

  2008 0.159 0.737 0.973 1.325 1.104 1.370 1.992 8.414

  2009 0.159 0.688 0.969 1.354 1.116 1.409 2.095 8.414

  2010 0.159 0.631 0.929 1.299 1.102 1.369 1.987 8.414

  2011 0.159 0.722 0.999 1.342 1.119 1.396 2.023 8.414

  2012 0.159 0.619 0.942 1.396 1.116 1.459 2.243 8.414

  2013 0.159 0.611 0.929 1.469 1.112 1.530 2.537 8.414

  2014 0.159 0.537 0.893 1.387 1.098 1.453 2.329 8.414

  2015 0.159 0.523 0.855 1.442 1.088 1.522 2.598 8.414

  2016 0.159 0.421 0.750 1.536 1.032 1.640 3.122 8.414

  All 0.159 0.512 0.836 1.346 1.084 1.402 2.217 8.414

NO2

  2000 0.094 0.382 0.800 1.405 1.040 1.398 2.434 10.817

  2001 0.094 0.359 0.790 1.393 1.034 1.369 2.371 10.817

  2002 0.094 0.409 0.771 1.338 1.021 1.326 2.256 10.817

  2003 0.094 0.395 0.754 1.321 1.018 1.310 2.212 10.817

  2004 0.094 0.517 0.801 1.322 1.020 1.301 2.136 10.817

  2005 0.094 0.485 0.778 1.318 1.017 1.309 2.160 10.817

  2006 0.094 0.527 0.778 1.292 1.015 1.283 2.031 10.817

  2007 0.094 0.502 0.725 1.292 0.993 1.283 2.076 10.817

  2008 0.094 0.546 0.769 1.275 1.000 1.259 1.988 10.817

  2009 0.094 0.542 0.759 1.266 0.994 1.250 1.996 10.817

  2010 0.094 0.574 0.776 1.283 0.997 1.252 1.995 10.817

  2011 0.094 0.599 0.794 1.290 1.003 1.260 2.018 10.817

  2012 0.094 0.670 0.837 1.316 1.014 1.269 1.966 10.817

  2013 0.094 0.611 0.791 1.316 1.006 1.264 1.997 10.817

  2014 0.094 0.598 0.796 1.331 1.009 1.255 2.062 10.817

  2015 0.094 0.625 0.804 1.337 1.011 1.259 2.048 10.817

  2016 0.166 0.628 0.808 1.447 1.021 1.329 2.297 10.817

  All 0.094 0.548 0.786 1.327 1.014 1.292 2.115 10.817

O3

  2000 0.177 0.490 0.722 1.034 0.910 1.066 1.486 6.173

  2001 0.177 0.584 0.807 1.072 0.952 1.084 1.486 6.173

  2002 0.177 0.615 0.834 1.073 0.956 1.089 1.454 6.173

  2003 0.177 0.573 0.830 1.042 0.955 1.075 1.391 6.173

  2004 0.177 0.512 0.775 1.035 0.943 1.066 1.401 6.173

  2005 0.177 0.607 0.808 1.062 0.948 1.067 1.432 6.173

(Continued )



Danesh Yazdi et al� Air Pollution and Cardiovascular Admissions

April 20, 2021� Circulation. 2021;143:1584–1596. DOI: 10.1161/CIRCULATIONAHA.120.0502521590

OR
IG

IN
AL

 R
ES

EA
RC

H 
AR

TI
CL

E

When looking at the EMM analysis for those exposed 
to lower concentrations, the harmful effects seen previ-
ously persisted across strata for all pollutants and across 
outcomes (Figure 4). For MI, PM2.5 and NO2 were associ-
ated with an increased risk of the admissions for men, 
elderly adults, and those who were Medicaid-eligible as 
compared with those who were not. O3 increased the 
risk of hospital admission with MI for men and Black 
individuals (Figure 4A).

For ischemic stroke (Figure 4B), PM2.5 increased the 
risk of admission for those who were Medicaid-eligible, 
women, or elderly. For NO2, the more vulnerable sub-
populations were those who were Medicaid-eligible, 
Black, or elderly. For O3, those who were Medicaid-eli-
gible, women, or White were at increased risk of stroke.

PM2.5 and NO2 increased the risk of atrial fibrillation 
and flutter among those who were White and very 
elderly adults, as compared with those who were not. 
O3 was found to particularly increase the risk of ad-
mission among those who were not Medicaid-eligible 
and who were White.

For pneumonia, all pollutants increased the risk of 
hospital admissions among those who were Medicaid-
eligible and elderly as compared with those who were 
not. On the other hand, PM2.5 was associated with an 
increased risk of atrial fibrillation among those who 
were White while O3 was associated with an increased 
risk among those who were Black.

