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Abstract

Correct and bias-free interpretation of the deep sequencing data is inevitably dependent on the complete mapping of all
mappable reads to the reference sequence, especially for quantitative RNA-seq applications. Seed-based algorithms are
generally slow but robust, while Burrows-Wheeler Transform (BWT) based algorithms are fast but less robust. To have both
advantages, we developed an algorithm FANSe2 with iterative mapping strategy based on the statistics of real-world
sequencing error distribution to substantially accelerate the mapping without compromising the accuracy. Its sensitivity
and accuracy are higher than the BWT-based algorithms in the tests using both prokaryotic and eukaryotic sequencing
datasets. The gene identification results of FANSe2 is experimentally validated, while the previous algorithms have false
positives and false negatives. FANSe2 showed remarkably better consistency to the microarray than most other algorithms
in terms of gene expression quantifications. We implemented a scalable and almost maintenance-free parallelization
method that can utilize the computational power of multiple office computers, a novel feature not present in any other
mainstream algorithm. With three normal office computers, we demonstrated that FANSe2 mapped an RNA-seq dataset
generated from an entire Illunima HiSeq 2000 flowcell (8 lanes, 608 M reads) to masked human genome within 4.1 hours
with higher sensitivity than Bowtie/Bowtie2. FANSe2 thus provides robust accuracy, full indel sensitivity, fast speed, versatile
compatibility and economical computational utilization, making it a useful and practical tool for deep sequencing
applications. FANSe2 is freely available at http://bioinformatics.jnu.edu.cn/software/fanse2/.

Citation: Xiao C-L, Mai Z-B, Lian X-L, Zhong J-Y, Jin J-j, et al. (2014) FANSe2: A Robust and Cost-Efficient Alignment Tool for Quantitative Next-Generation
Sequencing Applications. PLoS ONE 9(4): e94250. doi:10.1371/journal.pone.0094250

Editor: Zhang Zhang, Beijing Institute of Genomics, Chinese Academy of Sciences, China

Received November 29, 2013; Accepted March 12, 2014; Published April 17, 2014

Copyright: � 2014 Xiao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was collectively supported by the National ‘‘973’’ Projects of China (2011CB910700), National Natural Science Foundation of China (31300649
and 31200612), the Key Project of Chinese Ministry of Education (212207), Guangdong Natural Science Foundation (S2013010013529), Foundation for
Distinguished Young Talents in Higher Education of Guangdong, China (2012LYM_0026), the Fundamental Research Funds for the Central Universities (21612202,
21612459, 11610101, 21613343 and 21611201), and the Institutional Grant of Excellence of Jinan University, China (50625072). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zhanggong@jnu.edu.cn (GZ); tqyhe@jnu.edu.cn (Q-YH)

Introduction

Mapping (aligning) millions of next-generation sequencing

(NGS) reads accurately to reference sequences is the basis of all

deep sequencing applications that utilize reference genomes or

transcriptomes, including variant analysis, gene expression and

isoform analysis. Traditional alignment algorithms such as BLAST

and BLAT could not process the massive amount of sequencing

data in hours (reviewed in [1]). A series of early mapping

algorithms such as SSAHA, MAQ and SOAP started to tackle this

speed hindrance. These algorithms extended the basic idea of

‘‘seeding’’ (hash table indexing) from BLAST, which is simple in

design and easy to implement, bringing the NGS technology into

quantitative era (reviewed in [2,3]). The computational time of this

type of algorithms is theoretically proportional to the size of

reference sequence ([4] and reviewed in [2]). Therefore accurately

mapping to large genomes is still time-consuming [5,6]. Another

type of algorithms based on Burrows-Wheeler Trasnformation

(BWT), e.g. Bowtie and BWA, takes the advantage of the suffix/

prefix trie and thus reduces the computational complexity, being

typically 5,20x faster than seed-based algorithms (reviewed in

[2,7]). Such methods can map tens of millions of reads to human

genome within one day on desktop workstations, thus promoting

the blowout of NGS applications. According to a statistics till the

end of 2012, two among the top three cited mapping algorithms

are of this type (Bowtie and BWA) (reviewed in [6]). In real-world

benchmarks, although the sensitivity of earlier BWT-based

algorithms like Bowtie and SOAP2 (,80%) is still to be improved

when mapping DNA sequencing reads, the sensitivity of the

upgraded Bowtie2 is almost the same as the traditional seed-based

algorithms while being more than 20x faster [6].

