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Abstract

Despite advances in the modeling and understanding of colorectal cancer development,

the dynamics of the progression from benign adenomatous polyp to colorectal carcinoma

are still not fully resolved. To take advantage of adenoma size and prevalence data in the

National Endoscopic Database of the Clinical Outcomes Research Initiative (CORI) as well

as colorectal cancer incidence and size data from the Surveillance Epidemiology and End

Results (SEER) database, we construct a two-type branching process model with compart-

ments representing adenoma and carcinoma cells. To perform parameter inference we

present a new large-size approximation to the size distribution of the cancer compartment

and validate our approach on simulated data. By fitting the model to the CORI and SEER

data, we learn biologically relevant parameters, including the transition rate from adenoma

to cancer. The inferred parameters allow us to predict the individualized risk of the presence

of cancer cells for each screened patient. We provide a web application which allows the

user to calculate these individual probabilities at https://ccrc-eth.shinyapps.io/CCRC/. For

example, we find a 1 in 100 chance of cancer given the presence of an adenoma between

10 and 20mm size in an average risk patient at age 50. We show that our two-type branching

process model recapitulates the early growth dynamics of colon adenomas and cancers

and can recover epidemiological trends such as adenoma prevalence and cancer incidence

while remaining mathematically and computationally tractable.

Author summary

Colorectal cancer is a major public health burden. The development of colorectal cancer

starts with the mutational initiation of non-cancerous growths in the form of benign

adenomatous polyps. These adenomas grow over time with the potential to develop into

carcinomas. Many mathematical and simulation-based models have been used to gain

insight into this process. We aimed to understand rates of adenoma growth and transition

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007552 February 5, 2020 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Lang BM, Kuipers J, Misselwitz B,

Beerenwinkel N (2020) Predicting colorectal cancer

risk from adenoma detection via a two-type

branching process model. PLoS Comput Biol

16(2): e1007552. https://doi.org/10.1371/journal.

pcbi.1007552

Editor: Dominik Wodarz, University of California

Irvine, UNITED STATES

Received: March 29, 2019

Accepted: November 18, 2019

Published: February 5, 2020

Copyright: © 2020 Lang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: CORI data cannot be

shared publicly because of limitation from the data

registry. CORI data can be accessed after IRB

approval and an application to the NIDKK registry

(https://niddkrepository.org/studies/cori/). SEER

data can be accessed upon request (https://seer.

cancer.gov/seertrack/data/request/).

Funding: Part of this work was supported by a

grant from the Swiss Cancer League (grant KFS-

2977-08-2012, gap.swisscancer.ch) to BM and NB

and a grant from the Helmut Horten foundation

http://orcid.org/0000-0003-1121-5982
https://ccrc-eth.shinyapps.io/CCRC/
https://doi.org/10.1371/journal.pcbi.1007552
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007552&domain=pdf&date_stamp=2020-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007552&domain=pdf&date_stamp=2020-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007552&domain=pdf&date_stamp=2020-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007552&domain=pdf&date_stamp=2020-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007552&domain=pdf&date_stamp=2020-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007552&domain=pdf&date_stamp=2020-02-05
https://doi.org/10.1371/journal.pcbi.1007552
https://doi.org/10.1371/journal.pcbi.1007552
http://creativecommons.org/licenses/by/4.0/
https://niddkrepository.org/studies/cori/
https://seer.cancer.gov/seertrack/data/request/
https://seer.cancer.gov/seertrack/data/request/


into carcinomas, to enable better planning of colorectal cancer screening strategies. To

this end, we expand the two-type branching process model, and fit it on data describing

the frequency of sizes of adenomas and carcinomas. The results provide new, data-based,

estimates of the rates of development for colorectal cancer.

Introduction

Within the intestinal epithelium, the crypts of the colon house stem cells populate and main-

tain one of the most dynamic cell populations in humans. It is within this high-turnover

environment that spontaneous colorectal cancer (CRC) may gain its start. CRC develops via

precancerous adenomatous polyps that reside in the colon for several years. Transition from

stem cell to adenoma is accompanied by several somatic mutations, typically involving com-

plete mutational inactivation of the Adenomatous Polyposis Coli (APC) tumor suppressor

gene [1] or mutations disrupting β-catenin function [2]. Transition from an adenoma to a

cancerous phenotype can often be attributed to acquisition of chromosomal instability and

mutational events in tumor suppressor genes such as KRAS, TP53, or the SMAD2 and SMAD4
genes in the transforming growth factor (TGF-β) pathway [1].

While most adenomas will not progress to carcinoma, colorectal carcinoma (CRC) is still

the 2nd leading cause of cancer-related mortality in the United States with 50,260 deaths in

2017 [3]. Because some adenomas may eventually develop into malignant tumors, screening

strategies seek to discover and remove these lesions prior to cancer transition. Several screen-

ing approaches using endoscopy or biomarkers for detection and removal of adenomas and/or

early detection of CRC were demonstrated to reduce CRC-related mortality [4–7]. However,

colonoscopy, which visualizes the whole colon and remains the diagnostic gold standard for

adenoma and carcinoma detection, has not been tested in randomized controlled trials [8, 9].

Most industrialized countries have already implemented recommendations for screening

based on clinical observations and computational models that utilize real world observational

data and data from randomized controlled trials [10–13]. However, the design of optimal pop-

ulation-level screening strategies is an unmet need in clinical gastroenterology.

Current recommendations are based on large simulation-based computational models of

populations (microsimulations). However, since crucial information, i.e., the distribution of

growth and transition rates between adenomatous polyps and cancer is lacking, these models

rely heavily on parameter assumptions [14–16]. For instance, the average time an adenoma

will reside in the colon and can be removed (CRC screening window) is unknown. These

parameters cannot be determined experimentally, due to the risks of leaving adenomas in situ

and potential side effects associated with colonoscopy [12].