DISCUSSION
The results of our study showed several important 
trends. First, PM2.5 was associated with an increased risk 
of hospital admissions with all of our studied outcomes. 
This was particularly true for elderly individuals who 
were at increased risk. Second, NO2 was associated 
with an increased the risk of stroke and atrial fibrillation 

and flutter. This trend was largely consistent across 
strata. However, O3 was negative in the cardiovascular 
outcomes but was associated with an increased prob-
ability of pneumonia. This is consistent with other lit-
erature linking ozone to respiratory outcomes.37–39 This 
seemed to suggest that NO2 and O3 confound each 
other’s effects or may be confounded by an unknown 
or unmeasured variable. Support for this comes from 
the pattern of NO2, showing positive associations for 
outcomes where O3 shows negative associations and 
vice versa. The partial correlation coefficient between 
the 2 in our data was −0.186, which shows a mod-
erate negative correlation after adjusting for all other 
variables. Moreover, the E-values tended to be smaller 
for the negative coefficients, which implies that those 
relationships are more susceptible to unmeasured con-
founding as compared with the harmful effects that 
were less susceptible to unmeasured unconfounding. 
It is also likely that there is greater exposure measure-
ment error at higher concentrations because the mod-
els were primarily trained on monitoring data at lower 
concentrations. This could account for the inconsistent 
results in the full range of exposure analyses.

At lower concentrations, all pollutants increased the 
probability of hospital admissions with larger effect esti-
mates than the primary results. That the negative effects 
of NO2 and O3 disappear when restricted to pollution con-
centrations in the more normal range suggests that those 
effects in the full analysis may be attributable to outlier 
exposures, more exposure error, and stronger negative 
correlations between high NO2 and low O3 than for more 
common concentrations. The higher effect sizes for risk 
of cardiovascular and respiratory outcomes at the lower 
end of air pollution exposure is consistent with several 
other studies in this population looking at health effects 
at lower concentrations.7,21,40,41 In the subgroup analyses, 
PM2.5 and NO2 were associated with an increased risk of 

  2006 0.177 0.537 0.750 1.010 0.921 1.038 1.393 6.173

  2007 0.177 0.563 0.798 1.075 0.951 1.092 1.505 6.173

  2008 0.177 0.575 0.808 1.060 0.945 1.051 1.391 6.173

  2009 0.177 0.413 0.774 1.061 0.954 1.120 1.506 6.173

  2010 0.177 0.692 0.844 1.168 0.960 1.127 1.651 6.173

  2011 0.177 0.648 0.832 1.113 0.953 1.077 1.514 6.173

  2012 0.177 0.675 0.865 1.115 0.963 1.113 1.536 6.173

  2013 0.177 0.707 0.905 1.199 0.990 1.202 1.682 6.173

  2014 0.177 0.705 0.895 1.128 0.974 1.131 1.514 6.173

  2015 0.177 0.709 0.905 1.132 0.981 1.148 1.539 6.173

  2016 0.177 0.699 0.896 1.104 0.970 1.106 1.472 6.173

  All 0.177 0.595 0.829 1.088 0.956 1.098 1.491 6.173

O3 indicates tropospheric ozone; and PM2.5, fine particulate matter with an aerodynamic diameter <2.5 micrometers.

Table 3.  Continued

Pollutant 
and year Minimum 10th 25th Mean Median 75th 90th Maximum
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Figure 2. Primary and secondary analyses results.
A, Primary analyses results: median risk difference (95% CI) for each unit increase in air pollutants and hospital admission with cardiovascular and respiratory 
outcomes across the full range of exposure. B, Secondary analyses results: median risk difference (95% CI) for each unit increase in air pollutants and hospital 
admission with cardiovascular and respiratory outcomes at lower concentrations of exposure.
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hospitalization for cardiovascular outcomes among very 
elderly adults in both the full exposure range and the 
lower concentration range. Those who were Medicaid 
eligible were at increased risk of pneumonia attributable 
to PM2.5 and O3 in both the full and low concentration 
groups. Individuals who identified as White were at great-
er risk of atrial fibrillation attributable to NO2 than those 
who identified as Black. In contrast, those who identified 
as Black were at greater risk of stroke attributable to NO2 
than those who identified as White.