However, deviations between reads and reference sequences set

a great challenge of the sensitivity and speed to the mapping

algorithms. Origins of the deviation include single nucleotide

polymorphisms (reviewed in [8]), PCR amplification [9], base

calling (reviewed in [10]) and sequencer errors [11]. When the

mismatch rate exceeds 2% or the indel rate exceeds 0.5%, most

algorithms lose their accuracy [12]. Due to the principle of BWT,

this type of algorithms is less error-tolerant and thus usually less

sensitive than seed-based algorithms at higher error rate (reviewed

in [1,7]). For RNA-seq, the error rate is higher due to RNA editing

[13], modifications [14] and nucleotide misincorporation in

reverse transcription [15]. Indeed, in simulated tests, Bowtie and

BWA remained 55%,75% accuracy at 4% error rate, while the

seed-based algorithms SOAP and Novoalign maintain 80%,90%

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e94250

http://bioinformatics.jnu.edu.cn/software/fanse2/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0094250&domain=pdf


accuracy [12]. This result coincides with the real-world test: even

when adding the splice-mapped reads, BWT-based algorithms

TopHat and SOAPsplice mapped 12,19% of reads less than

seed-based algorithms [6]. These algorithms tend to unpropor-

tionally lose mappable reads of the medium to low abundance

RNA, generating a significant bias in quantification [5]. Moreover,

the accuracy of BWT-based algorithms was shown to be highly

dependent on the dataset in various comparative tests, from very

high [7] to moderate [6,12] to very low [16], in contrast to the

seed-based algorithms. The inconsistency of quantitative results

given by RNA-seq and microarray may reflect this bias and

unrobustness [17–19].

It would be ideal to combine the speed of BWT and the robust

accuracy of seed-based algorithms, especially for the cases with

higher error rates like RNA-seq. To improve the robustness and

indel detection of the BWT-based algorithm Bowtie, the upgraded

Bowtie2 partially took the advantage of the seeding principle, and

it truly exceeded Bowtie, BWA and SOAP2 [20]. However its

accuracy and robustness are difficult to be theoretically estimated.

To overcome this problem, we took the advantage of our

previously developed FANSe algorithm, which is a seed-based

algorithm with theoretical estimation of high accuracy and

robustness (miss rate can be as low as 1026) [5], and further

developed FANSe2 algorithm. FANSe2 can map a billion reads to

human genome in hours using normal office computers without

compromising the high and robust accuracy. We also tested this

algorithm using real-world RNA-seq datasets and experimentally

validated its results by RT-PCR and microarray.

Materials and Methods

Design of FANSe2
FANSe2 is an iterative and parallel seed-based read mapping

algorithm with a simple design to ensure all advantages of FANSe

and largely improve the speed and parallelization. The following

major steps were implemented: (Figure 1).

Step 1. Segmentation of reference sequences. To reduce the

memory consumption, large reference sequences like human

genome are split to segments. Two adjacent segments are

overlapped with maximum read-length. Each segment will be

processed as a task package and assigned to a processor core.

Step 2. Initialize parallel computing environment. To avoid

resource competition, FANSe2 parallelizes multiple processes via

the industrial standard MPICH2 environment instead of multi-

threading. Unlike FANSe that uses the 6- or 8-nt seeds, FANSe2

initially set the seed length as 14-nt.

Step 3. Each CPU core starts to process the assigned task

package, mapping all reads to the reference sequence segment

using the seed length based on the principle of FANSe. The final

refinement of hotspots is performed by calculating Hamming

distance (indel detection off) or by using accelerated Smith-

Waterman method (indel detection on) [5].

Step 4. After all the task packages are processed, the mapping

results are combined and the best mapping location of a read is

written to the final result file.

Step 5. FANSe2 decreases the seed length by 2-nt and tries to

map the unmapped reads using the shorter seed length (back to

step 3). Iterative mapping process stops when the seed length

reaches the minimum seed length or all the reads are mapped.

Datasets and reference sequences
To analyze the nucleotide error distribution in the sequencing

datasets, we downloaded six datasets from DDBJ Sequence Read

Archive (http://trace.ddbj.nig.ac.jp/dra/index_e.shtml), as listed

in Table S1 in File S1. Each read was truncated at the nucleotide,

whose sequencing quality is lower than 20 in Phred scale. Reads

shorter than 18 nt were discarded. The E. coli datasets were

mapped to E. coli K-12 substrain MG1655 genome sequence

(NCBI Reference Sequence: NC_000913.2). The yeast datasets

were mapped to S. cerevisiae genome sequence sacCer3 (download-

ed from UCSC genome browser, http://hgdownload.cse.ucsc.

edu). FANSe was used to perform these mappings with the errors

allowed as listed in Table S1 in File S1 and indel detection on.

The E. coli mRNA dataset reported previously was used to test

the sensitivity and speed of FANSe2 [5]. The datasets of the whole

Flowcell A (FCA) of Human Body Map 2.0 project, containing

altogether 608 million 75-nt reads of human polyA+ mRNA

sequenced on an Illumina HiSeq-2000 sequencer, were used to

test the parallel computing capacity of FANSe2. The human

datasets were mapped to human genome sequence hg19/

GRCh37 (downloaded from UCSC genome browser).

Simulated datasets with 2% and 4% error rate were generated

from human chromosome 1 non-masked and masked genome

sequence (hg19/GRCh37). Each datasets contained 500,000

reads, 75-nt long. These reads were generated from the non-

masked regions. These datasets were mapped to human chromo-

some 1 non-masked and masked genome sequence, respectively.