As a complementary approach to microsimulation, mathematical models with simplifying

assumptions have been used to test hypotheses about the dynamics that generate colorectal

carcinomas. One such collection of models, the multistage framework established by Armitage

and Doll, suggests that cancer is not generated by a single spontaneous event, but rather the

product of a sequence of rate-limiting events [17]. The number of these rate-limiting steps

were estimated through the examination of the incidence of various cancers at each age [17,

18]. The two-stage model of carcinogensis moved to a slightly more complex formulation,

allowing for certain events in the development of cancer to affect the net growth rate of trans-

formed cells [19–21]. This two stage model has been generalized to k-stages, allowing for a col-

lection of rate-limiting steps prior to an eventual clonal expansion in the (k − 1)th stage [22–

25]. While previous research stayed firmly in the realm of incidence of cancer, subsequent
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work on the multistage model of carcinogensis has produced expressions for the number and

size distributions of growths in the clonally expanding cell type [26].

Parting from the multistage clonal expansion model (MSCE) of carcinogenesis as described

by Moolgavkar, Luebeck and others [20–24, 26] there are similarly named multitype branching

process models which can be applied to cancer development [27]. These models describe the

frequency distributions of cell types over time and are useful to investigate a broad range of

hypotheses for CRC development within the framework of multistage carcinogenesis. The use

of multitype branching processes involves the definition of a finite number of cell types (e.g.

stem cells, adenoma cells, cancer cells) and the stochastic transition probabilities between cell

types determining growth dynamics. In comparison to the MSCE described previously, these

models often allow birth and death events at each stage. Classically, branching process models

have been used to examine rates of appearance and extinction for each cell type [28, 29] but

are now used regularly to examine many biological processes, such as the development of ovar-

ian cancer [30], drug resistance in pancreatic, colorectal, and melanoma cancers [31], lung

cancer screening timelines [32–34], genetic heterogeneity in cancers [35], as well as the general

demonstration that branching processes can recapture population dynamics of cancer devel-

opment, intratumor heterogeneity and generation of metastasis [27].

Despite significant progress in mathematical modeling of CRC, important open questions

remain. While there are numerous models of CRC growth [36], it is rare for the models to be

mathematically solved to the point of exact calculations of probability distributions for the

number of cells of each cell type. Furthermore, in cases where probability distributions were

calculated, they are typically reliant on strong parameter assumptions that limit the opportu-

nity to truly estimate parameters and their uncertainty (i.e. parameter inference). Therefore it

remains difficult to assess the transition rates between cell types that underlie cancer progres-

sion. In CRC, parameter inference would provide strong evidence for the rates determining

average-risk CRC development and enable more accurate simulation-based predictions of

optimal screening timelines.

Here we build upon the two-type branching process model described by Antal and Kra-

pivsky [37]. We consider the initiation, birth, and death processes that generate the observable

quantities of CRC natural history, namely adenoma prevalence and cancer incidence, in the

context of this two-type branching process model (Fig 1). The initiation, birth, and death of

cells in the adenoma compartment (A) represent and encompass all processes that affect ade-

noma development in average risk patients, while the transition of cells from compartment A
into the carcinoma compartment M represents and encompasses all processes that could lead

to the malignant transformation of adenomatous polyp cells. We derive a new approximation

which enables computation of the age-specific size distributions of colorectal cancers as well as

allowing for model identifiability and parameter inference. Through the fitting of our model

to epidemiological data from the Clinical Outcomes and Research Initiative (CORI) endo-

scopic procedure database, as well as the Surveillance Epidemiology and End Results (SEER)

cancer registry, we provide estimates of colorectal cancer growth rates and provide model-

based evidence for the natural history of colorectal cancer development.

Materials and methods

CORI adenoma prevalence data

The Clinical Outcomes Research Initiative (CORI) National Endoscopic Database (NED) V3

and V4 are clinical databases of endoscopic procedures completed in the US from 1995 to

2015 [38]. Each observation comprises a single endoscopic procedure as well as demographic

data about the individual on which the procedure was carried out. CORI procedure data
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includes colonoscopy findings such as endoscopist-reported longest adenoma dimension mil-

limeter. We group adenoma size into mm-size bins and convert these sizes to cell-numbers

assuming 1 cm3 corresponds to approximately 108 cells [39] and a half-ellipsoid shape as

described in the S1 Appendix Eq. 54. For this work, we select all colonoscopies undertaken on

average risk patients with no prior colonoscopy history. For our final model fitting, we include

8,124 procedures from CORI V3 with adenoma detection as well as normal colonoscopy find-

ings in the age group 40 to 49 years. Our model assumes exponential growth of adenomas,

and for this reason we limit ourselves to patients younger than 50 years of age, where we still

observe an age-size relationship (Figure A in S1 Appendix).

SEER cancer incidence data

The Surveillance Epidemiology and End Results (SEER) research database comprises cancer

incidence and at-risk population data in the US from 1973 to 2014 [40]. Each observation is

composed of a single tumor observation with patient demographic information (sex, race, age,

and calendar year) as well as endoscopist-reported largest carcinoma dimension in mm. Simi-

lar to our procedure for adenomas (see above) we group carcinoma size into mm-size bins (.5

mm on either side of reported size) and convert to cell number assuming 1 cm3 corresponds

to approximately 108 cells [39] and a half-ellipsoid shape as described in S1 Appendix Eq. 54.

For fitting compartment M to SEER data, we include 54,835 tumor size observations indicated

as ICD-O-3 codes 18. (0-9) for ages 40 through 60 and incidence data from ages 40 through 60

(114,595 observations across 7,399 year, sex, registry, and age groupings).