The existing literature on the nonfatal health effects 
of long-term exposure to air pollution shows mixed re-
sults depending on the pollutants and the population 
studied and the method used. A previous study in the 
same population that focused on the southeastern re-
gion of the United States found both PM2.5 and O3 to 
be risk factors for MI, stroke, and pneumonia on the 
multiplicative scale, while we found ozone to be nega-
tive for ischemic stroke on an additive scale here in the 
full exposure model,7 but a risk factor at more modest 
concentrations. Researchers working with the ESCAPE 
(European Study of Cohorts for Air Pollution Effects) 
data looked at several air pollutants and the incidence 
of acute coronary disease between 1997 and 2007 in 
Finland, Sweden, Denmark, Germany, and Italy. Both 
PM2.5 and NO2 were nonsignificantly associated with an 
increased hazard of acute coronary events in an adjust-
ed model.10 They further found that neither PM2.5 nor 
NO2 were significantly associated with stroke incidence 
in the ESCAPE cohort.11 This contrasts with our results 
that found PM2.5 to be harmful and NO2 to be negative 
for MI, and both pollutants to be harmful for stroke (in-
cluding all observations, though both were harmful for 
all outcomes at lower concentrations). Among a cohort 

of women enrolled in the Women’s Health Initiative , 
long-term exposure to PM2.5 was associated with a high-
er hazard of stroke, though no relationship was found 
with MI.42 A case-control study nested in the Worcester 
Heart Attack cohort found positive but nonsignificant 
association between long-term exposure to PM2.5 and 
acute MI overall.12 A study in the Danish, Diet, Cancer 
and Health cohort between 1993 and 2006 looked at 
ischemic stroke and found a nonsignificant increase in 
the hazard of the incidence of disease with long-term 
exposure to NO2.

43 In a study among the EPIC (European 
Prospective Investigation into Cancer and Nutrition) co-
hort in Greece, NO2 was not associated with an increase 
in the hazard of stroke and ischemic heart disease.13 A 
study done in South Korea examining the effect of long-
term exposure to air pollutants, including PM2.5 and NO2, 
found similar results to ours. PM2.5 increased the hazard 
of MI and ischemic stroke, in both single and multipol-
lutant models, and ozone showed a decreased hazard of 
both conditions. However, unlike our study, they found 
NO2 to increase the risk of MI.15 A study of British pa-
tients between 2003 and 2007 looked at air pollutants 
including NO2 and O3 and incident cases of cardiovascu-
lar disease, and researchers found largely nonsignificant 
results for MI, stroke, and arrythmia in their single pollut-
ant model.16 Last, a meta-analysis of long-term exposure 
to PM2.5 as a risk factor for stroke found a 6.4% (95% CI, 
2.1–10.9%) increase in the hazard of admission for each 
5-µg/m3 increase in PM2.5 levels which is consistent with 
our results of an increased probability of stroke.17

The harm caused by air pollution to the cardiovascu-
lar and respiratory systems is generally attributed to its 
ability to increase inflammation and oxidative stress and 
disrupt the coagulation cascade.44–47 In SEBAS (Social 

Table 4.  Main Analyses Results and Sensitivity Analyses (E-Values)

Outcome Pollutant
Median risk  
difference (%) Lower 95% CI (%) Upper 95% CI (%)

Attributable increase 
in the number of 
cases* (95% CI)

E-value (multi-
plicative scale)

Myocardial infarction PM2.5 (µg/m3) 0.00231 0.00175 0.00295 637 (483–814) 1.0160

NO2 (ppb) −0.00084 −0.00103 −0.00067 N/A† 1.0096

O3 (ppb) −0.00024 −0.00052 0.00002 N/A† 1.0050

Stroke PM2.5 (µg/m3) 0.00914 0.00859 0.00970 2536 (2383–2691) 1.0323

NO2 (ppb) 0.00059 0.00039 0.00075 163 (108–208) 1.0080

O3 (ppb) −0.00278 −0.00300 −0.00246 N/A† 1.0175

Atrial fibrillation
and flutter

PM2.5 (µg/m3) 0.00569 0.00515 0.00611 1575 (1426–1691) 1.0253

NO2 (ppb) 0.00129 0.00114 0.00148 357 (316–410) 1.0119

O3 (ppb) −0.00072 −0.00091 −0.00047 N/A† 1.0088

Pneumonia PM2.5 (µg/m3) 0.00909 0.00820 0.01004 2489 (2245–2738) 1.0322

NO2 (ppb) −0.00134 −0.00158 −0.00110 N/A† 1.0121

O3 (ppb) 0.00413 0.00376 0.00447 1131 (1030–1224) 1.0215

*Per one-unit increase per year in pollutants.
†Negative values on a probability scale are not logical. As such, the attributable number of cases were not calculated.
O3 indicates tropospheric ozone; and PM2.5, fine particulate matter with an aerodynamic diameter <2.5 micrometers.
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Environment and Biomarkers of Aging Study) in Taiwan, 
changes in annual PM2.5 and O3 levels were associated 
with higher levels of systolic and diastolic blood pressure, 
total cholesterol, fasting glucose, hemoglobin A1c, and 
neutrophils. NO2 was associated with all, as well as el-
evated levels of interleukin-6 . Lipids, glucose levels, and 
inflammatory biomarkers are all risk factors for cardio-
vascular disease.48 Moreover, in the ESCAPE study, par-
ticipants showed decreased lung function, as measured 
by forced expiratory volume in 1 second and forced vital 
capacity, in response to NO2, which can be a marker of 
respiratory disease.49

