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Abstract

Introduction

Preoperative functional mapping in the vicinity of brain lesion is of high importance for avoid-

ing complications in surgical management. However, space-occupying lesions may lead to

functional reorganization or decreased BOLD activity.

Methods

Therefore in 13 patients with cerebral gliomas or brain arterio-venous malformations/ hem-

angioma fMRI- and MEG-based cortical localizations of motor and somatosensory cortical

activation pattern were compared in order to investigate their congruency.

Results

Localization of cortical sensorimotor areas with fMRI and MEG showed good congruency

with a mean spatial distance of around 10 mm, with differences depending on the localiza-

tion method. The smallest mean differences for the centroids were found for MEF with MNE

8 mm and SEF with sLORETA 8 mm. Primary motor area (M1) reorganization was found in

5 of 12 patients in fMRI and confirmed with MEG data. In these 5 patients with M1-reorgani-

zation the distance between the border of the fMRI-based cortical M1-localization and the

tumor border on T1w MR images varied between 0–4 mm, which was significant (P = 0.025)

different to the distance in glioma patients without M1-reorganization (5–26 mm).

Conclusion

Our multimodal preoperative mapping approach combining fMRI and MEG reveals a high

degree of spatial congruence and provided high evidence for the presence of motor cortex

reorganization.
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1. Introduction

Neurosurgical procedures of lesions adjacent to eloquent brain areas are associated with a risk

of postoperative dysfunction and always represent a challenge in neurosurgical decision mak-

ing. Given the direct correlation between extent of tumor resection and clinical outcome, an

exact mapping of sensorimotor (SM) areas in patients with perirolandic lesions can avoid irre-

versible impairment of SM function and facilitate a more radical resection, thus increasing

both postoperative quality of life and survival time [1]. Therefore, preoperative characteriza-

tion of the functional anatomy in the vicinity of the lesion is of high importance for effective

surgical management. However, it is often difficult to depict the relation of the lesion to func-

tional important structures [2], especially when edema or mass lesions are present that distort

the local anatomy of the brain. Furthermore, space-occupying lesions may lead to functional

reorganization and alter the topographic organization of the cortex [3,4]. Previous studies pro-

vided examples for lesion-induced brain plasticity leading to considerable regional shifts of

functional brain areas [5–11]. However, lesion-induced transhemispheric cortical reorganiza-

tion to homologous brain regions (homotopic reorganization) in adult patients is considered

controversial in the scientific community [12].

Functional magnetic resonance imaging (fMRI) [13] is the method of choice for non-inva-

sive presurgical localization of eloquent cortex areas in the vicinity of brain lesions. fMRI relies

on the blood oxygen level dependent (BOLD) effect [14]. It is physiologically based on the

regional vasoactive responses induced by neuronal activity, which increase regional cerebral

blood flow (CBF) and blood oxygen concentration. The BOLD effect, however, can be signifi-

cantly compromised by the presence of glial tumors, both at the edge of the tumor and in vas-

cular territories somewhat remote from the tumor, due to loss of regional cerebral vasoactivity

[15–18].

Magnetoencephalography (MEG), however, more directly detects neuronal brain activity

by measuring magnetic field distribution of the whole brain. While both methods have a spa-

tial resolution in the mm range, MEG provides a time resolution in milliseconds, in contrast to

fMRI with a time resolution of 2–3 seconds. Due to its greater availability and robustness

fMRI is more frequently used.

The clinical use of MEG is based on former studies having compared fMRI and MEG locali-

zations of SM activation in tumor patients [19–22] or use of MEG for localization of eloquent

brain areas in surgical planning [23–25]. Recently the combined use of fMRI and MEG prior

to radical brain tumor resection at the precentral gyrus was shown to be effective in the preser-

vation of motor function (Izutsu et al. 2017). Similarly integrating MEG and fMRI localiza-

tions into a CyberKnife treatment protocol can prevent eloquent brain areas from radiogenic

damage [26].

This study was conducted to examine functional reorganization in patients with brain

lesions using a multimodal approach. Furthermore we aimed to compare the precision of

fMRI and MEG as well as of three commonly used MEG data postprocessing software tools in

the presurgical evaluation of SM function.

2. Material and methods

2.1. Subjects

The study protocol was approved by the local ethics committee of the University of Erlangen-

Nürnberg for MEG (Nr. 226_12B), MRT (Nr. 3578 and 177_14B) and was in line with the Hel-

sinki Declaration of Human Rights. Thirteen patients (9 male, 4 female; mean age ± standard

deviation, 49.5 ± 13.2 years; age range, 32–76 years) with brain lesions (close to the SM region)
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were consecutive admissions to the Department of Neurosurgery of the Friedrich Alexander

University’s (FAU) medical center. Eleven patients had neuropathologically proven gliomas

(seven glioblastoma WHO˚IV, three anaplastic glioma WHO˚III, one low-grade astrocytoma

WHO˚II) and two had arteriovenous malformations/hemangiomas (AVM/H) (Table 1).

