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Objective: To identify DNA methylation related biomarkers in patients with breast
cancer (BC).

Materials and Methods: A total of seven BC methylation studies including 1,438 BC
patients or breast tissues were included in this study. An elastic net regularized Cox
proportional hazards regression (CPH) model was used to build a multi-5′-C-phosphate-
G-3′ methylation panel. The diagnosis and prognosis power of the panel was evaluated
and validated using a Kaplan–Meier curve, univariate and multivariable CPH, subgroup
analysis. A nomogram containing the panel was developed. The relationships between
the panel-based methylation risk and the immune landscape and genomic metrics
were investigated.

Results: Sixty-eight CpG sites were significantly correlated with the overall survival
(OS) of BC patients, and based on the result of penalized CPH, a 28-CpG site based
multi CpG methylation panel was found. The prognosis and diagnosis role of the
panel was validated in the discovery set, validation set, and six independent cohorts,
which indicated that higher methylation risk was associated with poor OS, and the
panel outperformed currently available biomarkers and remained an independent factor
after adjusting for other clinical features. The methylation risk was negatively correlated
with innated and adaptive immune cells, and positively correlated with total mutation
load, SCNA, and MATH.

Conclusions: We validated a multi CpG methylation panel that could independently
predict the OS of BC patients. The Th2-mediated tumor promotion effect—suppression
of innate and adaptive immunity—participated in the progression of high-risk BC.
Patients with high methylation risk were associated with tumor heterogeneity
and poor survival.
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INTRODUCTION

Breast cancer (BC) is still one of the most common causes
of cancer-related deaths among women in the world (Harbeck
and Gnant, 2017). With changes in lifestyle (obesity, radiation
exposure, reduction of physical exercise, drinking, hormone
replacement therapy during menopause, early age at first
menstruation, and having children late or not at all) and
the advancement of screening methods (self or clinical breast
exams, mammography, genetic screening, ultrasonography, and
imaging examination), the incidence of BC, in recent years,
has become higher and higher (Ghoncheh et al., 2016; Wang
et al., 2019). It was reported that nearly 1.7 million people were
diagnosed with BC worldwide, which resulted in nearly half a
million deaths (DeSantis et al., 2014; Ghoncheh et al., 2016;
Molinie et al., 2017). For non-invasive and localized BC patients,
surgical treatment is currently recognized as the standard of
care, and surgical treatment can also be combined with systemic
endocrine therapy, chemotherapy, and radiotherapy (Robert and
Turner, 2019). Although the advancement in the screening
and treatment options have made BC a chronic disease and
significantly prolonged the survival of patients, BC is reported
to have a recurrence rate of around 10% in early stage BC
patients. For patients with metastatic BC that is considered
an incurable disease with current existing treatment options,
systematic salvage therapies (including chemotherapy, endocrine
therapy, etc.) are recommended (Robert and Turner, 2019;
Yang and Polley, 2019). However, long-term survival for this
group of patients is dismal (less than 5%) (Vicini et al., 2018;
Yang and Polley, 2019).

In recent years, multigene tests for the early diagnosis of BC
have matured and emerged one after the other, which has greatly
improved the situation for diagnosis and therapy of BC (Duffy
et al., 2017; Colomer et al., 2018). However, there are still no
well accepted diagnosis and prognosis markers for BC based on
DNA methylation sites. In the present study, we tried to develop
a multi-5′-C-phosphate-G-3′ (CpG) site based DNA methylation
panel for the diagnosis and prognostication of patients with BC,
and confirm its prognostic role in several independent cohorts.

MATERIALS AND METHODS

Data Collection
In the present study, we included a total of seven BC
methylation studies. The DNA methylation profile of The
Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA)
(Cancer Genome Atlas, 2012; Ciriello et al., 2015), measured with
Illumina Human Methylation 450 BeadChip, included a total
of 890 BC samples and associated clinical information of BC
patients and was downloaded from UCSC Xena1. A total of 62,
118, 188, 70, and 58 BC samples were included in GSE37754
(Putluri et al., 2014; Terunuma et al., 2014; Tang et al., 2018),
GSE72245 (Jeschke et al., 2017), GSE75067 (Holm et al., 2016),
GSE78754 (Mathe et al., 2016), and GSE72251 (Jeschke et al.,

1https://xenabrowser.net/datapages/

2017), respectively, and there were 40 normal breast samples
and 80 BC samples in GSE666952. Bisulfite converted DNA from
the breast samples in the above datasets were hybridized to the
Illumina Infinium 450k Human Methylation Beadchip. mRNA
expression profile of the TCGA-BRCA including 1,217 samples
and somatic variant data in “maf” format, were downloaded
from GDC Data Portal3. The inclusion criteria of this study
were as follows: the patients were newly diagnosed with BC, the
patient’s survival information was well documented or the study
contained both normal breast sample and BC samples, and the
relevant BC patients received Illumina Human Methylation 450
BeadChip profiling.