Two forms of censoring in the SEER data will affect observed carcinoma size: Firstly, indi-

viduals with very small cancers (<0.5 mm in size) will either be asymptomatic or the carci-

noma will be missed due to small size. Secondly, since symptoms are strongly associated with

carcinoma size, individuals with large tumors will preferentially undergo diagnostic evalua-

tions resulting in censoring of large and very large CRC. The SEER database provides informa-

tion regarding incident cancer cases as well as number of at-risk individuals at each age.

Fig 1. Two-type branching process model of colorectal cancer progression. Cells immigrate from a static population of colonic crypt stem cells

(green cells) into the adenoma compartment A with rate μ1. Compartment A grows with rate b1 and decreases with rate d1. With rate μ2 adenoma cells

generate malignant cells, M. Cancer compartment M grows with rate b2 and decreases with rate d2. The total number of cells in compartments A and M
and time t are denoted A(t) and M(t), respectively.

https://doi.org/10.1371/journal.pcbi.1007552.g001
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From the SEER database we know I(t), the number of incident cancer cases at age t, and

R(t), the number of at-risk individuals at age t, but we do not know P(t), the prevalent cancer

cases at age t who were previously incident cancer cases, since these are censored in the data.

We therefore want to estimate the number of prevalent cases, P(t). If we assume that these are

the three possible conditions for an individual we define the non-normalized total population

size as

TðtÞ ¼ RðtÞ þ IðtÞ þ PðtÞ:

To be able to estimate prevalent cases with varying population sizes, we standardise our

population by dividing by the total population size. We therefore define a normalized popula-

tion denoted with carets:

1 ¼ R̂ðtÞ þ ÎðtÞ þ P̂ðtÞ;

where R̂ðtÞ is the proportion of at-risk individuals at age t, ÎðtÞ is the proportion of newly

incident cancers at age t and P̂ðtÞ is the proportion of individuals with previously diagnosed

cancers at age t. The standard calculation of age-specific incidence rate is the ratio between

incident cancers at a given age and the total at-risk population size for that age,
IðtÞ

RðtÞþIðtÞ. At each

time step, this fraction of the previous at-risk group moves to the incident group, and we can

recursively calculate R̂ðtÞ with the iterative formula

R̂ðtÞ ¼ R̂ðt � 1Þ � R̂ðt � 1Þ
IðtÞ

RðtÞ þ IðtÞ

� �

ð1Þ

with R̂ðt ¼ 0Þ ¼ 1, and where we use the fact that
IðtÞ

RðtÞþIðtÞ ¼
ÎðtÞ

R̂ðtÞþÎðtÞ does not depend on the

total population size. The normalized proportion of incident cancers is simply

ÎðtÞ ¼ R̂ðt � 1Þ � R̂ðtÞ ð2Þ

while the normalized proportion of prevalent cases is

P̂ðtÞ ¼ 1 � R̂ðt � 1Þ: ð3Þ

Then, to estimate P(t), we rely upon the correspondence between the normalized and non-

normalized populations PðtÞ ¼ P̂ðtÞTðtÞ, IðtÞ ¼ ÎðtÞTðtÞ. By rearranging the latter, we esti-

mate the unknown total population size TðtÞ ¼ IðtÞ=ÎðtÞ from the known real-life values from

the SEER data I(t), and by substituting into the former obtain

PðtÞ ¼ IðtÞ
P̂ðtÞ
ÎðtÞ

ð4Þ

For example, from the SEER data we have I(t = 50) = 3,218 newly incident cancer cases at age

50, and can compute the number of censored, prevalent cancers, Pð50Þ ¼ Ið50Þ
P̂ð50Þ

Îð50Þ
. The nor-

malised fraction of prevalent cases was estimated from the SEER data to be P̂ð50Þ ¼ 0:00284.

The normalized value of Îð50Þ ¼ 0:000491. leads to a prevalent-to-incident ratio of

P̂ð50Þ=Îð50Þ ¼ 5:795, so that the 3,218 incident cases mean that we impute P(50) = 18,651

prevalent cases for age 50. These are placed in a bin corresponding to growths larger than 40

mm, the median growth size reported across our data.
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Two-type branching process model

A two-type branching process model with immigration is used to model the stochastic dynam-

ics of colorectal cancer development in an average-risk US population. In this model we have

two cell types, A and M which relate to adenomatous and malignant cells, respectively (Fig 1).

The dynamics are as follows:

; !
m1 A

A !
b1 Aþ A

A !
d1
;

A !
m2 M

M !
b2 M þM

M !
d2
;

Compartment A. Compartment A can be solved (S1 Appendix Eq. 15) for the probability

Pt(A(t) = k) of having k type-A cells at age t by setting μ2 = 0:

PtðAðtÞ ¼ kÞ ¼ ð1 � pÞr
r þ k � 1

k

� �

pk ð5Þ

which is a negative binomial distribution describing the probability p of real-valued r failures

given k successes with parameters r ¼ m1

b1
, pðtÞ ¼ b1ðeg1 t � 1Þ

ðb1eg1 t � d1Þ
, and γ1 = b1 − d1. For adenoma obser-

vation t at a given age with a binned size, we define OA
i ¼ ðL

A
i ; U

A
i ; t

A
i Þ, where we have a Com-

partment- A observation with lower size bound LA
i and upper size bound UA

i , found at age tAi .

The likelihood of the parameters ΘA = (μ1, b1, d1), given an individual observation OA
i is

LðYA
j OA

i Þ ¼ IpðLA
i þ 1; rÞ � IpðUA

i þ 1; rÞ ð6Þ

where Ip(k, r) is the regularized incomplete beta function defined as the ratio of the incomplete

beta function B(p, k+ 1, r) over the complete beta function B(k + 1, r). The latter is the cumula-

tive distribution function (CDF) of the negative binomial distribution.