Seven patients demonstrated preoperative SM deficits. The patients preoperative functional

status were in detail as follows: ID 1 had no SM deficits, ID 2 had no SM deficits despite

tumoral compression of the pyramidal tract (PT) and the motor cortex (MC), ID 3 had minor

motor deficits of the right hand due to tumoral infiltration and compression of the PT, ID 4

had no SM deficits despite tumoral compression of the PT and the MC, ID 5 had coordination

problems with considerably tumoral compression of the PT, ID 6 had epileptic seizures due to

tumoral infiltration and compression of the PT and the MC, ID 7 and ID8 had no SM deficits,

ID 9 had epileptic seizures with tumoral infiltration of the PT, ID 10 had a discrete paresis of

the left hand with tumoral infiltration of the premotoric area, ID 11 had minor motor deficits

with compression of the PT and the MC, ID 12 had a discrete left hemiparesis with tumoral

infiltration and compression of the PT and the MC, ID 13 had no SM deficits in spite of

tumoral infiltration of the PT and the MC. Between 7 and 14 days postoperatively ID 8 showed

a right hemiparesis due to a lesioned PT, ID9 had a discrete right hemiparesis and ID 10 has a

discrete paresis of the left hand due to persistent tumoral infiltration of the premotoric area,

the remaining ten of the thirteen patients were free of SM deficits.

The differences in patients’ cortical SM function localizations between the two modalities

were compared to those obtained from three healthy volunteers (2 male, 1 female; mean age

39.0 ± 13.1 years; age range, 30–54 years).

Table 1. Clinical details of the patient cohort.

Patient Lesion Funct. Img. SM Deficits M1 dist. to Reorg

ID Sex Age Histopathology Location Vol. IDH fMRI MEG preop postop CE native M1

1 M 55 GB WHO˚IV r parietal 130,0 wt no † yes no no n/a n/a no

2 M 76 GB WHO˚IV r frontal 77,9 wt yes yes no no 20 2 yes

3 M 54 GB WHO˚IV r trigonal 58,1 wt yes yes yes no 24 9 no

4 M 41 Astro WHO˚III l parietal 71,7 mut yes yes no no 13 4 yes

5 M 59 GB WHO˚IV r temporal 231,9 wt yes yes yes no 31 13 no

6 M 43 OD WHO˚III r central 40,2 mut yes yes yes no 15 0 yes

7 F 36 AVM/H r temporal 0,3 n/a yes yes no no n/a 2 no

8 M 44 AVM/H ¶ l postcentral 7,9 n/a yes yes no yes n/a 0 no

9 F 41 OD WHO˚III l frontal 67,0 mut yes yes yes yes 37 5 no

10 M 71 GB WHO˚IV r frontal 21,4 wt yes (yes) § yes yes 36 26 no

11 F 32 Astro WHO˚II r parietal 29,3 mut yes (yes) § yes no n/a 11 no

12 F 51 GB WHO˚IV r frontal 15,7 wt yes yes yes no 31 2 yes

13 M 40 GB WHO˚IV l frontal 11,8 wt yes no‡ no no 7 2 yes

† Patient aborted the fMRI measurement;
‡ Patient refused the MEG measurement;
§ MEG data quality was insufficient due to magnetic artefacts from dental implants;
¶ Spetzler-Martin AVM grading system;

Abbreviations: M, male; F, female; Vol., native T1w MRI Volume in cm3; GB, glioblastoma; Astro, astrocytoma; OD, oligodendroglioma; AVM/H, arteriovenous

malformation/hemangioma; r, right; l, left; IDH, isocitrate-dehydrogenase; wt, wildtype; mut, mutated; SM deficits, sensorimotor deficits; preop, preoperative; postop,

postoperative; M1 dist. to, distance in mm between M1 area in fMRI and the tumor border on CE or native T1w MRI; CE, contract enhanced T1w MRI; native, T1w

MRI without CE; n/a, not applicable; Reorg., reorganization of M1 detected.

https://doi.org/10.1371/journal.pone.0213371.t001
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2.2. MRI data acquisition

Anatomical and functional MRI data acquisitions were performed on a 1.5 Tesla clinical

whole-body MR scanner (Magnetom Sonata, Siemens, Erlangen, Germany). The fMRI proto-

col included a 3D T1-weighted magnetization prepared rapid acquisition gradient echo

(MPRAGE) sequence with the following parameters: field of view (FOV), 256 x 256 mm;

acquisition matrix, 256 x 256; slice thickness, 1 mm; number of slices, 160; echo time (TE),

4.38 ms; repetition time (TR) 2090 ms; flip angel 15˚. This data were used to generate individ-

ual anatomical reference data for fMRI and MEG postprocessing and localization.

For the fMRI experiments we used a conventional 2D echo planar imaging (EPI) sequence

with the following parameters: FOV 192 x 192 mm, acquisition matrix 64 x 64, slice thickness

3 mm, number of slices 16, TE 60 ms, TR 2470 ms, flip angle 90˚. A block paradigm with 180

measurements in 6 blocks (3 resting state and 3 active intervals) with 30 volumes each was

used. During fMRI examination the patients were immobilized in a vacuum pad to avoid head

movements. Prior to the motor measurements the patients were instructed to repeatedly flex

and extend all digits (Exercise 1) or foot and toes (Exercise 2) of a designated side. Healthy

volunteers and patients were asked to refrain from any other motor actions. Start and stop

commands for the movements were given acoustically and the patients’ movements were

monitored from the control room. Any deviation from protocol were noted and considered in

the evaluation. In somatosensory measurements, the patients were instructed to avoid any

motor activity and the stimulation of the index finger was started and stopped automatically

according to the intervals.