Preprocessing and Differentially
Methylated CpG Site Analyses
The R package “ChAMP” was used to preprocess the beta-valued
matrix of the TCGA-BRCA methylation data (Tian et al., 2017).
Before the CpG methylation matrix was subjected to the ChAMP
pipeline, CpG sites containing more than 90% of missing values
in the matrix were deleted. Next, probes meeting the following
criteria were filtered: (1) probes from X and Y chromosomes, (2)
probes align to multiple locations, (3) probes in which the probed
CpG falls near a SNP, (4) non-CpG probes, and (5) probes with
less than three beads. Subsequently, the differentially methylated
positions between BC samples and paired normal breast samples
were identified through multiple linear models. Any probe that
satisfied adj.pvalue < 0.05 and | deltaBeta | > 0.3 was considered
significantly methylated.

Identification of Multi-CpG Methylation
Panel and Validation of Its
Prognostication Value
Differentially methylated CpG sites were subjected to univariate
Cox proportional hazards regression model (CPH) to screen CpG
sites correlated with the overall survival (OS) of BC patients in the
TCGA-BRCA. Then, the BC samples in the TCGA-BRCA cohort
were randomly classified into a discovery set and validation set
according to the ratio of 3:2. In the validation cohort, the OS-
related CpGs were included in an elastic net regularized CPH
model, which was optimized based on two hyperparameters (α
and λ) tuned using 10-fold cross validation (Sill et al., 2014).
Then, we performed feature selection according the elastic net
regularized CPH, namely, CpGs with coefficients equaled to 0
were removed. Thus, the multi-CpG methylation panels were
constructed based on the regularized CPH, and the associated
risk scores of each BC patient in the discovery set, validation
set, and other independent validation cohorts were derived based
on the coefficients of the each CpG site in the CPH model
and their corresponding beta values. Time-dependent receiver
operator curve (ROC) at different time points ( 1-, 3-, 5-, 7-, 10-,
and 15-years) were drawn to verify the prediction performance
of the multi-CpG methylation panel using the R package
“survivalROC.” Then, the optimal cutoff, obtained according

2https://www.ncbi.nlm.nih.gov/gds/?term=GSE66695
3https://portal.gdc.cancer.gov
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to the results of time-dependent ROC, was used to classify
patients into low-risk group and high-risk group. The Kaplan–
Meier (KM) curve and univariate and multivariable CPH model
were applied to characterize the prognostic role of the multi-
CpG site panel. Moreover, BC patients in the discovery set and
validation set were further divided into several subgroups, i.e.,
triple-negative BC (TNBC) versus non-triple negative BC (non-
TNBC), early stage (stage I and stage II) BC versus advanced
(stage III and stage IV) BC, young BC (BC patients younger than
65 years) versus old BC (BC patients older 65 years). Then, KM
curves were drawn in these subgroups, respectively.

Finally, to further validate the prognostication value the multi-
CpG methylation panel, we analyzed the correlations between the
methylation levels of specific CpGs in the panel and associated
mRNA expressions using Spearman’s correlation analysis in
the discovery set and validation set, and BC samples were
divided into two groups based on the cutoff estimated using the
“surv_cutpoint” function in the R package “survminer,” and then,
KM curves were also drawn to evaluate the survival differences
between different risk groups.

Clinical Application of the Multi-CpG
Methylation Panel
In order to further clarify the application value of this multi-CpG
methylation panel in clinical practice, we included it with other
clinical phenotypes of BC patients in the discovery set (such as
age and pathological stage) into a multivariable survival model,
and based on this model, we drew a nomogram for clinicians to
make decisions in the clinic. The performance of the nomogram
was internally validated using 1,000 bootstraps and was calibrated
at 3- and 5-years. Meanwhile, decision curve analysis (DCA;
Vickers and Elkin, 2006) was perform to clarify the clinical benefit
of the multi-CpG methylation.

Comparison of the Multi-CpG
Methylation Panel With Other
Well-Known Signatures in Predictive
Performance
Currently, several multi-CpG methylation panels including
some DNA methylation and mRNA expression-based panels
have been published. Therefore, based on the discovery set,
validation set, and independent cohorts, we tried to compare the
performance of the multi-CpG panel with the currently available
prognostic signatures in terms of concordance index (C-index).
The C-indexes of the signatures were calculated and compared
using the R/Bioconductor package “survcomp” (Haibe-Kains
et al., 2008; Schroder et al., 2011).

Analyzing the Correlation Between the
Multi-CpG Methylation Panel and
Immune Infiltration
Thanks to the specific gene list of 24 immune cells provided
by Bindea et al. (2013), we calculated the immune infiltration
scores for specific immune cells based on the RNA-seq data in the
TCGA-BRCA cohort using the ssGSEA method in the R package

GSVA (Hanzelmann et al., 2013), and then the correlations
between the multi-CpG methylation panel and infiltration score
of specific immune cells were estimated using Spearman’s
correlation. Meanwhile, differentially expressed genes between
the multi-CpG methylation panel low-risk group and high-risk
group were also identified using the R package “edgeR” (Dai et al.,
2014), and the expression levels of genes from the 24 immune
cell types between the groups were further compared using
Wilcoxon rank sum test. Spearman’s correlation analysis was also
performed between the multi-CpG methylation risk and cytolytic
activity [calculated according to the formula suggested by Rooney
et al. (2015)], overall immune cell and T cell infiltration scores
[estimated as Senbabaoglu et al. (2016) suggested], the ratio
between the expression of CD8+ T cell-specific genes versus Treg
cell-specific gene, the ratio between the expression of immune
stimulation genes versus immunosuppression genes, and the
ratio between the expression of Th17 cell-specific genes versus
Th2 specific genes.