Compartment M. For the full model, we modify the previous result from Antal and Kra-

pivsky [37] for the probability generating function to include steady influx into Compartment

A. From the final generating function G(s, t) (S1 Appendix Eq. 40) we can extract the cumula-

tive probability of having up to N cells in Compartment M with the residue

PðMðtÞ � N j Y; tÞ ¼
1

2pi

I
1

sNþ1

Gðs; tÞ
ð1 � sÞ

ds ð7Þ

with model parameters Θ = (μ1, b1, d1, μ2, b2, d1). To evaluate the contour integral we develop

a large N approximation as in [41]. First we rewrite the integral as

PðMðtÞ � NjY; tÞ ¼
1

2pi

I

eVðsÞds ð8Þ

with:

VðsÞ ¼ � log ð1 � sÞ þ log ðGðs; tÞÞ � ðN þ 1Þ log ðsÞ ð9Þ

and evaluate the integral at its saddle point using the stationary phase approximation. This
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involves solving V0(s) = 0 and substituting the solution s�,

PðMðtÞ � N j Y; tÞ �
eVðs�Þ

2p

2p

V@ðs�Þ

� �1
2

ð10Þ

Similar to the compartment- A case, for a carcinoma finding at a given age with a binned

size, we define OM
i ¼ ðL

M
i ;U

M
i ; t

M
i Þ. Furthermore, the likelihood of the parameters Θ = (μ1, b1,

d1, μ2, b2, d2), given an individual observation OM
i is

LðY j OM
i Þ � PðMðtÞ � UM

i j YÞ � PðmðtÞ � LM
i j YÞ ð11Þ

Compartment- M extinction given compartment A size. We derive the conditional

probability of having k cells in compartment A at time t given compartment M is empty,

P(A(t) = k|M(t) = 0) and use Bayes’ theorem to compute the probability of 0 cells in Compart-

ment M given Compartment A is of a certain number of cells (S1 Appendix Eq. 53).

Modification for λ. When we allow for a resistant sub-population of proportion λ we

then have a mixture model which leads to a modification which applies to the likelihoods seen

in Eqs 6 and 11:

LðY; l j OiÞ ¼

(
lþ ð1 � lÞLðY j OiÞ if 0 2 ðLi;UiÞ;

ð1 � lÞLðY j OiÞ otherwise
ð12Þ

Complete model. To combine the likelihoods of compartment A and M, we define a com-

posite likelihood of the model parameters given size data pertaining to both adenomas and

malignant cancers. Computed in log space we have:

‘ðY j OA;OMÞ �
XKA

i¼1

‘ðY
A
j OA

i Þ þ
XKM

j¼1

‘ðY j OM
j Þ ð13Þ

where KA and KM are the number of adenoma and malignant cancer observations respectively.

Simulations

For validation, we used the Gillespie algorithm as implemented in the R package SSAR [42] to

generated stochastic simulations of the two-type branching process model with a set of biologi-

cally and computationally feasible parameters. Chosen to reflect cellular dynamics of colorectal

cancer development, each parameter defines the per-year rate at which an event can occur

within a cell. We chose the following biologically reasonable parameters: μ1 = 3.1, b1 = 9, d1 =

8.8, μ2 = 10−5, b2 = 9.2, and d2 = 8.8. The value of μ1 is chosen with the following simplifying

assumptions: an average of 107 colonic crypts with six stem cells per crypt are replaced at an

average rate of .2 per day [43], and the average somatic mutation rate per base pair per division

is taken to be 2.8 × 10−9 [44]. We further assume a 250bp genomic region could trigger an ade-

noma transition (for example the region of the APC gene which is typically mutated in CRC is

around this size [45]). Taken together, this leads to a mutation rate of 3,100 per year per indi-

vidual. Recognizing that inactivation of the tumor suppressor gene APC involves two hits, we

multiply this mutation rate by 1/1000 to roughly mimic the second hit. We take rates b1 and d1

from Herrero-Jimenez et al. [46] and others who have estimated a birth rate, b1 of 9 per year

and a net-growth rate, γ1 = b1 − d1, of around .18 per year [22, 46]. Compartment- M parame-

ters b2 and d2 are chosen assuming a doubling of net growth rate for the cancer compartment,

while μ2 is chosen largely for computational convenience, small but large enough to generate
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growths in our desired age ranges. We simulated this process for 100,000 individuals and

uniformly assessed the runs at times up to 80 years. To cope with the real-life phenomena of

adenoma-free individuals, we introduce a parameter λ which represents the proportion of

individuals in our population who do not develop adenoma at all. For purposes of parameter-

recapture in the simulated data, we set λ equal to 45% and attempt to recover this parameter as

well.

Model fitting

We fit the model parameters on the simulated and real data by maximizing likelihoods

described in the methods (Eqs 6, 11 and 13) via Nelder-Mead optimization, a numerical opti-

mization algorithm for nonlinear functions, and assess the agreement between stochastic

simulation and our model for each compartment by comparing the model-predicted CDF

function with the empirical CDF of simulated sizes [47]. Subsequently, we assess parameter

uncertainty for our parameter estimates via adaptive Markov chain Monte Carlo (MCMC) for

10,000 steps with a target acceptance rate of 30% [48]. To better illustrate the compartment- M
likelihood landscape, we perform a grid search. For model fitting we use the parameters μ1,

m1

b1
,

γ1 = b1 − d1, μ2, and γ2 = b2 − d2 to more efficiently search the space. For the simulated data,

we perform parameter inference three times: once on compartment A only, once on compart-

ment M only, and a third time on both compartments simultaneously and considering λ. For

the real data, we perform parameter on both compartments simultaneously (Eq 13). We allow

for a adenoma-resistant population λ of 55%, chosen after examining the CORI data and

determining the maximal adenoma prevalence across all ages (45%) and restrict d1 = d2 as a

simplifying assumption.