Clinical MRI examinations were performed on a 3 Tesla clinical whole-body MR scanner

(Tim Trio; Siemens, Erlangen, Germany) using a T1w sequence (fast low-angle shot, FLASH;

FOV 230 x 230 mm, acquisition matrix 256 x 256, slice thickness 4 mm, TE 2.24 ms, TR 300

ms, flip angle 70˚) for the determination of the contrast agent enhancement region. gadoterate

meglumine (Dotarem, Guerbet) was used for contrast.

2.3. fMRI data evaluation

For motion correction we applied an image-based prospective acquisition correction interpo-

lated in the k-space [27]. The linear correlation maps were computed and analyzed with

respect to their signal intensities using a square wave reference function for each pixel (Brain-

Voyager, Brain Innovation, Maastricht, Netherlands).

Pixels exceeding a significance threshold (correlations above a threshold of 0.3 with

p< 0.000045) [24] were displayed and clusters of at least 4 contiguous voxels were assembled

in order to eliminate isolated voxels. Subsequently the functional data sets were fused to the

anatomical data sets (T1w MRI data set with 1 mm3 isotropic voxels) and clustering was

increased to display the fMRI results.

The threshold results from the following consideration: Using a matrix (64 � 64 � 25) of

about 100,000 voxels and a multiples comparison correction, the significance value is

0.0000005 (0.05/100,000), which is a fairly conservative approach. Our compromise is a p-

value of 0.000045 with a cluster size of 4 voxels. In addition, if the expected areas were not

found the threshold value was lowered in 0.01 steps and the maximum correlation value of the

area was detected. In this case, these areas were excluded from future analysis.

2.4. MEG recordings

The MEG experiments were performed previously to the MRI examinations. Cortical somato-

sensory and motor evoked fields (SEF and MEF) were continually recorded using a whole-

head MEG system (MAGNES 3600 WH, 4-D Neuroimaging, San Diego, CA, USA) with
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248-magnetometers which was confined in a magnetically shielded room (Vacuumschmelze,

Hanau, Germany). MEG signal was acquired at a 678 Hz sampling rate using an online high-

pass filter of 0.1 Hz and low-pass filter of 200 Hz. In addition to passive shielding, the online

noise cancellation of the MEG system was applied by using reference channels (6 magnetome-

ters and 5 gradiometers) to reduce ambient field.

During MEG data acquisition, the subject was in a supine position with the head placed sta-

ble by means of a neck rest. In order to achieve a good co-registration of MEG data and ana-

tomical MRI data, we used 5 small coils placed on the surface of the patients head at left pre-

auricular point, right pre-auricular point, nasion, Cz (Vertex) and inion. Digitization of refer-

ence points coils and head surface was done using the MEG-integrated SPI (sensor position

indicator) with a 3D-tracking system (Polhemus, Colchester, VT, USA).

Motoric and somatosensory MEG recordings were performed in the same session following

the comprehensive sensorimotor protocol (CSSMP) where external mechanic (sensoric) stim-

ulation serves as a cue for subjects’ movements as described previously [28]. The experimental

setup in short: Prior to the motor measurements the patients were instructed to repeatedly flex

and extend the second, third, fourth and fifth finger (Exercise 1) or the foot and toes (Exercise

2) of a designated side. Healthy volunteers and patients were asked to refrain from any other

motor actions. Following a short somatosensory trigger stimulus delivered by a pneumatic tap

(17 lb/in2) to the tip of the subject’s index of the opposite hand via a balloon diaphragm (1 cm

in diameter). Stimulus duration was 40 ms, interstimulus interval was 3.6 s, and stimuli and

subsequent movement task were repeated 300 times to allow recording a sufficient number of

trials to be averaged during MEG data evaluation. The somatosensory trigger stimulus was

used instead of a visual trigger in order to avoid eye movement artefacts. The patients were

instructed to move 4 fingers (digits 2 to 5) of the hand with a sudden onset of motion and as

fast as possible to the heel of hand. Immediately afterwards, the patients had to open their

hands again, in order to revert to the starting position. An electromyogram (EMG) was

recorded via a pair of electrodes fixed to the lower arm muscles. This EMG signal was used to

define the onset of the fast finger movement. The experiment was performed for both sides of

the body.

All subjects were instructed to avoid any other motor actions like blinking, swallowing or

moving other parts of the body as effectively as possible. The subjects and their finger move-

ment were supervised using a camera installed in the shielded room. As the somatosensory

stimulus was triggered via a stimulation PC, the evaluation of the somatosensory evoked fields

of the forefinger of the other hand could be analyzed, too.

2.5. MEG data evaluation

All 300 trials of each MEG experiment were inspected visually by an experienced MEG investi-

gator for magnetically artefacts (originating from the patient or external noise) and trials

exhibiting artefacts were excluded from the study. All remaining trials (typically around 280)

were averaged using the onset of the EMG-signal for motor function and the trigger signal

from the stimulation PC for somatosensory function, respectively. The averaged data were fil-

tered by band pass of 0.3 to 45 Hz.