Analyzing the Correlations Between the
Genomic Metrics and the Multi-CpG
Methylation Panel Risk of Patients With
BC
Somatic copy number alterations (SCNA) were known to
drive tumorigenesis in a variety of human cancers including
BC. Mutant-allele tumor heterogeneity (MATH; Mroz and
Rocco, 2013) was considered a measure for the evaluation
of intratumor genetic heterogeneity. Genomic mutations were
generally considered to be an important driver of tumorigenesis
and development. In the present study, the MATH score and total
mutation of each BC patients in the discovery set and validation
set were calculated using the R package “maftools” (Mayakonda
et al., 2018), and then the correlations between the multi-CpG
methylation panel and the MATH score, total mutation, and the
SCNA derived from the publication of Davoli et al. (2017) were
evaluated using Spearman’s correlation.

RESULTS

Characteristics of BC Patients
According to the inclusion criteria, 786 samples in the TCGA-
BRCA were included in the present study, 75 of which were
normal breast tissues and the remaining 682 BC samples were
used for subsequent model training and validation. A total of 460
BC patients were included in the discovery set, 198 of which were
in the high-risk group (median age: 60 years) and 262 in the low-
risk group (median age: 54 years) (Supplementary Table S1).
A total of 305 BC patients were included in the validation
set, 144 of which were in the high-risk group (median age:
62 years) and 161 in the low-risk group (median age: 55 years)
(Supplementary Table S2). A total of 61 BC patients were
included in GSE37754, 32 of which were in the high-risk group
(median age: 57 years) and 29 in the low-risk group (median
age: 46 years) (Supplementary Table S3). A total of 119 patients
were included in GSE72251, 40 of which were in the high-risk
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group (median age: 59.3 years) and 79 in the low-risk group
(median age: 57.6 years) (Supplementary Table S4). A total of
126 BC patients were included in GSE72245, eight of which
were in the high-risk group (median age: 54.7 years) and 118
in the low-risk group (median age: 53.9 years) (Supplementary
Table S5). A total of 181 BC patients were included in
GSE75067, 52 of which were in the high-risk group (median
age: 55.1 years) and 129 in the low-risk group (median age:
47.2 years) (Supplementary Table S6). A total of 66 BC patients
were included in GSE78754, 21 of which were in the high-risk
group (median age: 61.0 years) and 45 in the low-risk group
(median age: 47.0 years). Furthermore, there were 80 BC patients
and 40 normal controls in GSE66695. Detailed characteristics of
BC patients can be found in the Supplementary Tables.

Development of the Multi-CpG
Methylation Panel
There were 75 pairs of normal breast tissue and BC tissue in
the TCGA-BRCA cohort, thus, we calculated the differentially
methylated CpGs sites between normal BC and BC tissues.
According to the above screening criteria (adjusted p value < 0.05
and | deltaBeta | > 0.3), a total of 5,736 differentially methylated
CpG sites were found between normal breast tissue and BC
(Figure 1A). The above differentially methylated CpG sites were
subjected to the univariate CPH model to further screen for
methylation sites that were significantly correlated with the OS
of BC patients. Consequently, a total of 68 CpG sites that
significantly (p < 0.005) correlated with the OS of BC patients
(Supplementary Table S7) were selected as candidates for the
development of the multi-CpG methylation panel. After 10-fold
cross validation, a pair of optimal hyperparameters were found
(α = 0.0041, λ = 2.8244, Supplementary Figure S1). As a result
of the optimal elastic penalized.

CPH model, 28 methylated CpG sites whose coefficients were
not equal to zero in the model were found and utilized to build
the multi-CpG methylation panel based on the methylation levels
of these CpG sites (Figure 1B and Supplementary Table S8) and
their corresponding coefficients in the model.

Evaluation and Validation of the
Prognostication Ability of the Multi-CpG
Methylation Panel
To evaluate and validate the prognostication ability of the multi-
CpG methylation panel, we performed time-dependent ROC
analysis, KM analysis, and a univariate and multivariable CPH
model. As shown in Figure 2, the results of the time-dependent
ROC analysis suggested that areas under the curve (AUCs) at
1-, 3-, 5-, 7-, and 10-year for the prediction of the OS of BC
patients in the discovery set were 0.75, 0.66, 0.616, 0.649, and
0.733, and according to the optimal cutoff 1.005 (Figure 2A
and Supplementary Figure S2A), BC patients were classified
into two risk groups, which have significantly different OSs
(p < 0.0001, Figure 2B). In the validation set, the multi-
CpG methylation panel was also good enough to predict the
OS of BC patients (AUCs at 1-, 3-, 5-, 7-, and 10-year were
0.637, 0.623, 0.646, 0.643, and 0.625, respectively, Figure 2C

and Supplementary Figure S2B) and the patients were classified
into significantly different risk groups by the methylation score
(p = 0.02, Figure 2D).