Reads with homopolymeric stretch or dinucleotide repeats longer

than half of the read length were filtered out to avoid unnecessary

and ambiguous alignment [21].

Figure 1. Flowchart of FANSe2. For details please refer to the
Materials and Methods section. SL = seed length.
doi:10.1371/journal.pone.0094250.g001
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RT-PCR validation of mapping results for RNA-seq
We previously sequenced the total RNA of lung adenocarcino-

ma A549 cells and sequenced poly-A+ mRNA [22]. The reads

were mapped to human mRNA reference sequence (RefSeq) for

GRCh37/hg19 (downloaded from UCSC genome browser,

accessed on Jan. 21, 2013) using both FANSe2 and Bowtie2.

The parameters for FANSe2 was –E7 –I1 –S12, and the

parameters for Bowtie2 was —very-sensitive. The mRNAs were

quantified using standard rpkM method [3]. Genes with less than

10 reads mapped were considered as unreliable quantified genes

and removed [23].

This total RNA sample was reverse transcribed with poly-dT

primer using RevertAid Premium reverse transcriptase (Fermentas)

and specific genes were amplified using specific primers. PCR was

performed using gene-specific primers (Table S2 in File S1) and

DreamTaq Green Mix (Fermentas) enzyme. We used the primers in

the Whole Transcriptome qPCR Primers Database if available [24],

otherwise we used the online tool NCBI PrimerBLAST (http://

www.ncbi.nlm.nih.gov/tools/primer-blast/) to design gene-specific

primers automatically. The PCR cycle was set as 95uC denaturing

for 30 seconds, 59uC annealing for 30 seconds, and 72uC elongation

for 30 seconds (amplicon size ,500 bp) or 1.2 minutes (amplicon

size 500,1200 bp). 35 PCR cycles were conducted for each

reaction. The PCR products were resolved on 2.7,3% agarose gels

and visualized by SybrGreen staining.

Comparison of NGS and microarray quantifications
The Affymetrix Rat Genome 230 2.0 microarray dataset and

Illumina GAIIx RNA-seq dataset of the aristolochic acids treated

rat liver sample AA_1 from a previous study [25] was downloaded

from Gene Expression Omnibus (GEO) database (accession

numbers: GSE5350 and GSE21210). The normalization of the

microarray data was performed using RMA method as previously

described [25,26]. In case that multiple probe sets were present for

a gene, the probe set with the highest signal intensity was used for

this gene [27]. The RNA-seq quantification result using Bowtie

was downloaded from GSE21210. We mapped the original RNA-

seq using FANSe2 to the reference transcriptome sequence RefSeq

release 47 as mentioned in that study [25] with the options –L36 –

E3 –S10. The splice variants were merged. RNA-seq quantifica-

tions were based on rpkM method [3].

Comparison of mapping programs
We compared FANSe2 with FANSe, Bowtie, Bowtie2, BWA,

SHRiMP2 and Novoalign (for details please refer to Table S3 in

File S1). The performance tests were carried out on quad-core

Intel i5-3570K computers with 16 GB RAM. We used –n 3 —

tryhard—best for Bowtie and –n 7 –o 1 for BWA. Unless specified,

—very-sensitive option was used for all Bowtie2 tests. The memory

consumption of these programs was recorded using either Task

Manager (Windows) or System Monitor (Linux).

Sensitivity and correctness were defined previously [5]. In brief,

a read that is truly originated from the reference sequence can

have one of the following three outcomes after being processed by

an algorithm: (i) mapped to its correct position (C ); (ii) mapped to a

wrong position (I ); (iii) failed to be mapped to the reference

genome (U ). Sensitivity is defined as CzI
CzIzU

, and the correctness is

defined as C
CzI

. Sensitivity can be calculated from a deep-

sequencing dataset, which is proportional to the number of

mapped reads. Correctness can be only evaluated using simulated

random datasets.

Results

Iterative step-down acceleration strategy based on the
real-world alignment error distribution

When mapping a read, FANSe takes seeds (6- or 8-nt long) from

the read and searches for exact matches in the reference genome

with a pre-built look-up table [5]. These exact matches are then

merged into hotspots and then refined to determine the best

mapping location. An n-nt long seed has in average N/4n exact

matches in the genome (where N is the genome size), a large

number for large genomes and n = 8, thus creating a heavy

workload for the hotspot merging and refinement, especially when

indel detection is enabled. Longer seeds decrease the number of

exact matches exponentially and thus largely accelerate the

mapping: 14-nt seed decreases the number of exact matches 414–8

= 4096 folds than 8-nt seeds. However, longer seeds are more

likely to contain error and may lose the reads with higher number

of mismatches, thus impairing the sensitivity. A read containing

maximum f errors with a minimal read length of n( f+1) can be

reliably mapped to a genome when using n-nt seeds, indicating

that a long read with a few errors may be still stably mapped with

longer seeds (Figure 2A). For example, up to 5 errors are

guaranteed to be detected in 75-nt reads using 14-nt seeds. To

achieve theoretical miss rate less than 1%, 12-nt seeds are

sufficient for 50-nt reads, whereas 14-nt seeds are more than

enough for 100-nt reads (Figure 2B). Decreasing the seed length to

10-nt may reach the theoretical miss rate 1024,1028.