Further MEG data analysis was done using the brainstorm software package (V3.4) [29].

Three different methods were used for MEG-based localization of SM function: (i) current

density map with deep weighting using minimum norm estimate (MNE) [30]; (ii) dynamical

Statistical Parametric Mapping (dSPM) [31], and (iii) standardized LOw Resolution brain

Electromagnetic TomogrAphy (sLORETA) [32]. All three methods are based on minimal

modelling to estimate distributed sources and are applicable on complex datasets or at high
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noise levels [33,34]. In MNE [35], maxima of inverse solutions were shifted towards the sen-

sors [36,37]. Deep weighting and noise normalization were used for compensation. Deep

weighting was done by normalizing all sources in the model using a measure of the overall

amplitude. A minimization of the localization errors was achieved by normalization of rows of

the lead field matrix [31]. Normalization of noise level was done by dividing the estimated cur-

rent at each source location by an estimate of the noise at this location. In dSPM this was done

by applying the inverse operator to the signal covariance matrix. In sLORETA the diagonals of

the model resolution matrix were used [32]. In the case of a single dipole source, sLORETA

was able to fit exactly to a single dipole field distribution [32]. The noise covariance data were

calculated from baseline data in the pretrigger interval of 500–1000 ms. Individual brain MRI

data (T1w MPRAGE) were used in all participants, to consider for lesion-induced changes in

brain anatomy. BrainSuite (version 15c) was utilized to extract the individual brain structure

data [38].

2.6. Multimodal localization of cortical sensorimotor function

The following cortical areas in the motor network were evaluated: (i) M1, located in the sulcus

centralis (in Brodman area 4, BA 4); (ii) premotor area (PMA) in the sulcus precentralis (in

BA 6); and (iii) supplementary motor area (SMA) in the fissura longitudinalis cerebri (in BA

6). The evaluated cortical areas in the cortical somatosensory network were: (i) the primary

somatosensory cortex (SI) in the sulcus centralis (in BA 3), and (ii) the secondary somatosen-

sory cortex (SII).

The fMRI-based cortical localization maps were adjusted with a fixed significance threshold

(correlations > 0.3 with p< 0.000045) [24]. MEG-based cortical localization maps were indi-

vidually threshold adjusted, i.e. a general threshold for all patients was not applicable. Both

fMRI- and MEG-based cortical localizations were displayed on the anatomical 3D T1w MRI

data set. The position of maxima and centroids of the fMRI- and MEG-based cortical localiza-

tions of SM function (M1, PMA, SMA, SI, and SII), respectively, were determined. The dis-

tances of the maxima and centroids, respectively, between the fMRI localizations and the MEG

localizations obtained with the three different MEG data localization methods (MNE, dSPM,

sLORETA) were calculated. Additionally, the shortest distances between the border of the

fMRI-based cortical localizations and the tumor border on both 3D CE T1w MRI and 3D

native T1w MRI were determined. This distance was not determined for the MEG results

because the MEG-based cortical localization maps had to be adjusted with individual thresh-

olds, which would yield to non-reliable results.

SEF and MEF latencies were defined as the time interval between the somatosensory stimu-

lus trigger signal and the EMG signal, respectively, to the maximum brain activity of the

evoked response shown in the corresponding brain area (SI, SII, M1, PMA and SMA). The

MEG localization results were displayed on an anatomical 3D MRI data.

2.7. Statistical analysis

Mean values, standard deviations (SD), minima, and maxima were calculated for latencies and

distances using the statistical software package R (version 3.4.2). For group analysis assuming

independent samples and absence of Gaussian distribution Mann-Whitney U tests (reorgani-

zation yes/no) were used. P values less than 0.05 were considered to indicate significance.

3. Results

From the 13 patients included in this study (Table 1), one patient (ID 1) did not tolerate fMRI

and another (ID 13) declined MEG examination. In two patients (IDs 10, 11) with dental
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implants the quality of the MEG data was insufficient because of magnetic artefacts. Overall

fMRI data, MEG recordings and MEG and fMRI data of SM function prior to lesion resection

were analyzed for twelve, ten and nine patients, respectively.

3.1. fMRI-based cortical localizations of sensorimotor function

In the fMRI mode tasks involving the contralesional hand revealed cortical activations in M1,

SMA and SI / SII areas in all 12 patients. PMA activation, however, was apparent in only 11 of

the 12 patients. More specifically fMRI findings were as follows:

1. M1: Seven patients showed normal M1 activation only ipsilateral to the lesion without indi-

cation for reorganization (Fig 1B). In contrast five patients (IDs 2, 4, 6, 12, 13) showed an

additional M1 activation contralateral to the lesion indicative of M1 reorganization (Fig

2A) which will be described in greater detailed in 3.4.

Fig 1. Normal M1 activation. Normal M1 activation in a glioblastoma patient (ID 5) without signs of cortical M1 reorganization;

white lines indicating the slice intersections, color coding bars on right-hand side of panels B and C indicate correlation values and

magnetic field strength, respectively. (A) Cranial contrast-enhanced T1w MRI in axial, coronal and sagittal orientation (left to right).