Prior on μ1. We add a prior on the coefficient μ1 in order to encourage the fit to biologi-

cally feasible levels of adenoma initiation. The prior distribution of μ1 is taken to be lognormal

with a mean of 3,100 and a standard deviation of 1/25. This value corresponds to the expected

number of mutational events during a year at a given base pair occurring during mitosis in a

stem cell of the colonic crypt (see Simulations).

Prior on b1. We utilize a prior for growth coefficient b1 in order to encourage the fit to

biologically feasible levels of adenoma growth. The prior distribution of b1 is taken to be log-

normal with a mean of 9 and a standard deviation of 1/3 [46].

Ethics statement

The Ethics Commission of the Executive Board of ETH approved this research (EK

2017-N-47).

Results

Overview

We developed an extension to the two-type branching process model with adenoma initiation

(immigration into compartment A) and applied it to the question of colorectal cancer growth

dynamics (Fig 1). Previous work established an exact solution to this overall process, but an

analytical solution to the size distribution of carcinoma cells at time t, M(t), was not provided

[37]. We derive a large-size approximation to the size distribution of compartment M (carci-

noma cells) and demonstrate its fit on simulated as well as real data from several sources.

In the two-type branching process model, initiation of A cells occurs at rate μ1. These A
cells then proliferate with rate b1, die with rate d1, and transition into M cells with rate μ2. Sub-

sequently, these M cells proliferate with rate b2 and die with rate d2. Taking into account the
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occurrence of patients who will not develop adenomas, we allow for a resistant population of λ
%. For the purposes of fitting this model on real data, we take the A cells to be adenoma cells

and the M cells to be cells of malignant tumors.

Validation of the mathematical approximation of our model by simulation

To validate our mathematical approximation, we simulate adenoma and carcinoma growths

via stochastic simulation of the two-type branching process (Fig 2) and fit the model to the

simulated data. We fit the model by computing the maximum likelihood parameters with our

likelihood functions (Eqs 6, 11 and 13). For the simulated data, we present two separate fitting

strategies. In the first we demonstrate recovery of biologically-motivated simulated parameters

(μ1 = 3.1, b1 = 9, d1 = 8.8, μ2 = 10−5, b2 = 9.2, d2 = 8.8) in each compartment separately (Eqs 6

and 11). In the second, we illustrate that we can recapture the simulated parameters by com-

bining the likelihoods (Eq 13), and performing adaptive MCMC.

We compare our model predictions regarding the distribution of the cell numbers in com-

partment A (expressed by the empirical cumulative distribution functions, CDFs) to the simu-

lated data and find that they are indistinguishable (Fig 3A). Maximum likelihood estimation

via Nedler-Mead optimization demonstrates that we can recapture the parameters used in the

Fig 2. Illustration of simulated data for size of compartments A and M. We performed 100,000 simulations of the two stage branching process with

biologically motivated parameters (μ1 = 3.1, b1 = 9, d1 = 8.8, μ2 = 10−5, b2 = 9.2, and d2 = 8.8). Presented are the empirical densities of compartments A
and M, given non-extinction. Heights indicate the density of the size distribution at each given age.

https://doi.org/10.1371/journal.pcbi.1007552.g002
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simulation of the data. This is seen further in the posterior parameter distributions generated

via MCMC; the simulated model parameter values are well-placed within the 2D posterior

densities from the MCMC chain across the parameter space (Fig 3B–3D), indicating good

agreement of approximation and simulation.

Similar to compartment A, we are able to fully recapture our parameters for compartment

M. Without our approximation for the density of the compartment M, we would be forced to

evaluate the parameter space with a likelihood which only takes into account prevalence data,

i.e., carcinoma yes/no, (S1 Appendix Eq. 46) and would be unable to identify the best parame-

ter combination of μ2 and b2 (Fig 4A). With our approach, however, we can closely approxi-

mate the CDF of the distribution of sizes in compartment M at a given age (Fig 4B). While our

approximation only agrees with exact calculations for large sizes, in practice, detectable cancers

and adenomas will be always within this large-size regime (>100 cells). This allows us to take

advantage of more data, namely, the actual size information of a particular growth, and leads

to successful parameter inference and the identification of the parameters used to simulate the

data (Fig 4C).

After demonstrating that we can recapture parameters for each compartment individually,

we perform adaptive MCMC to explore the parameter space of both compartments simulta-

neously for the simualated data. For this full model parameter inference, we add a number of

zero-size observations to the simulated data, to model adenoma-resistant individuals. These

imputed zeros make up λ = 40% of our observations. We find that the simulated model param-

eters are very close to the model parameters that have the highest likelihood (Fig 5).

Fig 3. Agreement of simulation and mathematical model for compartment A. (A) Comparison of 1-CDF(number

of cells) (percent of simulations with more than N cells at a given age) for the 100,000 simulations and the model

prediction for the same parameters. Dashed dark blue line: model prediction using simulated parameters. Light blue

area: empirical probability of observing more than N cells at a given age for the simulated parameters (μ1 = 3.1, b1 = 9,

d1 = 8.8, μ2 = 10−5, b2 = 9.2, and d2 = 8.8). (B-D) Empirical MCMC-derived 2D density of posterior distribution of

parameters. Warmer color indicate parameter values which are more likely to have produced the data. Black dots

indicate the simulated parameter values: μ1 = 3.1, b1 = 9, and γ1 = .2

https://doi.org/10.1371/journal.pcbi.1007552.g003
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Fig 4. Agreement of simulation and mathematical model for compartment M. (A) Prevalence-only likelihood

landscape which takes into account extinction of compartment M. Warm colors indicate parameter values which are

more likely to have produced the data, variation in warm-ridgeline band is an artifact of grid choice. (B) Comparison

of empirical 1-CDF(number of cells) (Percent of simulations with more than N cells) at age 50 for the simulated data

and our new approximation. Separation at low sizes demonstrates that our approximation is most accurate at large

ages. Black dots are exact calculation of probabilities taking the derivative of the probability generating function. (C)