Subgroup analysis indicated that a lower risk of methylation
was, or, tended to be associated with better prognosis of
patients with TNBC and non-TNBC in the discovery
set (Supplementary Figures S3A,B) and validation set
(Supplementary Figures S3C,D). The results of subgroup
analysis, based on pathological stage, suggested that the multi-
CpG methylation panel can stratify patients into significantly
different survival groups in the discovery set and validation set
(Supplementary Figures S3E–H), and although the survival
difference of patients with early (stage I and stage II) BC in
the two risk groups was not statistically significant, patients in
the low-risk group were obviously related with better survival
compared with those in the high-risk group for more than
10 years (Supplementary Figure S3G). Similar trends could
also be found in different age groups (patients who were or not
younger than 65 years) (Supplementary Figures S3I–L).

In addition, the prognostic role of the multi-CpG methylation
panel was also evaluated in several independent cohorts. The
time- dependent ROC analyses and KM curves also suggested
that the multi-CpG methylation panel showed good performance
in predicting the OS of patients and was able to significantly
divide patients of these cohorts into different survival groups
(Supplementary Figure S4).

Finally, the univariate and multivariable CPH model
suggested that the multi-CpG methylation panel was an
independent prognostic factor in BC patients (Supplementary
Tables S9–S15). Furthermore, the methylation risk in BC
samples was significantly higher compared with that in the
normal breast tissues (p < 0.0001, AUC = 0.97, Supplementary
Figure S5), indicating that it could be selected as a candidate for
the screening or diagnosis of BC.

Associations Between CpG Methylation
and Corresponding mRNA Expression
We further analyzed the correlations between the methylation
levels of the 28 CpG sites and their regulated mRNA expression
levels. Given that five genes (C3orf26, DEPDC6, FAM38B,
C7orf53, and WDR69) regulated by the CpG sites were not
found in the mRNA expression profile, we could only analyze the
associations between the remaining CpG methylation and mRNA
expression. As shown in Supplementary Figure S6, cg07495363
and cg13356896 were found to be negatively correlated with
BOLL expression (R = -0.17, and R = -0.092, respectively).
cg14684434 methylation was negatively correlated with the
expression of SNX18 (R = -0.19), cg01250845 methylation
level was negatively correlated with the expression of RAB30,
cg19839655 methylation was negatively correlated with the
expression of CD40 (R = -0.39), cg23727983 methylation was
negatively correlated with the expression of DDX25 (R = -0.27),
cg15221604 methylation level was negatively correlated with
ROBO3 expression (R = -0.12), and cg10300684 methylation
was negatively correlated with the expression of FOXG1 (R = -
0.22). Furthermore, cg19155518 methylation was positively
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FIGURE 1 | Differentially methylated CpG sites between breast cancer and normal breast tissue (A) and the methylation levels of the 28 CpG sites in the high-risk
group, low-risk group, and normal breast tissues (B).

correlated with the expression of GRIK2 (R = 0.2), cg13759674
methylation was positively correlated with the expression level
of GRIN1 (R = 0.096), cg02631468, cg14763548, and cg15272362

methylation levels were positively correlated with the expression
of VSX1 (R values were equal to 0.12, 0.087, and 0.071,
respectively), cg05719164 methylation was positively correlated
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FIGURE 2 | The prognostic role the multi CpG methylation panel in the discovery set and validation set. (A) Time-dependent ROC analysis on the overall survival of
patients in the discovery set. (B) Kaplan–Meier curve on the overall survival of patients with low methylation risk versus high methylation risk in the discovery set.
(C) Time-dependent ROC analysis on the overall survival of patients in the validation set. (D) Kaplan-Meier curve on the overall survival of patients with low
methylation risk versus high methylation risk in the discovery set.

with the expression of LHX4 (R = 0.12), cg26205771 methylation
was positively correlated with the expression of NPBWR1
(R = 0.11), cg20469625 methylation was positively correlated with
the expression of ZFPM2 (R = 0.13), cg05241355 methylation
was positively correlated with the expression of OTX2 (R = 0.13),

and cg24080247 methylation was positively correlated with the
expression level of SIM2 (R = 0.5). However, cg23758305,
cg15985184, cg22675660, cg06945523, and cg14250833 were not
significantly correlated with their regulated mRNA expressions.
Although not all corresponding mRNAs could stratify BC
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patients into different survival groups, the combination of these
mRNAs showed good performance in predicting the OS of
patients with BC (the ROC curve in Supplementary Figure S6),
and it could significantly stratify patients into different survival
groups (the last survival curve in Supplementary Figure S6).