We then analyzed the actual error distribution in real-world

datasets. We mapped six datasets including DNA-seq, mRNA-seq

and miRNA-seq datasets obtained from various sequencing

platforms using FANSe algorithm (Table S1 in File S1). Notably,

a large fraction of the mappable reads contained very few errors,

regardless in DNA-seq or RNA-seq datasets (Figure 2C). More

than half of the mappable reads contain 0 or 1 error in most cases,

and they can be reliably mapped with 14-nt seeds in much higher

speed. Therefore, we implemented an iterative step-down strategy:

long seeds (e.g. 14-nt or 12-nt) are used to map most reads with

high speed, and the unmapped reads (a small fraction) are mapped

in the next iteration with shorter seed. This iterative process

terminates when the seed length reaches the limit set by the user

(Figure 1).

We tested this strategy with the E. coli mRNA-seq dataset that

was previously used in FANSe test [5]. Stepping down to 8-nt seed

length, FANSe2 exported the same mapping result as FANSe at

much faster speed using single CPU core when allowing 3

mismatches (Figure 2D and 2E). Indeed, most of the mappable

reads were mapped in the initial iteration using 14-nt seeds. When

stepped down to 12-nt seeds, FANSe2 mapped 8.26 M reads using

0.28 minutes in total. At this stage, the sensitivity is already higher

than the widely-used Bowtie and Bowtie2 (7.93 M and 8.12 M

reads, respectively, Figure 2D), while faster than Bowtie2 (1.13

minutes). Stepping further down to 8-nt stage may not be

practically necessary, since this significantly increased the running

time for three times, however only mapped 0.21 M more reads.

Even down to 8-nt stage, the speed of FANSe2 is 3,21x faster

than FANSe, Bowtie and BWA, only slightly slower than Bowtie2

(Figure 2E).

Memory consumption, speed and scalability when
handling huge datasets

The memory consumption of FANSe2 is tunable by the user,

because it is only relevant to the genome segment size: FANSe2

uses 1.2,1.7 GB memory for each activated CPU core when the

reference sequences are split to 50,200 Mb segments (Figure 3A).

FANSe2: A Robust and Fast Mapping Tool for Next Generation Sequencing
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Therefore, FANSe2 can accelerate mapping large datasets by

using 2,4 CPU cores on one computer using 4,8 GB RAM.

This means that even laptop computers can perform mapping

with ease. When mapping reads to human genome, Bowtie2 and

Bowtie needs more than 5 GB RAM. BWA and novoalign needs

7.3,7.8 GB RAM, which hardly fits a computer with 8 GB RAM

because the operating system usually requires additional

0.7,1.2 GB RAM (Figure 3A). According to the manual,

SHRiMP2 needs 48 GB RAM to map reads to human genome,

which is already far beyond the capacity of high-end workstations,

including our computers (Figure 3A and 3B).

In addition, FANSe can parallelize across multiple normal

computers with simple LAN connection, providing a economic

and scalable solution for biology labs. This feature is not offered by

any other current mainstream mapping tools. We tested the

scalability of FANSe2 in our real office environment with three

heterologous computers: two Intel i5-3570s and one Intel i5-2500

with 8 GB,16 GB RAM installed, connected with gigabit LAN.

One such inexpensive office computer (,$600) mapped an

mRNA-seq dataset of Human Body Map 2 generated from an

entire Illumina HiSeq-2000 flowcell (8 lanes, 608 M reads, 75-nt)

to human reference genome within 10 hours, 3.6x faster than

Figure 2. Rational and validation of the iterative strategy of FANSe2. (A) Errors in a read which can be perfectly detected by FANSe
algorithm versus the seed length for 50-, 75- and 100-nt reads, respectively. (B) Theoretical miss rate of FANSe algorithm with different seed length for
various read length. (C) Error distribution of six sequencing datasets (listed in Table S1 in File S1) sequenced on various types of sequencers,
respectively. Reads were mapped with FANSe. ARL = average read length. (D, E) Mapping the E. coli mRNA dataset reported in [5]. For FANSe2
algorithm, the reads mapped (D) and the calculation time (E) used using different read length stages were shown in colors. The test was performed in
a quad-core Intel i5-3570K computer using one CPU core.
doi:10.1371/journal.pone.0094250.g002