Likelihood landscape around our utilized parameters using our new approximation and the complete empirical size

distribution of the simulated data. Warmer regions indicate parameter values which are more likely to have produced

the data. The black dots indicate our biologically simulated parameters: μ1 = 10−5, and b1 = 9.2.

https://doi.org/10.1371/journal.pcbi.1007552.g004
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We are ultimately interested in calculating the probability of cancer depending upon the

size of the adenoma compartment A. We compute the probability of non-extinction in com-

partment M given a certain number of cells in compartment A (S1 Appendix Eq. 53). Given

successful parameter inference, this quantity represents the probability that an individual with

an adenomatous polyp of a given size also has cancer. We compare model-predicted condi-

tional probabilities of cancer cells in compartment M given that compartment- A size has a

lower bound, an upper bound, or is between two bounds with the empirical probabilities from

the simulated data and find good agreement (Fig 6).

Parameter inference on real data

We now want to infer model parameters that allow us to reflect the true prevalence of colorec-

tal adenoma and cancers. Therefore, we fit the complete model on the binned adenoma size

data from the CORI endoscopic database and binned cancer size data from SEER registry. The

model was fit using a combined (composite) likelihood for compartments A and M allowing

for an sub-population of individuals of size 55% which will neither develop cancer or adenoma

(Eq 13 and Fig 7).

The inferred parameters of our model can be interpreted in biological terms: the best-fit

immigration rate into compartment A (adenoma initiation), μ1, was found to be 13,200 cells

per year. The best adenoma net-growth rate γ1 = b1 − d1 was found to be 0.165 (an increase of

16.5% per year) per cell per year. The model was able to recapture the growth in average size

seen in the CORI data up to age 50 (Fig 7A). For transition from adenoma to cancer, we found

μ2 to be 1.38 × 10−7 per cell per year. The net-growth rate of compartment M, γ2, was found to

Fig 5. Agreement of simulation and mathematical model for compartments A and M. We performed 10,000 steps

of adaptive MCMC on the simulated data and present the posterior distributions of the chain. Parameters used in the

simulated data are: μ1 = 3.1, b1 = 9, γ1 = .2, μ2 = .00001, γ2 = .4, λ = .4. All parameters besides λ have the units per cell

per year. λ is a population proportion. Upper right triangle: Pairwise parameter correlation. Diagonal: Univariate

density of posterior parameter distribution. Lower left triangle: 2D posterior density distributions for pairs of

parameters. Warmer colours indicate parameter values which are more likely to have produced the data.

https://doi.org/10.1371/journal.pcbi.1007552.g005
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be 1.76 (an increase of 176% per year) per cell per year. We found good visual correspondence

between the incidence and prevalence rates from the SEER data and incidence and prevalence

predicted by our model (Fig 7B). With our likelihood approach we are able to perform adap-

tive MCMC run across the parameter space, giving us the posterior distribution of the parame-

ters of our model, given the data (Fig 8).

Probability of CRC presence given detection of adenoma

With our inferred model parameters across the two data sources we can now compute the syn-

chronous probability of colorectal cancer given the presence of an adenoma of a particular

size. We compute these probabilities of cancer for individuals with adenomas between four

ranges: <5 mm adenoma, between 5 and<10 mm adenoma, between 10 and<20 mm

Fig 6. Agreement of simulation and mathematical derivations regarding the conditional probability of cancer

given number of adenoma cells. We compare the empirical probability of cancer given three size ranges (points), as

derived from the simulations and compare this to our model derived values (lines). (A) Probability of cancer given

compartment A has 100-1000, 2500-25000, or 50000-500000 cells. (B) Probability of cancer given compartment A has

more than 1000, 25000 or 500000 cells. (C) Probability of cancer given compartment A has fewer than 5000, 25000 or

100000 cells.

https://doi.org/10.1371/journal.pcbi.1007552.g006
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Fig 7. Model prediction of real-world adenoma size and rates of carcinoma. (A) Average adenoma size in mm.

Black line: Model predicted average adenoma size layered on top of binned count data for the CORI data. Colored

bins: Colored bins: Number of individuals in the CORI data set with a reported adenoma of a given size. Dashed line:

Beyond age 50 we do not see an age-dependent increase in average adenoma size and this data was excluded for our

calculations. (B) Cancer prevalence and incidence rates. Red lines: Model-predicted cancer incidence and prevalence

rates for given ages. Violin plots: Density of estimated rates for 5-year age-bins as derived from the SEER data.

https://doi.org/10.1371/journal.pcbi.1007552.g007
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adenoma, and an adenoma equal or greater than 20 mm in size. The sizes here correspond to

the endoscopist-estimated largest dimension in mm. We find that for patients over the age of

50, the probability that an individual would have cancer given an observed adenoma between

1 and <5 mm is 1/42000. For larger adenoma size ranges the probability of cancer increases,

and we observe probabilities of 1/3900 for patients with adenomas between 5 and<10 mm in

size and 1/500 for patients with adenomas between 10 mm and<20 mm in size. For patients

with adenomas larger than 20 mm, our model predicts cancer rates of 1/40 for 50 year-olds,

and 1/6 for 70 year-olds (Fig 9). An implementation of our model for prediction of carcinoma

in an adenoma for patient ages between 30 to 70 years and adenoma sizes from 0 to 30 mm, is

freely available as an R/shiny web-app at https://ccrc-eth.shinyapps.io/CCRC/.