Development and Validation of the CpG
Methylation Panel Containing
Nomogram for the Prediction of the
Survival of BC Patients
To further apply the CpG methylation panel into clinical
application, we incorporated the multi-CpG methylation panel
together with age and pathological stage into a multivariable
survival model, and then a nomogram was drawn as shown
in Figure 3A. In clinical practice, a physician could predict
the probabilities of 3- and 5-year OS of patients based on the
nomogram. To predict one’s 3- and 5-year probabilities, the
physician could draw vertical lines to the “Points” line to estimate
corresponding points related with the methylation risk, age, and
pathological stage of a patients, and then the probabilities of
3- and 5-year OS of the patients can be estimated based on
the value of “Total Points,” which is the sum of the respective
points of the above clinical phenotypes. Internal validation with
bootstrap suggested that the nomogram remained a powerful
predictor (C-index = 0.7714). As shown in Figures 3B,C,
calibration analysis results showed that the predicted 3- and
5-year survival probabilities were in good agreement with the
actual 3- and 5-year survival probabilities. Meanwhile, the
results of DCA suggested that the multi methylation panel
containing nomogram showed better clinical benefit with a
threshold probability ranging from 10 to 60%, indicating
that the nomogram has a very good application prospect in
clinical settings (Figure 3D).

Comparison of the Predictive Power of
the Multi-CpG Methylation Panel With
Other Multi-Molecular Biomarkers in BC
To evaluate the clinical potential of the multi CpG methylation
panel, we compared it with several currently existing multi
molecular biomarkers [7-CpG signature (Tao et al., 2019), 8-
gene signature (Cui et al., 2019), 4-gene signature (Qi et al.,
2019), 7-gene signature (Teschendorff and Caldas, 2008), 14-gene
signature (Yau et al., 2010), 5-gene signature (Yau et al., 2013), B
cell/plasma metagene (Bianchini et al., 2010), proliferation gene
(Oh et al., 2012), immune gene (Oh et al., 2012), B cell response
gene (Ascierto et al., 2012), Oncotype DX (Toi et al., 2010),
and pathology stage (Runowicz et al., 2016)] in BC. As shown
in Figure 4A, our multi CpG methylation panel outperformed
the 7-CpG signature in the discovery set, GSE78754, GSE75067,
GSE72245, and GSE37754, and was comparable with the 7-
CpG signature in the validation set. Furthermore, our multi
CpG methylation panel was superior to the other 11 multigene
signatures (8-gene signature, 4-gene signature, 7-gene signature,
14-gene signature, 5-gene signature, B cell/plasma metagene,
proliferation gene, immune gene, B cell response gene, Oncotype
DX, and pathology stage) in the discovery set and it was

also superior to the other nine multigene signatures and was
comparable to the Oncotype DX and the pathological stage
(Figure 4B). The above findings suggest that the multi CpG
methylation panel has excellent predictive performance and has
good application value in clinical settings.

The Association Between the Multi-CpG
Methylation Panel and the Immune
Landscape of BC Patients
To clarify the specific mechanism of the effect of the multi-
CpG methylation panel on the survival of BC patients, we
tried to analyze the association between the risk of the
methylation and the immune infiltration of BC patients, which
was calculated based on the ssGSEA method. As shown in
Figure 5A, results of Spearman’s correlation suggested that the
methylation risk was positively correlated with Th2 cells, while
it was negatively correlated with other immune stimulation
cells [including Tem cells (effector memory T cells), Tcm
cells (central memory T cells), T helper cells, T cells, pDC
(Plasmacytoid dendritic cell), NK cells, NK CD56 bright
cells, neutrophils, mast cells, iDCs (immature dendritic cells),
DCs, cytotoxic cells, CD8+ T cell, and B cells]. Meanwhile,
genes specific for B cells (BLK, CD19, COCH, CR2, FCRL2,
IGHA1, MS4A1, and TCL1A), CD8+ T cells (CD8B and
GZMM), cytotoxic cells (CTSW, KLRB1, and ZBTB16), DCs
(CCL17, HSD11B1, and NPR1) eosinophils (TKTL1), iDCs
(CD1A, CD1B, CD1C, CD1E, CH25H, CLEC10A, FABP4, and
MMP12), macrophages (CHIT1, DNASE2B, PTGDS, SCG5, and
SULT1C2), mast cells (CALB2, CMA1, CTSG, GATA2, HDC,
HPGD, NR0B1, SCG2, and TPSB2), neutrophils (FCGR3B, and
G0S2) NK CD56bright cells (RRAD, and XCL1), NK cells
(IGFBP5, PDLIM4, and XCL1), T cells (CD3D, CD3E, ITM2A,
SH2D1A, TRAC, and TRAT1),T helper cells (ITM2A), Tcm cells
(CDC14A), Tfh cells (B3GAT1, CXCL13, and PVALB), Th1 cells
(APOD, and GGT1), and Th2 cells (ANK1, BIRC5, CENPF,
and NEIL3) were differently expressed between the multi CpG
methylation low-risk group and the multi CpG methylation
high-risk group (Supplementary Figure S7). Cytolytic activity
represented an important indicator of anti-tumor response, thus,
Spearman’s correlation was conducted, and its result suggested
that higher methylation risk was associated with lower cytolytic
activity (Figure 5B). Spearman’s rank correlation analysis
revealed weak negative associations between the methylation
risk and TIS and OIIS (Figures 5C,D). The ratio between
protumorigenic immune cells or immune stimulation molecular
versus antitumorigenic cells or immune suppression is more
likely to determine whether the net effect of these cells
is tumor promotion versus inhibition, compared with the
absolute count of certain immune cell types. As shown in
Figure 6, the ratio between CD8+ T cells versus Treg cells
(Pwilcox.test = 0.0012, Rspearman = −0.23), the ratio between
immune stimulation molecular (IFN-γ,IL-1A, IL-1B, and IL-
2) versus immune suppression molecular (IL-4, IL-10, IL-11,
and TGFB1) (Pwilcox.test = 0.0039, Rspearman = −0.14), and the
ratio between Th17 cells versus Th2 cells (Pwilcox.test < 0.0001,
Rspearman = −0.15) were significantly different between the two
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FIGURE 3 | Clinical application of the multi CpG methylation panel. (A) The multi CpG methylation panel containing nomogram; (B) Calibration analysis of the
nomogram for the prediction of 3-year overall survival; (C) Calibration analysis of the nomogram for the prediction of 5-year overall survival; (D) Decision curve
analysis to identify the clinical usability of the nomogram. The pathological stage has been coded according to following criteria: Stage IA = 1, Stage IB = 2, Stage
I = 1.5, Stage IIA = 3, Stage IIB = 4, Stage II = 3.5; Stage IIIA = 5, Stage IIIB = 6, Stage IIIC = 7, Stage III = 6, Stage IV = 8.