Figure 3. Scalability, sensitivity and speed of FANSe2 compared to other algorithms. (A) Memory consumption of the tested algorithms
when mapping 75-nt reads to human genome. The memory consumption of FANSe2 using 1 CPU core and 4 CPU cores are indicated using circles
and diamonds, respectively. SHRiMP2 failed to run this test in our 16 GB memory system; thus its memory consumption was taken from its manual.
(B, C) Mapping data from an entire Illumina HiSeq-2000 flowcell (608 M 75-nt reads) to masked human genome. (B) The number of reads mapped by
the tested algorithms using one computer (4 CPU cores). FANSe2 was tested with indel detection on and off, respectively. SHRiMP2 failed to run in
our system due to its high memory consumption. Novoalign failed to finish the task within 96 hours. (C) The time to perform this mapping using
different number of CPU cores and computers. Plus sign: FANSe2 without indel detection; cross: FANSe2 with indel detection. Bowtie2 (circle) and
BWA (rectangle) do not support automatic parallelization across multiple computers.
doi:10.1371/journal.pone.0094250.g003
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Figure 4. Comparison of FANSe2 and other algorithms on their sensitivity, speed and correctness using simulated datasets from
non-masked and masked human chromosome 1 reference sequence (hg19) with 2% and 4% sequencing error rate, respectively.
Each dataset contains 500,000 reads with the length of 75-nt. The test parameters are listed in Table S4 in File S1. (A) Comparative test on sensitivity
and speed. Reads mapped and the time used at different stages of seed lengths in FANSe2 are shown in colors. The BWT-based algorithms are shown
in light blue bars, and the other seed-based algorithms are shown in gray bars. (B) Comparative test on correctness. For Bowtie2, BWA and novoalign,
mapped reads were filtered using various mapping quality threshold (Q0,Q20) represented in Phred score scale (black circle). The correctness of
FANSe2 results were marked on the same plot when considering all mapping results (red triangle, 5,7 errors allowed) or considering only the reads

FANSe2: A Robust and Fast Mapping Tool for Next Generation Sequencing

PLOS ONE | www.plosone.org 6 April 2014 | Volume 9 | Issue 4 | e94250



Bowtie2 in very sensitive mode while maintaining the same

sensitivity. With three computers and one-click run, the same job

finished 4.1 hours by FANSe2 (Figure 3B and 3C). With the indel

detection enabled, FANSe2 mapped these reads within 23.8 hours

with three computers. FANSe2 with indel search mapped more

reads than Bowtie2 and BWA, which were also enabled indel

search (Figure 3B). Compared with one computer, three comput-

ers accelerated the mapping for 2.43x (Figure 3C). Note that this

efficient parallelization was performed with user-friendly graphical

user interface. In contrast, SHRiMP2 failed to run because of its

high memory demand. Novoalign was unable to finish the task in 4

days (Figure 3B). These results showed that FANSe2, as a seed-

based algorithm, is approaching the speed of BWT-based

algorithms while maintaining similar or higher sensitivity when

handling huge datasets.

Sensitivity and correctness of FANSe2 tested with
simulated dataset

Practically, the raw error rates of the current next-generation

sequencing platforms were reported as 0.26,13% [11], and the

base calling step adds further 2.76,4.86% error rate [10].

Therefore, a mapping algorithm should reliably map reads

containing at least such errors. To test the sensitivity and

correctness of FANSe2 algorithm, we generated four simulated

datasets, each containing 500,000 reads of 75-nt Illumina-like

single-end reads, from the non-masked and masked human

chromosome 1 genome sequence (hg19) and with substitution

rate of 2% and 4%, respectively. For all four cases, the speed of

traditional BWT-based algorithms (Bowtie, Bowtie2 and BWA)

are generally faster than traditional seed-based algorithms

(SHRiMP2 and novoalign). This coincides with the previous

comparisons [6]. However, FANSe2 is just slightly slower than

BWT-based algorithms in all cases, and is even faster than Bowtie2

when using the masked genome. In all four cases, FANSe2

mapped more reads than all other tested algorithms (Figure 4A).

The sensitivity of FANSe2 increased slightly when allowing more

errors in a read. When 7 errors were allowed, the sensitivity of

FANSe2 reached 99.99% and 99.0% for 2% and 4% error rate,

respectively. Again more than 99% of the reads were mapped

using 14-nt seeds, exceeding the sensitivity of all other tested

algorithms. Stepping down to 12-nt or lower hardly mapped more

reads, thus is practically unnecessary. Note that the error

allowance for the whole read cannot be explicitly set when using

Bowtie2 and novoalign. Some reads mapped with 7 errors were

found in their results, showing that this comparison is fair.

Next, we analyzed the correctness of FANSe2 mapping results

using the previously described method [20], plotting the number

of reads mapped to wrong locations against the number of reads

mapped to correct locations (Figure 4B). In all cases, FANSe2

allowing 6,7 mismatches mapped more reads correctly to its

original position than all other tested algorithms. For the non-

masked genome, FANSe2 allowing 7 mismatches mapped 2.2%

and 6.9% more reads to their correct positions than Bowtie2 at 2%

and 4% error rate, respectively. Meanwhile, FANSe2 mapped

41.0% and 44.5% less reads than Bowtie2 to their wrong positions.