(B) fMRI localization of M1 superimposed onto a native T1w MRI. (C) MEG localization of M1 superimposed onto a native T1w

MRI. fMRI- and MEG-based cortical localizations show a high degree of spatial congruency.

https://doi.org/10.1371/journal.pone.0213371.g001
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2. SMA: In motor tasks (MT) involving the contralesional hand all 12 patients displayed SMA

activity ipsilateral to the lesion without indication for reorganization. Notably the SMA

area is located on the mesial surface of the hemisphere and thus the resolution of both fMRI

and MEG may not suffice to reliably detect a shift to the contralateral homotopic area.

3. PMA: Eleven of 12 patients showed PMA activity ipsilateral to the lesion. Only ID 5 showed

no BOLD response in the ipsi- or contralateral PMA at the default threshold of 0.3 and a

cluster size of 4 voxels (p< 0.000045). However, using the same cluster size this area

becomes apparent at a threshold level of 0.21 (p< 0.0047). Conversely keeping the thresh-

old at 0.3 whilst lowering the cluster size to 2 voxels has the same result; using a single PMA

voxel the maximum correlation is 0.34 (p = 0.000003). This constellation could be due to a

large tumor with pronounced edema leading to compression of adjacent brain areas and

degradation of the fMRI signal. Nevertheless this ID 5’s PMA was excluded from further

analysis.

Fig 2. Cortical reorganization of the M1 activation. Cortical reorganization of the M1 activation in patient with anaplastic astrocytoma (ID 4) and signs

of cortical M1 reorganization. Axial, coronal and sagittal planes are ordered from left to right with white lines indicating the slice intersections; color

coding bars on right-hand side of the sagittal planes in A and B/C indicate correlation values and magnetic field strength, respectively. The diagrams on

right-hand side of the composite show the block paradigm with the fMRI signal intensities in the selected voxel in A and the time courses of the magnetic

field strength within the MEG data in the areas with M1 activation in B/C. (A) fMRI localization of M1 superimposed onto a native T1w MRI. (B/C) MEG

localization of M1 superimposed onto a native T1w MRI. The latency difference between ipsi- (B) and contralateral (C) M1 activation was 62 ms. fMRI-

and MEG-based cortical localizations show a high degree of spatial congruency in the between the contralateral, normal (B) and ipsilateral, reorganized

(C) M1 areas.

https://doi.org/10.1371/journal.pone.0213371.g002
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4. SI / SII: In all 12 patients sensory stimulation of the contralesional hand highlighted the pri-

mary and secondary sensory area ipsilateral to the lesions, indicative of no reorganization

in the cortical somatosensory network.

3.2. MEG-based cortical localizations of sensorimotor function

In the MEG mode tasks involving the contralesional hand revealed cortical activation patterns

for M1, SMA, PMA and SI / SII essentially identical to those found in fMRI mode (Fig 1C).

1. M1: All 10 patients showed the expected activation of the primary motor area. MEG data

were available for only four (IDs 2, 4, 6, 12) of the five patients with fMRI-based signs of

reorganization. MEG data in these four patients showed additional M1 activations contra-

lateral to their lesions (Fig 2B and 2C) consistent with M1 reorganization. Details of the M1

reorganization and specific latency times are given below.

2. SMA: All 10 patients revealed SMA activity only ipsilaterally to the lesion for MT involving

the contralesional hand. In accordance to the fMRI results there are no signs of SMA

reorganization.

3. PMA: All 10 patients including ID5 without BOLD response revealed PMA activity ipsilat-

eral to the lesion for MT involving the contralesional hand.

4. SI / SII: In all 10 patients sensory stimulation of the contralesional hand revealed the

expected activations of cortical somatosensory areas. In accordance to the fMRI results

there are no signs of SI / SII reorganization.

In these 10 patients, latencies of the SEF responses post stimulation of the index fingertip

ranged from 54 to 66 ms and 87 to 111 ms in SI and SII, respectively.

The three postprocessing methods (MNE, dSPM, sLORETA) yielded different cortical

localizations of the maxima and the centroids of the above areas in the millimeter range, with

smaller differences observed in the sLORETA / dSPM pairs compared to the sLORETA / MNE

and MNE /dSPM pairs (Table 2).

3.3. Spatial comparison of fMRI and MEG localizations

The localizations of cortical SM areas showed good correspondence between fMRI and MEG.

For the motor localizations (n = 26) the mean distances ± SD between the centroids of the

two modalities were 8 ± 4 mm, 8 ± 4 mm and 9 ± 4 mm (Table 3) with MEG-based centroids

Table 2. Spatial comparison of three different MEG localization methods.