Our study has numerous strengths that make the 
results particularly compelling. First, the coefficients ob-
tained are risk differences and do not require transfor-
mation to be interpretable. Furthermore, the coefficients 
are on the additive scale. This is particularly helpful for 
the stratified analyses in which the additional number 
of cases attributable to the variable can be identified 

directly and are of greater public health importance.50 
Second, this study uses a causal modeling approach. 
Randomized trials produce causal estimates because 
randomization renders intention-to-treat independent of 
other predictors of outcome. Propensity score methods 
try to achieve the same result. The inverse probability 
weights create a pseudo population in which exposure 
is independent from the measured confounders.51 If all 
confounders are measured and the model for the depen-
dence of exposure on confounders (used to create the 
weights) is correct, this approach will similarly produce 
a causal estimate. Given that we also control for the co-
variates, our approach is also doubly robust, meaning 
that if either the inverse probability weighting model or 
the outcome model are correctly specified, our estimates 
are unbiased and causal. Furthermore, we derived our 
estimates and CIs empirically using bootstrapping. In 
our model, we account for multiple air pollutants, which 
were estimated from prediction models on a fine scale, 
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Figure 3. Effect measure modification analyses: full range of exposure concentration.
Effect measure modification analyses: median risk difference (95% CI) for each unit increase in air pollutants and hospital admission with myocardial infarction 
(A), stroke(B), atrial fibrillation (C), and pneumonia (D) across the full range of exposure, within strata. Pairwise comparisons of coefficients were conducted. 
*Statistically significant differences (P<0.05). NO2, nitrogen dioxide; NS, nonsignificant difference; O3, tropospheric ozone; and PM2.5, fine particulate matter with 
an aerodynamic diameter <2.5 micrometers.
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allowing us to identify the more toxic components of the 
air pollution mixture while adjusting for others. Last, our 
study focuses on long-term effects, which have not been 
as thoroughly examined, but may be of greater impor-
tance in terms of the health effect of air pollution. This 
is particularly important to reaffirm, or in some cases es-
tablish, the need for long-term guidelines, such as for O3 
which does not even have national annual guidelines. 
Our study suggests that long-term O3 guidelines may 
be particularly necessary given the effect of long-term 
ozone on respiratory outcomes.

Our approach also had several limitations. The 
causal methodology we use relied on the strong as-
sumption of no unmeasured confounding which is not 
testable. Hence, causality is not proven, and can only 
be an interpretation, which should include support 
from toxicology. We did, however, calculate E-values 
to see the strength of the relationship a hypotheti-
cal unmeasured confounder would have to have with 
both the exposure and the outcome to fully account 

for the results we found. Moreover, we chose a more 
conservative approach and controlled for lung cancer 
rate as a proxy for smoking. However, air pollution is 
itself a risk factor for lung cancer. As such, we may be 
overcontrolling for smoking and underestimating the 
true effect size. We also assumed that loss to follow-up 
among our population was unrelated to air pollution. 
In addition, Medicare is an administrative database and 
billing codes could leave the door open to potential 
outcome misclassification. We expect that this will not 
be related to exposure to air pollution and nondifferen-
tial misclassification should bias the results to the null.

Conclusion
This study demonstrates that, on an additive scale, air 
pollution components pose a risk to human health, 
particularly among the very elderly population in the 
United States. The increase in the probability of hos-
pital admissions with cardiovascular and respiratory 
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Figure 4. Effect measure modification analyses: lower range of exposure concentration.
Median risk difference (95% CI) for each unit increase in air pollutants and hospital admission with myocardial infarction (A), stroke(B), atrial fibrillation(C), and  
pneumonia (D) at lower exposure concentrations, within strata. Pairwise comparisons of coefficients were conducted. *Statistically significant differences (P<0.05). 
NO2, nitrogen dioxide; NS, nonsignificant difference; O3, tropospheric ozone; and PM2.5, fine particulate matter with an aerodynamic diameter <2.5 micrometers.
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outcomes seems to be most pronounced at lower expo-
sure concentrations for all pollutants. Given that more 
than half of the US population is exposed to such levels, 
this issue should be of great concern to clinicians and 
policymakers alike.
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