Discussion

We have presented a model of the dynamics of colorectal cancer development using a two-

type branching process. The fitting of this model to the CORI and SEER data is enabled

through our new approximation to the size distribution of the carcinoma compartment at

time t, M(t). We present new estimates of the rates defining average risk (spontaneous)

Fig 8. Parameter distributions and correlations for the model fit to CORI and SEER data. We performed 10,000 steps of adaptive MCMC on the

parameter space, evaluated on the CORI and SEER data and present the posterior distributions of the chain. All parameters have the units per cell per

year. Upper right triangle: Pairwise parameter correlation. Diagonal: Univariate density of posterior parameter distribution. Lower left triangle: 2D

posterior density distributions for pairs of parameters. Warmer colours indicate parameter values which are more likely to have produced the data.

https://doi.org/10.1371/journal.pcbi.1007552.g008
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colorectal carcinoma development. Our estimated parameters indicate fast transition from

adenoma to carcinoma, and a similarly fast tumor volume doubling time.

Our new approximation to the two-type branching process with immigration enables the

computation of the size density of the carcinoma compartment (compartment M). Previous

efforts to solve this system have stopped short, and in these studies only the probability gener-

ating function of compartment M was provided [37]. In such a model, numerical computation

of the probability of a large number of cells in compartment M would be practically impossi-

ble. With our approximation to this distribution, these probabilities can now be efficiently

computed.

Efficient calculation of the adenoma compartment, in turn, enables the application of the

two-type branching process model to epidemiological data. Parameters of our model could

thus be learned using real-world data regarding adenoma prevalence and size from the CORI

database and carcinoma incidence from the SEER database. With our approach and the access

it grants to the computation of a size-based likelihood, enabling us to search the parameter

space and can describe the space with MCMC-based posterior density estimates.

For the initiation of adenoma cells, we find that the immigration rate into compartment A
is 13,200 cells per year. As described in the methods, our prior expectation was centered on a

rate of 3100 cells per year. While the two-stage branching process model has been shown to

Fig 9. Conditional probability of cancer given adenoma size for CORI and SEER data-derived parameters. Predicted probability of cancer given

adenoma prevalence of a particular size. Parameters used are inferred from the two-type branching process model fit upon the CORI and SEER data.

Labels indicate size of adenoma growth. Y-axis denotes the probability of cancer presence given adenoma size.

https://doi.org/10.1371/journal.pcbi.1007552.g009
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incapable of explaining the two-hit mutational process of adenoma initiation, we draw paral-

lels to that process to educate our prior expectations [23]. As our prior expectation is based on

a composite of biologically feasible somatic mutation rates, the number of active stem cells,

colonic crypt number, and number of base pairs of the genetic regions which–when mutated–

could lead to cancer, the difference here could be explained by variations in any or all of these

values. The use of the two-stage branching process model, while it provides good opportunity

to leverage adenoma and cancer size data to gain new insights, constitutes a trade-off when it

comes to the interpretation of adenoma initiation.

The inferred net growth of an adenoma of 16.5% per year is consistent with previous esti-

mations of adenoma growth in general [23, 46] and suggests that an adenomatous polyp

would take, on average, 4.5 years to double in volume, reinforcing evidence that such polyps

develop slowly over many years [26, 49]. This corresponds to an average of 21.9 years to grow

from 3mm to 10mm in endoscopist-reported largest dimension. The subsequent growth from

10mm to 30mm would, on average, take another 20.0 years.

For compartment M, we find that the mutation rate from adenoma into cancer is

1.38 × 10−7 per year per adenoma cell, several orders of magnitude faster than the somatic

mutation rate of a normal colonic stem cell, but similar to the average of the male and female

rates estimated in previous modeling studies [22, 23, 50]. This average rate may be misleading,

however, as it has been shown that potentially only 1-10% of adenoma cells are capable of

malignant transition [25]. This suggests that the true rate among those cells may be up to two

orders of magnitude faster. Similar to this fast transition rate, we estimate the net growth rate

for an initiated cancer to be 176% per year. This rate would correspond to growth from a single

cell to a size larger than 2.5mm in less than 7.35 years, or a doubling time of 250 days. With

these numbers we could simulate the two-type branching process to make time-based predic-

tions about the probability of a cancer of a certain size in the future given a current adenoma

size. However, these simulations would be very computationally burdensome and without

additional experimental or epidemiological validation, these predictions should not be used

for medical decision-making.

Considering both compartments jointly, the parameters can be used to calculate the average

sojourn time of an adenoma growth, i.e., the time it takes for a single adenoma cell to grow

and produce its first cancer cell, conditioned on non-extinction. Our calculated value of 49.2

years suggests an extremely slow transition period and is consistent with values found with the

application of other models [23]. Recently published work by Luebeck et al. supports even lon-

ger pre-malignant periods, as well as demonstrating timing differences between cancer devel-

opment in the proximal and distal colon and rectum [51].

Conditioning on an adenoma finding of size between 1 and 5mm, our inferred model

parameters predict a cancer rate very close to 0.00008, a bit below a cancer rate of 1/3744 as

found in the literature [52]. At larger adenoma sizes, we predict rates more similar to those

found previously. For findings of size between 5 to<10 mm (0.0013 vs. 2/1198 = 0.0016), and

10 to<20 mm (0.01 vs. 16/963 = 0.016) the predictions are very close to those seen in observa-

tional studies [52].