risk groups and negatively correlated with the methylation
risk of BC patients.

The Associations Between the Multi-CpG
Methylation Panel and the Genomic
Metrics of BC Patients
Genomic metrics including (total mutation load, SCNA,
and MATH) were reported in multiple cancers and were
demonstrated to be associated the progression of serval human
cancers. Therefore, we investigated the associations between total
mutation load, SCNA, MATH, and the DNA methylation risk
of BC patients. As shown in Figure 7, higher methylation risk
of BC patients were significantly associated with higher total
mutation number (R = 0.38, p < 0.0001, Figure 7A), higher
SCNA (R = 0.45, p< 0.0001, Figure 7B), higher MATH (R = 0.24,
p < 0.0001, Figure 7C).

DISCUSSION

As mentioned above, although current screening, diagnosis,
and treatment of BC have been improved significantly, the
clinical prognosis of some BC patients remains very poor.
Therefore, it is of great significance to develop new molecular

markers based on different detection methods. In the present
study, we first identified differentially methylated CpG sites
between BCs and normal breast tissues, and then screened
survival related CpG sites using the univariate CPH model.
Based on the survival related CpG sites, an elastic net
penalized CPH model was trained and optimized using 10-
fold cross validation, which resulted in a 28-CpG-site based
methylation panel. The multi CpG methylation panel was
demonstrated to be associated with the OS of patients with
BC, namely, higher multi CpG methylation panel based
methylation risk was associated with worse OS of BC patients,
and it remained to be an independent prognostic factor after
adjusting for other clinical characteristics of BC patients.
Subgroup analysis showed that the multi CpG methylation
panel was still able to divide BC patients into different
survival groups in different subgroups (TNBC versus non-
TNBC, early stage BC versus late stage BC, and patients
younger than 65 years versus patients older than 65 years).
Internal validation suggested the multi CpG methylation panel
remained a powerful predictor. Finally, when comparing it with
other multi molecular biomarkers, the multi CpG methylation
panel showed excellent performance. Altogether, we identified
an independent biomarker for the diagnosis and prognosis of
patients with BC.
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FIGURE 4 | Comparison of the prediction performance between the multi CpG methylation panel and multi molecular biomarkers. (A) The multi CpG methylation
panel (28-CpG methylation) versus the 7-CpG methylation signature in the discovery set, validation set, and independent cohorts. (B) The multi-CpG methylation
panel versus 10 mRNA based multigene signature and the pathological stage in the discovery set and validation set.

The tumor microenvironment is of great significance to
the occurrence and development of tumors and the clinical
manifestations and prognosis of patients. At the same time,
tumor immune cell infiltration is an important part of the
tumor microenvironment, which has been applied to categorize
multiple human cancers into different immune groups with
diverse heterogeneity and survival (Thorsson et al., 2018).
Therefore, analysis of the relationship between methylation risk

and immune cell composition in BC patients would contribute
to understanding the patient’s immune status, the relationship
between genomic methylation and immune infiltration, and
potential immunotherapy. In the present study, we found that
the methylation risk of BC patients was positively correlated
with Th2 cells, while higher methylation risk was correlated
with lower infiltration of Tem cells, Tcm cells, T helper cells, T
cells, pDC, NK cells, NK CD56 bright cells, neutrophils, mast
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FIGURE 5 | The correlations between the methylation risk and the immune infiltration of BC patients. (A) The correlations between the methylation risk and the Th2
cells, Tem cells, Tcm cells, T helper cells, T cells, pDC, NK cells, NK CD56 bright cells, neutrophils, mast cell, iDCs, DCs, cytotoxic cells, CD8 + T cell, and B cells.
(B–D) The correlations between the methylation risk and the cytolytic activity, the overall immune infiltration score, and the overall T cell infiltration score.