Distance between two MEG localization methods [mm]

Subjects MNE/dSPM

(Maxima)

MNE/sLORETA

(Maxima)

sLORETA/dSPM

(Maxima)

MNE/dSPM

(Centroid)

MNE/sLORETA

(Centroid)

sLORETA/dSPM

(Centroid)

Motor Activation

Patients 12 ± 6 (0–25) 9 ± 6 (0–28) 7 ± 5 (0–19) 8 ± 5 (0–20) 6 ± 5 (0–20) 4 ± 3 (0–10)

Volunteers 13 ± 4 (1–17) 11 ± 5 (2–19) 9 ± 6 (0–18) 9 ± 4 (3–17) 8 ± 4 (1–16) 6 ± 5 (1–18)

Somatosensory Stimulation

Patients 11 ± 4 (1–18) 7 ± 4 (0–16) 6 ± 5 (0–17) 6 ± 4 (1–17) 4 ± 3 (0–10) 4 ± 4 (0–19)

Volunteers 13 ± 4 (3–19) 7 ± 5 (0–16) 6 ± 5 (0–15) 6 ± 3 (2–13) 4 ± 2 (1–9) 3 ± 2 (0–8)

All values mean ± SD (min—max) are Euclidian distances of MEG localizations between two of three methods using maxima and centroids, respectively, for motor

localizations averaged over M1, PMA, and SMA, as well as for somatosensory localizations averaged over SI and SII.

https://doi.org/10.1371/journal.pone.0213371.t002
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mapping within the fMRI-defined boundaries in 68%, 55% and 45% using MNE, sLORETA

and dSPM, respectively. Patients’ MEG centroids outside the fMRI-defined boundaries local-

ized at distances of 6 ± 3 mm, 7 ± 3 mm and 8 ± 2 mm using dSPM, sLORETA and MNE,

respectively (Table 4).

For the somatosensory localizations (n = 18) the mean distances ± SD between the cen-

troids of the two modalities were 8 ± 2 mm, 11 ± 4 mm and 11 ± 6 mm for sLORETA, MNE

and dSPM, respectively (Table 3); the MEG-based centroids mapped within the fMRI-defined

boundaries in 67%, 67% and 50% using dSPM, MNE and sLORETA, respectively. Patients’

MEG centroids outside the fMRI-defined boundaries localized at distances of 2 ± 1 mm, 2 ± 2

mm and 12 ± 3 mm using dSPM, sLORETA and MNE, respectively (Table 4).

3.4. Motor cortex reorganization

M1 reorganization was suggested on the basis of fMRI and MEG data in 5 of 12 (IDs 2, 4, 6,

12, 13) and in 4 of 10 patients (IDs 2, 4, 6, 12), respectively (Fig 2).

In the 5 patients (all gliomas) with M1 reorganization the distances between the fMRI-

based M1 boundaries and the native T1w-segmented tumor border ranged from 0 to 4 mm

Table 3. Spatial comparison of fMRI and the three different MEG localization methods.

Distance between fMRI and MEG [mm]

Subjects MNE (Maxima) dSPM (Maxima) sLORETA (Maxima) MNE (Centroid) dSPM (Centroid) sLORETA (Centroid)

Motor Activation

Patients 9 ± 5 (2–18) 11 ± 4 (3–20) 11 ± 4 (5–18) 8 ± 4 (2–15) 9 ± 4 (2–15) 8 ± 4 (1–15)

Volunteers 12 ± 6 (3–19) 14 ± 5 (6–20) 14 ± 5 (8–21) 9 ± 5 (1–14) 12 ± 6 (2–22) 12 ± 5 (6–21)

Somatosensory Stimulation

Patients 15 ± 5 (10–20) 13 ± 10 (5–24) 9 ± 5 (7–15) 11 ± 4 (6–15) 11 ± 6 (7–18) 8 ± 2 (7–11)

Volunteers 18 ± 4 (15–23) 12 ± 6 (7–19) 14 ± 7 (7–22) 12 ± 2 (11–15) 8 ± 3 (5–10) 8 ± 3 (5–10)

All values mean ± SD (min—max) are Euclidian distances between fMRI and MEG using maxima and centroids, respectively, for motor localizations averaged over M1,

PMA, and SMA, as well as for somatosensory localizations averaged over SI and SII.

https://doi.org/10.1371/journal.pone.0213371.t003

Table 4. Spatial comparison of the fMRI off-border localization and the three different MEG localization methods.

Distance between fMRI off-border and MEG [mm]

(Only cases with MEG outside of fMRI border)

Subjects MNE (Maxima) dSPM (Maxima) sLORETA (Maxima) MNE (Centroid) dSPM (Centroid) sLORETA (Centroid)

Motor Activation

Patients†: mean Volume 1.4 cm3 32%

8 ± 2 (0–11)

50%

7 ± 3 (0–14)

55%

7 ± 3 (0–15)

32%

8 ± 2 (0–10)

54%

6 ± 3 (0–12)

45%

7 ± 3 (0–12)

Volunteers†: mean Volume 2.8 cm3 56%

7 ± 3 (0–12)

44%

7 ± 3 (0–11)

44%

8 ± 3 (0–11)

33%

4 ± 1 (0–5)

33%

8 ± 3 (0–11)

44%

7 ± 3 (0–9)

Somatosensory Stimulation

Patients†: mean Volume 1.7 cm3 50%

12 ± 5 (5–15)

33%

5 ± 1 (4–5)

33%

4 ± 3 (1–8)

33%

12 ± 3 (9–14)

33%

2 ± 1 (1–3)

50%

2 ± 2 (1–4)

Volunteers†: mean Volume 1.5 cm3 33%

9 ± 2 (8–11)

17%

5 ± 0 (5–5)

17%

8 ± 0 (8–8)

33%

8 ± 4 (4–11)

33%

4 ± 2 (2–6)

33%

4 ± 1 (3–4)

All values mean ± SD (min—max) are Euclidian distances between fMRI border and MEG using maxima and centroids, respectively, for motor localizations averaged

over M1, PMA, and SMA, as well as for somatosensory localizations averaged over SI and SII.
†percentage of patients/volunteers with MEG outside of fMRI activation volume.

https://doi.org/10.1371/journal.pone.0213371.t004
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which differs significantly from those in patients without M1 reorganization ranging between

5 to 26 mm (p = 0.025; Table 1).