In our study, fitting of parameters describing the adenoma compartment were dependent

on the CORI database, a registry of endoscopic procedures [38]. We filtered data to include

only individuals at average risk with a first screening procedure. As seen recently, already with

individuals 50 years old we note that the average recorded size of adenomas is no longer asso-

ciated with age [51]. While expected due to the limited growth space of the colon, this led us to

focus on individuals younger than 50 years of age where we still observed an age-size relation-

ship of adenomas (Figure A in S1 Appendix). However, screening for most individuals is only

recommended at or beyond 50 years of age [10, 11] and data from fewer individuals at average

Predicting colorectal cancer risk from adenoma detection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007552 February 5, 2020 17 / 23

https://doi.org/10.1371/journal.pcbi.1007552


risk in the age group 40–49 were available. In addition, the data provided for patients under 50

years of age will be enriched with patients who have non-average risk characteristics, and the

growth rates of these patients may be substantially different from the average-risk population.

The SEER data is a registry of cancer incidence and only detected cancers will be recorded

[40]. In this way the database potentially misses many individuals who have cancer at a given

age, but have not yet been detected. Additionally, our model likelihood requires counts for the

number of prevalent cancer cases, while the SEER registry comprises incidence cases that have

been subsequently removed from the cancer pool, effectively censoring their cancer sizes and

prevalence. To cope with this we computed population prevalence from the SEER data and

used this to correct our size data. Uncertainty in our correction may bias our results.

In the future the learned model parameters can be applied to simulations regarding the effi-

cacy of colorectal cancer screening strategies. In practice, however, this is very costly due to

the size of our model parameters. Other routes could be explored, for example tau-leaping

[53], to simulate the model with the inferred parameters and directly assess further quantities

of interest.

The two-type branching process model as applied to colorectal cancer in this paper could

be used to simulate any process with phenomenological similarity. In particular, one could

apply our approach to any cancer with defined and quantifiable precursor stages such as Bar-

rett’s carcinoma of the esophagus [54], anal carcinoma with condyloma precursors [55] and

gastric carcinoma derived from gastric metaplasia and dysplasia [56]. However, for cancers

other than colorectal cancer, these two stages are less defined or measurable, and the utility of

our model is limited.

Our work has several strengths: First, this work has extended the utility of the two-type

branching process model and provides the ability to perform maximum likelihood estimation

and broad parameter fitting. Second, we related the model to real-world epidemiological data

regarding adenoma prevalence and characteristics as well as carcinoma incidence. And third,

new posterior density estimates from the MCMC provide a strong estimate for the realm of

plausible parameters which could generate adenoma and carcinoma sizes seen in real-world

data.

We also note a number of limitations of our work: First, the two-stage branching process

model may not fully capture the initiation trends of the adenoma compartment, due to the bio-

logical two-hit mutational process underlying this initiation. We have, however, solved the

model to allow for likelihood-based parameter inference and have found that our inferred

parameters fit quite well with what has been previously found. Second, our approximation

only provides reliable estimate for large numbers of cells in compartment M and size probabil-

ities for less than 50–100 cells will be increasingly inaccurate. These numbers of cells, however,

are far below the standard detection limit of colonoscopy, so this limitation has no real practi-

cal consequence. Third, the generating function for compartment M and hence its approxima-

tion involve combinations of hypergeometric functions, the implementation of which can be

challenging. Fourth, key aspects of the natural history of CRC such as the joint probability of

compartments A and M or the presence of multiple adenomas or synchronous carcinomas

have not been calculated in our approach. With the currently available mathematical tools we

are able to predict current cancer existence given current adenoma size, however, time-based

predictions of future cancer occurrence given current adenoma size, or the prediction of can-

cer size given adenoma size, could only be addressed by stochastic simulation of the system

with our currently inferred parameters, which would be computationally demanding. Multiple

adenomas or carcinomas is not accounted for in the two-type branching process model. Fifth,

for simplicity we fix death rates of adenoma and carcinoma cells to be equal and in doing so

we assume that transition to cancer will exclusively effect the net growth rate γ2 through
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variation in compartment-M birth rate b2. Comparisons between compartments A and M are

thus limited to those of net growth rates γ1 and γ2. However, mutations in carcinoma cells can

affect both, growth and survival, which will not be adequately reflected by our model. In addi-

tion to this, we further restrict our model with the inclusion of time-constant parameters.

While there are models, such as the Bellman-Harris process [57], which allow for time-depen-

dent growth rates and could possibly fit the trends seen in cancer more closely, the solution of

these more complex models to fit size data in a similar approach presented in the paper is an

open challenge. Sixth, a resistance population parameter λ accounting for the fraction of indi-

viduals who never develop carcinoma was included to allow for some individual variability but

this is also potentially problematic if, given a long enough lifetime, all individuals of a popula-

tion will experience cancer. In the future, we imagine allowing birth and death rates to follow

a distribution to account for uncertainty and variation in growth rates across the population.

Moreover, throughout our models, we do not discern between patient subgroups such as sex,

race, and colon location. In the future, our model could be adapted to these patient groups

simply through multiple fittings, but the SEER database is limited due to the significant varia-

tion in level of reporting among patient subgroups. Also, differences in individual cancer risk

are not accounted for by our modeling, and our model rather assumes that all parameters are

shared across the population. However, it is likely that each person’s cells have a propensity for

cancerous growth which varies due to a variety of causes such as individual genetic predisposi-

tion, immune system activity [58], microbiome [59], and lifestyle [60]. Finally, for parameter

estimation of our model the CORI and the SEER database were used and biases in collection

(see above) as well as inconsistencies in recording of data will also affect our results.

In summary, our work applies the two-type branching process model to colorectal cancer

development and enables direct calculation of the size of the pool of cancer cells. This mathe-

matical advancement allows for parameter estimation using data from large databases and

thus allows for a more precise estimation of all transition rates including the transition from

adenoma to carcinoma cells μ2. While previous models could only use binary prevalence but

not size data, our approach enables us to fit model parameters to data on adenoma and carci-

noma size, providing improved estimates of the rates of CRC development. Understanding the

differences in these rates may be used to inform further discussions about the natural history

of CRC, which will impact on utility and timing of screening guidelines.
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