cell, iDCs, DCs, cytotoxic cells, CD8+ T cell, and B cells. The
Th2-mediated immune response had long been recognized as a
favorable factor for tumor proliferation by promoting fibroblast
thymic stromal lymphopoietin production, angiogenesis, and by
suppressing the cell-mediated immune response (Ellyard et al.,
2007; De Monte et al., 2011). However, T cells, DCs, NK
cells, neutrophils, mast cells, and BC cells were conventionally
considered to be an immunologic defense for anti-tumor activity.
The ratio between protumorigenic immune cells or immune
stimulation molecular versus antitumorigenic cells or immune

suppression is more likely to determine whether the net effect
of these cells is tumor promotion versus inhibition, compared
with the absolute count of certain immune cell types. As shown
in Figure 6, the ratios between protumorigenic immune cells
or immune stimulation molecular versus antitumorigenic cells,
or immune suppression were significantly increased in patients
with higher methylation risk. Driven by neoepitopes, cytolytic
activity was demonstrated to be related to counter-regulatory
immune responses and improved survival of patients. Our study
suggested that higher methylation risk was associated with poor
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FIGURE 6 | Evaluation of the distribution of the ratios between protumorigenic immune cells or immune stimulation molecular versus antitumorigenic cells or immune
suppression in the methylation low-risk group and methylation high-risk group. (A) Ratio between CD8+ cell versus Treg cell in different methylation risk groups;
(B) Correlation between the methylation risk and ratio between CD8+ cell versus Treg cell in different methylation risk groups. (C) Ratio between immune stimulation
molecular versus immune suppression molecular in different methylation risk groups; (D) Correlation between the methylation risk and the ratio between immune
stimulation molecular versus immune suppression molecular. (E) Ratio between Th17 cell versus Th2 cell in different methylation risk groups. (F) Correlation between
the methylation risk and ratio between Th17 cell versus Th2 cell. Notes: the blue bar represent the low-risk group, while the red bar represent the high-risk group.
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FIGURE 7 | Correlations between the methylation risk and the total mutation
(A), SCNA level (B), and MATH score (C).

cytolytic activity. Thus, it could be summarized that the Th2-
mediated tumor promotion effect participated in the progression
of BC, and innate and adaptive immunity in high-risk patients
were suppressed.

Relationships between genomic metrics (total mutation,
SCNA or Tumor aneuploidy, and MATH) and tumor
heterogeneity and survival of tumor patients, have become
new hot spots and trends in the field of tumor research in recent
years. We identified that lower methylation risk was correlated
with lower total mutation load, which resulted in better prognosis
of BC patients and was consistent with previous observations in
other tumors (Li et al., 2018; Samstein et al., 2019). Somatic copy
number alterations, or aneuploidy, is widely presented in human
cancers and has been considered a driving force in carcinogenesis
(Davoli et al., 2017). Somatic copy number alterations is well
known for its ability to promote tumor cell proliferation and
leads to poorer survival of cancer patients (Davoli et al., 2017).
This is similar to our findings that a higher methylation risk
in patients is related to higher SCNA levels, and in return they
lived for a shorter period than others. One of the measures
of intratumor heterogeneity, namely a higher MATH score,
represented a higher clonal and genetic heterogeneity which
promoted tumor progression (McGranahan and Swanton, 2017).
Our study suggested that a higher MATH score in patients, was
significantly related with a higher methylation risk, and patients
then had a poor prognosis compared with others.

Although DNA methylation is known to be a negative
regulator of mRNA expression, in our study, we had different
findings (Anastasiadi et al., 2018). Except for the five CpGs
that had no corresponding mRNAs in the mRNA expression
profile of the TCGA-BRCA cohort, eight CpG sites (cg07495363,
cg13356896, cg14684434, cg01250845, cg19839655, cg23727983,
cg15221604, and cg10300684) were negatively correlated with
their corresponding mRNAs, and ten CpG sites (cg19155518,
cg13759674, cg02631468, cg14763548, cg15272362, cg05719164,
cg26205771, cg20469625, cg05241355, and cg24080247)
were found to be positively correlated with their target
genes, however, there were still five CpG sites (cg23758305,
cg15985184, cg22675660, cg06945523, and cg14250833) that had
no significant correlation with their target genes. This was similar
to the conclusions of Spainhour et al. (2019). They analyzed
the relationship between DNA methylation and corresponding
mRNA expression using a variety of human tumors in TCGA.
The results showed that nearly 30% of methylation sites were
positively correlated with their corresponding mRNAs, and
the correlation patterns were tissue dependent (Spainhour
et al., 2019). Thus, the role of DNA methylation on the mRNA
expression remains to be further elucidated. Although not
all genes regulated by their DNA methylation could stratify
BC patients into significantly different survival groups, the
combination of these mRNAs could significantly classify BC
patients into different risk groups (Supplementary Figure S6),
which further confirmed the predictive performance of the multi
CpG methylation panel for BC patients.