Applying increasing mapping quality threshold, only the uniquely

mapped reads were kept. Bowtie2 decreased the wrongly mapped

reads in the cost of discarding a considerable fraction of mappable

reads. At the threshold of mapping quality of 5, FANSe2 mapped

4.5% and 27.8% more uniquely-mapped reads to its correct place

than Bowtie2 at 2% and 4% error rate, respectively. BWA

performed more robust than Bowtie2 in this test, as increasing the

mapping quality threshold do not decrease the number of mapped

reads dramatically. However it still mapped less reads than

FANSe2. Novoalign mapped comparable number of reads as

Bowtie2 and BWA, however it mapped 2,3 times more mapped

to wrong places than Bowtie2 and BWA, and increasing the

mapping quality threshold almost do not increase the correctness.

Bowtie and SHRiMP2 mapped considerably less reads than the

other algorithms, especially at 4% error rate.

As repetitive sequence creates challenges to correct read

mapping, masked genome sequence is widely used in major

studies to improve the efficiency of sequence alignment (e.g. NCBI

BLAST) [21], polymorphism and mutation discovery [28,29],

genome annotation and comparison [30–33], etc. In clinical

diagnosis procedures, such as the non-invasive prenatal diagnosis

based on next-generation sequencing, mapping reads to masked

human genome is also used as a standard [34–37]. Therefore, we

also performed read mapping tests using the masked genome

sequence provided by UCSC Genome Browser. Compared to the

non-masked tests, the sensitivity and correctness of all algorithms

increased slightly, because the masked genome sequence is free of

repetitive regions. Nevertheless, the scenario remains similar to the

non-masked tests: FANSe2 has higher sensitivity while maintain-

ing the correctness.

Experimental validation of the RNA-seq mapping result
by FANSe2

The robust sensitivity and correctness of FANSe2 maximizes the

usage of data in sequencing datasets. This advantage may be more

significant when dealing with RNA-seq data that is more error-

prone than DNA-seq. In our previous work, we had shown that

BWA and BLAT lose mappable reads in low abundance mRNA

unproportionally in a prokaryotic system [5]. We next tested

FANSe2 and Bowtie2 with our previously reported mRNA-seq

dataset (75 nt single-end reads) of human lung cancer cell line

A549 [22]. Aiming at quantitative profiling of known mRNAs, we

mapped the reads to RefSeq human RNA reference sequence and

the splice variants were merged. Previous study showed that

mapping to mature mRNA sequence avoided the error of

mapping splice junction reads when using genomic sequence as

reference and should be preferentially used for RNA-seq, unless

novel splice junctions are to be detected [38,39]. Additionally,

protein coding mRNAs consist only a small proportion of the

genomic sequence, reducing the computational demand dramat-

ically. Therefore this is an efficient strategy that is widely used by

the community [25,38–43]. Genes with less than 10 reads mapped

were considered as unreliable quantified genes and removed [23].

We found that the gene expression quantitation of the two

algorithms in general coincide for the genes that were identified by

both algorithms (Figure 5A).

We next experimentally investigated the genes that were solely

identified by FANSe2 (Table 1) or Bowtie2 (Table 2) to check the

possible false positives and false negatives. The abundances of the

top five RNAs that solely identified by FANSe2 range from 1.47 to

5.77 rpkM (Table 1). They were all validated by RT-PCR with

clear bands on the gel at the estimated sizes (Figure 5B). Although

the primer specificity of SPIN2A was not high enough so that

additional bands appeared in addition to the strongest and

expected band, SPIN2A has been detected by microarray in lung

that were uniquely mapped (red cross, 7 errors allowed). The results of Bowtie and SHRiMP2 were not filtered according to the mapping quality due
to their low mapping sensitivity.
doi:10.1371/journal.pone.0094250.g004
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Figure 5. Experimental examination of the results of FANSe2 and Bowtie2. (A) Quantification of mRNA from A549 cells using the mapping
results of FANSe2 and Bowtie2. The mRNA sequencing dataset was mapped to the human RefSeq RNA reference sequences and the quantification
was performed using the standard rpkM method. (B) RT-PCR validation of mRNAs that were detected by FANSe2 but not by Bowtie2 (see Table 1).
15 ml PCR product were loaded for each lane and resolved on a 3% agarose gel. The bands with the expected product size were marked with stars.
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adenocarcinoma (Expression Atlas) [44]. In contrast, the abun-