Interestingly, the two patients with well-defined AVM/H (ID 7 and 8) showed no M1 reor-

ganization albeit at minimal M1-to-tumor distances (2 and 0 mm, respectively). The distance

between the borders of the fMRI M1 localization and the lesion border on the CE T1w MRI

ranged between 7 to 31 mm in the patients with M1 reorganization, and between 24 and 36

mm in the patients without indications for cortical M1 reorganization. This difference, how-

ever, was not statistically significant (P = 0.063; Fig 3).

Fig 3. Distances between M1 and the tumor border. Distances between the border of the cortical M1 activation in

fMRI and tumor border on 3D T1w MRI (contrast enhanced, CE and native) for patients with and without

reorganization of the M1 area.

https://doi.org/10.1371/journal.pone.0213371.g003
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Investigation of the latency times of the MEG-based M1 activation on ipsilateral and con-

tralateral (reorganized) side to the lesion revealed that the ipsilateral M1 activation was on

average 60 ± 8 ms (52–67 ms) earlier than the contralateral M1 activation (Fig 4).

3.5 Clinical correlations and follow-up

Seven (IDs 3, 5, 6, 9, 10, 11, 12) of 13 patients had preoperative SM deficits which in five of

them resolved postoperatively. The tumors of two patients with persistent SM deficits were at

5 mm distances to M1 (ID 9) and PMA (ID 10), respectively, yet infiltrated the PT and BA6,

respectively.

Five (IDs 1, 2, 4, 7, 13) of 13 patients were free of pre- and post-operative SM deficits; three

(ID 2, 4, 13) of them had M1 reorganization although suffering from infiltration or compres-

sion of the PT or MC and the other two showed no infiltration or compression of the PT or

MC.

One patient with AVM/H (ID 8) had a hemiparesis on the right side, one month later the

patients SM deficits decrease to a discrete hemiparesis. The AVM/H was located in the post-

central gyrus and at the surgery the areas for proprioception and sensory function were

damaged.

Pre-operative PT or MC compression was present in seven patients (IDs 2, 3, 4, 5, 6, 11,

12), two of them (IDs 2, ID 4) showing M1 reorganization had no SM deficits.

Tumor infiltration was present in six patients (IDs 3, 6, 9, 10, 12, 13), three of them (IDs 6,

12, 13) showing M1 reorganization had no post-operative SM deficits. In contrast, two of the

patients without M1 reorganization (IDs 9, 10) had postoperative SM deficits and one patient

without M1 reorganization had postoperative no SM deficits.

Four (IDs 2, 6, 12, 13) of five patients with showing M1 reorganization had resections in

MC. ID 2 nearby tongue area approx. 2 cm to the hand area, ID 6 nearby leg area approx. 2 cm

to the hand area, ID 12 nearby tongue area approx. 2 cm to the hand area and ID 13 about 1

cm to the hand area.

Fig 4. M1 time lines of cortical M1 reorganization. M1 time lines of the magnetic field strength (calculated by MNE)

in a patient with anaplastic astrocytoma (ID 4) and signs of cortical M1 reorganization. The blue and red traces depict

the magnetic field strength originating from the contralateral, normal and ipsilateral, reorganized M1 areas with a

delay of 62ms. The green traces depict the magnetic field strength originating from the contralateral ipsilateral PMA

area.

https://doi.org/10.1371/journal.pone.0213371.g004
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4. Discussion

Functional MRI is used regularly to depict brain function near gliomas for preoperative surgi-

cal planning. But it’s a matter of discussion, whether BOLD areas actually represent neuronal

activity, whether disappearance of a BOLD signal is equal to non-existent neuronal activity

and whether reorganization of a M1 area actually exists. To investigate these unresolved scien-

tific questions, we used a combination of fMRI and MEG for the characterization of cortical

SM functions in the vicinity of cerebral gliomas and brain AVM/Hs.

We found high concordance of both imaging modalities concerning the spatial resolution

and our results indicate that reorganization of motor areas in the vicinity of such brain lesions

plays an important role.

In our study, MEG and fMRI provided quite similar localization results and confirm of

each other: Overall 60% of the MEG localizations (maxima and centroids) mapped within the

fMRI activation volumes. The remaining MEG maxima and centroids were localized at mean

distances of 3.8 mm for SEF with sLORETA and 7.4 mm for MEF with MNE outside from the

fMRI volume boundaries (more detail in Table 4).

In SM tasks a high degree of colocalization was found for fMRI and MEG activation in

three healthy volunteers and thirteen patients. The spatial variability between fMRI and MEG

activation sites (maxima and centroids) for the MT and sensory tasks (ST) of approximately 10

mm (more detail in Table 3) in our study corresponds with those of a previous study [39]

which reported 10 ± 5 and 15 ± 5 mm for the motor and ST, respectively. The smaller variabil-

ity of the somatosensory localizations in our data may well be due to our use of more effective

algorithms or the other group of subjects.