There were several limitations in our study. First, not all
survival differences between the low-risk group and high-risk
group were statistically significant in the different subgroups.
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For example, although the OS of patients with TNBC in the
low-risk group tended to be better than that in the high-
risk group; the difference did not reach statistical significance
(p = 0.73, Supplementary Figure S3C). This might be due to
the small number of patients in both groups (only 15 in the
high-risk group and 14 in the low-risk group). Similar situations
were found in patients with early stage BC in the validation
set and patients older than 65 years in the validation set.
Therefore, the conclusions should be interpreted with caution,
and more patients are needed to verify them. Second, this
study was a retrospective study, thus, large scale, prospective
studies are also needed to further validate the conclusions. Third,
although seven BC methylation studies retrieved from GEO
and TCGA were included in the present study, the reporting
format of the clinical characteristics of patients in these studies
was not completely consistent. For example, in GSE37754, the
original authors reported age, node status, neoadjuvant therapy,
hormone therapy, and chemotherapy, while the original authors
of GSE72251 reported age, subtype, grade, size, node status, and
hormone receptors. More homogeneous studies are required to
further validate the conclusion of the study. Finally, given that
all the independent cohorts did not discuss the treatments of BC
patients in the original studies, we could not evaluate the effect of
treatment on the prognosis of BC patients, thus, future research
should take into account the patient’s treatment.

In conclusion, we identified and validated a 28-CpG based
multi CpG methylation panel that could classify BC patients
into significantly different survival groups, and it remained to
be an independent prognostic factor after adjusting for other
clinical characteristic of BC patients. The Th2-mediated tumor
promotion effect participated in the progression of high-risk
BC, and innate and adaptive immunity in high-risk patients
were suppressed. The multi CpG methylation panel-based
methylation risk was associated with tumor heterogeneity and
survival of BC patients.
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FIGURE S1 | Optimal hyperparameters (α and λ) for the elastic net penalized Cox
proportional hazards regression model.

FIGURE S2 | The prognostic role the multi CpG methylation panel in the discovery
set and validation set. (A) Time-dependent ROC analysis on the overall survival of
patients in the discovery set. (B) Time-dependent ROC analysis on the overall
survival of patients in the validation set.

FIGURE S3 | Kaplan-Meier curve analysis on the overall survival in different
subgroups. (A) Triple negative breast cancer in the discovery set; (B) Non-triple
negative breast cancer in the validation set; (C) Triple negative breast cancer in the
discovery set; (D) Non-triple negative breast cancer in the validation set; (E) Early
stage breast cancer in the discovery set; (F) Advanced stage BC in the discovery
set. (G) Early stage breast cancer in the validation set; (H) Advanced stage BC in
the validation set. (I) Patients younger than 65 years in the discovery set; (J)
Patients older than 65 years in the discovery set; (K) Patients younger than
65 years in the validation set; (L) Patients older than 65 years in the validation set.

FIGURE S4 | The prognostic value of the multi CpG methylation panel in five
independent validation cohort. (A) Time- dependent ROC analysis for predicting
the OS of patients in GSE37754. (B) KM curves on the OS of patients in
GSE37754. (C) Time- dependent ROC analysis for predicting the OS of patients in
GSE72245. (D) KM curves on the OS of patients in GSE72245. (E) Time-
dependent ROC analysis for predicting the OS of patients in GSE72251. (F) KM
curves on the OS of patients in GSE72251. (G)Time- dependent ROC analysis for
predicting the OS of patients in GSE75067. (H) KM curves on the OS of patients
in GSE75067. (I) Time- dependent ROC analysis for predicting the OS of patients
in GSE78754. (J) KM curves on the OS of patients in GSE78754.

FIGURE S5 | The diagnostic performance of the multi CpG methylation panel in
GSE66695. (A) The methylation risk of breast cancer patients and normal
controls. (B) ROC curve for the classification of the multi CpG methylation panel.

FIGURE S6 | The correlations between the methylation levels of CpG sites and
their corresponding mRNAs and the survival relevance of these mRNA on the
overall survival breast cancer patients.

FIGURE S7 | The expression levels of genes specific for immune cells and
differently expressed between the low-risk group and high-risk group. Notes:
genes for B cells:BLK, CD19, COCH, CR2, FCRL2, IGHA1, MS4A1, and TCL1A;
Genes for CD8+ T cells: CD8B and GZMM; genes for cytotoxic cells: CTSW,
KLRB1, and ZBTB16; genes for DCs: CCL17, HSD11B1, and NPR1; gene for
eosinophils: TKTL1; genes for iDCs: CD1A, CD1B, CD1C, CD1E, CH25H,
CLEC10A, FABP4, and MMP12; genes for macrophages: CHIT1, DNASE2B,
PTGDS, SCG5, and SULT1C2; genes for mast cells: CALB2, CMA1, CTSG,
GATA2, HDC, HPGD, NR0B1, SCG2, and TPSB2; genes for neutrophils:
FCGR3B, and G0S2; genes for NK CD56bright cells: RRAD, and XCL1; genes for
NK cells: IGFBP5, PDLIM4, and XCL1; genes for T cells CD3D, CD3E, ITM2A,
SH2D1A, TRAC, and TRAT1; gene for T helper cells: ITM2A; gene for Tcm cells:
CDC14A; genes for Tfh cells: B3GAT1, CXCL13, and PVALB; genes for Th1 cells:
APOD, and GGT1; genes for Th2 cells: ANK1, BIRC5, CENPF, and NEIL3.
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