dances of the top 20 RNAs that solely identified by Bowtie2 range

from 4.58 to 146.46 rpkM (Table 2). Three genes among them,

namely LUZP6, PIGY and SNRPN, are identical in sequence to

genes MTPN, PYURF and SNURF, respectively. Therefore, they

are undistinguishable to algorithms or RT-PCR and thus excluded

from our experimental validation. Indeed, FANSe2 identified

MTPN, PYURF and SNURF. Fifteen genes among the top 20

‘‘Bowtie2-only’’ genes were fusion genes with the abundance of

12.66,146.46 rpkM, at least one order of magnitude higher than

the ‘‘FANSe2-only’’ genes. We verified 10 protein-coding genes

among them using RT-PCR, but none of them can be validated

(Figure 5C). The coding gene RGPD6 were also failed in the

verification (Figure 5C). This experimental verification showed

that Bowtie2 results in both false-negatives and false-positives: it

fails to identify genes like PCDHGB3, SPIN2A, while erroneously

identified the gene RGPD6 and numerous fusion genes that are

actually absent in the sample. Meanwhile, a considerable number

of reads were assigned to the false-positive identifications by

Bowtie2: 11645 reads were mapped to the 11 ‘‘Bowtie2-only’’

genes that were experimentally determined as absent. This may

also influence the quantitation of other genes and may be a source

that causes the quantitative deviation from FANSe2 (Figure 5A).

In contrast, FANSe2 results can be validated by experiments,

showing its reliability.

Gene expression quantifications by FANSe2 coincide to
microarray data better than most other algorithms

Microarray is widely used since decades as a reliable approach

to quantify gene expression levels. The hybridization nature of

microarray do not need read mapping, providing an experimental

reference for mapping-based RNA-seq. We downloaded RNA-seq

and microarray data from the same sample (the aristolochic acids

treated rat liver sample AA_1) from a previous study by Su et al.

[25]. We used FANSe2, Bowtie2, BWA and novoalign to map the

same RNA-seq dataset to the same transcriptome reference

sequence that was used in [25], and the Bowtie result was taken

from Su et al.’s report [25]. To be comparable to the microarray

used in Su et al.’s study, only the reads mapped to the coding

genes were considered. Consistent with the tests above, FANSe2

mapped more reads than the other tested algorithms (Figure 6A).

Genes with less than 10 reads mapped were considered as

unreliable quantified genes and removed [23]. The FANSe2 result

correlates to the microarray data equally good as Bowtie2 (Pearson

correlation coefficient R = 0.81, Figure 6B and 6D), while the

results with other algorithms correlates worse (R = 0.70 for Bowtie,

R = 0.74 for BWA and novoalign, Figure 6C, 6E and 6F). At least

in this case on rat, FANSe2 and Bowtie2 provide better

consistency to microarray data than other algorithms, facilitating

the data integration between different omics platforms. Neverthe-

less, FANSe2 performed stably also in RNA-seq studies of human

cells (Figure 5), showing the advantage of FANSe2 on robustness.

Discussion

In most of the resequencing and RNA-seq applications,

mapping is the bottleneck step in the data processing pipeline

[20]. BWT-based algorithms such as Bowtie, BWA and SOAP2

have greatly facilitated the sequencing applications since they are

fast enough to perform the mapping on desktop workstations

instead of supercomputers (reviewed in [2,7]). They performed

very well for qualitative applications such as DNA resequencing

projects, since the loss of mappable reads can be easily

compensated by higher sequencing throughput without affecting

the results of sequence variation analysis [6]. However the

completeness and robustness of the mapping were compromised

[5,6,12,16], leading to unproportional loss of mappable reads [5].

This is inacceptable for quantitative applications like RNA-seq.

Seed-based algorithms like FANSe offer very high accuracy,

quantitativity and robustness, more suitable for quantitative RNA-

seq, but usually with much lower speed [5,6]. To have both

advantages, FANSe2 inherited the accuracy of FANSe with largely

improved speed due to the iterative step-down strategy based on

the statistics of real sequencing datasets. In most sequencing

applications, the majority of the reads should be mapped to the

reference sequence, and a large fraction of these reads contains

very limited number of errors, which can be reliably detected with

long seeds at high speed. The accuracy of FANSe2 is ensured by

its fully predictable and extremely low theoretical miss rate.

The low correlation between the NGS and microarray

platforms in quantitative gene expression studies has been noted

in a number of literatures. For miRNA, the Pearson correlation of

The expected product sizes were noted below. (C) RT-PCR validation of mRNAs that were detected solely by Bowtie2 (See Table 2). Two RNAs
detected solely by FANSe2 (LOC647859 and PPIAL4F) were loaded as positive control. 7 ml PCR product were loaded for each lane and resolved on a
2.7% agarose gel. The bands with the expected product size were marked with stars. The expected product sizes were noted below. A faint band
appeared at ,200 bp in the lane of BCL2L2-PABPN1 but is quite different than the expected product size.
doi:10.1371/journal.pone.0094250.g005

Table 1. The top five RefSeq RNAs that are exclusively identified by FANSe2 in A549 mRNA-seq dataset.

FANSe2 RT-PCR validation

Gene name RefSeq-ID Read count rpkM Whole Transcriptome qPCR Primer Database ID Expected product size (bp)
Validated
(Figure 5)

PCDHGB3 NM_018924 105 1.47 PCDHGB3_uc003ljw.2_1_2_2 111 Yes

SPIN2A NM_019003 60 2.92 PB * 103 Yes

LOC647859 NR_026578 52 5.77 OCLN_uc011cru.1_2_1_2 78 Yes

PNMA6A NM_032882 45 1.95 PB * 74 Yes

PPIAL4F NM_001164262 44 3.60 PB * 181 Yes

*PB: primer pair not available in whole transcriptome qPCR primer database. The primers are automatically designed using NCBI-PrimerBLAST. Please refer to Table S2 in
File S1 for details.
doi:10.1371/journal.pone.0094250.t001
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both techniques reaches only R = 0.52,0.66 [18,19]. The false

negative rates of Illumina NGS platform was as high as 12%,

much higher than the microarray platforms (0.97%,3.1%) [17].

This is also consistent with other studies [18]. Considering the

enormous throughput and dynamic range of NGS, this low

correlation and high false negative rates is not likely to be caused

by the throughput, but by the data processing. As experimentally

shown in this study, mapping to RNA reference sequences

especially requires the sensitivity and correctness of the mapping

algorithm. Algorithms lacking robustness can result in numerous

false positives and false negatives in gene identifications and may

affect the gene quantification (Figure 5). Also, FANSe2 showed

remarkable better consistency to the microarray data than most

other algorithms, bridging the gap between the NGS and

microarray and leading to better reproducibility and confidence,

which is in great demand for the NGS-based studies (reviewed in

[45]).

Furthermore, almost all mapping algorithms offer numerous

parameters, and small alteration of parameters may lead to

significant change of result. This already leads to low reproduc-

ibility and low robustness of many next-generation sequencing

studies (reviewed in [45]). In contrast, the parameter settings of

FANSe2 almost did not affect the sensitivity and correctness

(Figure 4B), providing a remarkable simplicity and robustness of

usage.

Previous algorithms require more memory for larger reference

genomes. For human genome, 3,14 GB memory is usually

required [46]. To reduce the memory consumption when

parallelized, some common data, e.g. the reference sequences

and the index, need to be shared by multiple CPU cores,

increasing the risk of access contention, i.e. simultaneous access of

the same data by different CPU cores. This may trigger an

unpredictable error or needs additional handling, leading to

reduced stability or speed. This problem remains as an open

challenge in computational science [47–49]. In contrast,

FANSe2’s memory consumption is almost independent of the

reference genome size, since it splits the large reference genome

into user-specified segments (Figure 3A). Reducing the segment

size can significantly reduce the memory demand without

impairing the result, facilitating the parallelization especially in

normal office computers. The small and user-adjustable memory

consumption also allows parallelization of multiple processes

instead of threads, since there is no need to share any common

data in the memory, thus eliminating the instability caused by

access contention.

Importantly, this merit makes FANSe2 the first algorithm with

the feature of flexible, scalable and almost maintenance-free

parallelization across multiple computers, efficiently utilizing the

computational power of inexpensive office computers and even

laptop computers. With just three computers, FANSe2 mapped

Figure 6. Comparison of the gene expression level calculated by RNA-seq and microarray. (A) The mapped reads to coding genes (NM_*)
by FANSe2, Bowtie, Bowtie2, BWA and novoalign. Three mismatches were allowed in the mapping by FANSe2 and BWA. The results of Bowtie were
obtained from GEO database GSE21210 and described by Su et al. [25]. (B–F) Correlations of RNA-seq and microarray. Only the reads that mapped to
coding genes were taken into consideration to be consistent to the microarray data. The rpkM values of RNA-seq were calculated from the mapping
results by FANSe2 (B), Bowtie (C), Bowtie2 (D), BWA (E) and novoalign (F).
doi:10.1371/journal.pone.0094250.g006
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608 million reads to human genome within 4.1 hours. This might

be the first mapping algorithm that matches the speed of the

coming generation of sequencers like Ion Torrent Proton P2

(660 M reads in several hours) running in normal computers.

There is no need for expensive, exclusive and maintenance-

intensive clusters or workstations.

FANSe2 runs under various operating systems including

Windows, providing user-friendly graphical user interfaces,

bringing convenience to the biological researchers who are not

familiar with computational issues. With simple online video

tutorials, everyone knows how to install and use it in 15 minutes.

The ability of mapping billions of reads in hours using normal

office computers with robust accuracy makes FANSe2 a good

candidate to remove the bottleneck of data processing pipeline,

leading to much faster, more reliable and quantitative analysis,

able to handle the future sequencing applications.

Supporting Information

File S1 File S1 includes the following: Table S1. Six

datasets downloaded from DDBJ Sequence Read Archive to

analyze the error distribution. Table S2. The gene-specific PCR

primers for validation of gene identifications. The genes identified

solely by Bowtie2 are shaded as gray, and the genes identified

solely by FANSe2 are not shaded. Table S3. Mapping programs

tested in this study. Table S4. Test parameters for Figure 4.

(PDF)
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