Generally, the following reasons or their combinations could be responsible for the small

localization differences observed: (1) fMRI and MEG reflect the different neurophysiological

phenomena, namely changes in the regional tissue oxygenation and the electrical activity in

dendrites of the neurons; (2) Limited ability to record currents perpendicular to the skull in

axial coil MEG system; (3) Different deep weighting procedures, noise normalization methods

and the numeric solution of the inverse problem with localization algorithms of MEG data are

used; (4) Complexity of field distribution compounded by a multiplicity of simultaneously

active sources increase the MEG localization error; (5) Movement- and magnetic- artefacts;

(6) Errors in fusing the functional data with the T1w MRI anatomical data set.

More specifically the different MEG localization algorithms provide different results which

can be explained by the effects of deep weighting and noise normalization used in dSPM and

sLORETA. For example the mean deviation between the MNE and dSPM maxima of 12 mm

differs considerably from the one between the sLORETA and dSPM centroids of 4 mm. As

expected from theoretical considerations dSPM [31] and sLORETA [32] provide the most

closely corresponding localizations, followed by the MNE/sLORETA and MNE/dSPM pairs.

This holds for both motor and sensory localizations in patients as well as in volunteers. Theo-

retically sLORETA should provide better fits for the mostly dipolar SEF sources, whereas

MNE should be better suited for the more complex MEF fields. This expectation is borne out

by the comparison of the maxima and centroids of fMRI and MEG as we observed the best

intermodal spatial correspondence for MT and ST using MNE and sLORETA, respectively.

For MT, MNE localizes the most MEG data points within the corresponding fMRI volumes,

whereas for ST, dSPM provides the best spatial correspondence. The latter difference could

well be due to the limited number of tests in this study.

Our cohort with brain tumors patients supports strongly the concept of M1 reorganization.

A previous combined fMRI/MEG study of 325 consecutive patients suffering from a range of

diseases including non-lesional epilepsy, stroke, and a variety of brain lesions found signs of
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motor cortex reorganization in about 14% yet without statistical significance of a specific dis-

ease association [7]. Our study allows consideration of motor cortex reorganization in patients

with high grade gliomas which were localized at a distance of 4 mm or less from the M1 area.

This is indicative of function-conserving activities once cortical motor functions are affected

by tumor cell infiltration. This is in accordance with earlier fMRI investigations showing ipsi-

lateral activation in 31 of 87 patients with centrally located tumor and a statistically significant

increase of motor cortex reorganization in patients with glioblastoma WHO grade IV [11]. In

summary, both the presence of a malignant tumor and the proximity to the motor cortex are

likely inducers of functional reorganization, reflected in contralesional cortical activation.

In another fMRI study of cortical reorganization together with intraoperative mapping or

patient surgery outcome a false positive rate for fMRI-detected reorganization was reported in

seven of 23 patients (30%) [12]. However, it is important to consider some important aspects

regarding this study: (1) three of them were language areas; (2) three of the other four patients

had tongue problems. It is well known, however, that motor tongue areas are typically bilateral

and a resection of one of these areas in nearly all patients only causes temporary problems in

tongue movement [40]; (3) Only one case out of these four refers to supplementary motor area

(none M1 area) and might be comparable to our study: this is in a patient with an AVM/H,

possibly associated with a hemorrhage. As a consequence of this disturbance of the BOLD-Ef-

fect may be possible. Furthermore, the fMRI motor reorganization results in our study were

confirmed by MEG which detects neuronal activity directly, whereas fMRI detects changes of

the blood flow oxygenation.

Five of the 13 patients showed cortical M1 reorganization in fMRI, evident also in the four

patients for whom MEGs were recorded. None of the patients with M1 reorganization had

postoperative deficits although tumor resections were close to (in 4) or immediately adjacent

to the motor area (in 1). In summary, all patients with M1 reorganization had a favorable post-

operative outcome, even though some of their tumors had already infiltrated the PT or MC.

This argues for a positive effect of M1 reorganization on motor function although functional

contributions of the remaining contralateral motor area cannot be excluded.

To better understand the physiology of M1 reorganization it may be relevant that on aver-

age reorganized (ipsilateral) MEG activation was found delayed by around 60 ms to the normal

contralateral activation. This is consistent with prior observations [23] in which isohemi-

spheric signal delays between M1 to PMA of around 40 ms were reported in healthy subjects.

Reorganization can be reasonably expected to result in slower processing compared to healthy

brain activity, as motor area reorganization may result from gradually utilizing the functional-

ity of existing cortex areas for movement integration of limbs of both body sides. Brain tumors

which only slowly progress may well grant the sufficient time for such neuronal development

to proceed effectively.

In contrast, no somatosensory reorganization (ipsilateral to the stimulation) was observed

in our data, neither in fMRI nor MEG. This could be expected for two reasons: Firstly, the

patients in our cohort showed mostly tumoral motor cortex proximity and somatosensory cor-

tex might have been less affected. Secondly, earlier reports have shown that somatosensory

activation remained restricted to the lesioned hemisphere [7,41].

No pre- and postoperative SM deficits were observed in five patients, three of them with

M1 reorganization had, no SM deficits despite infiltration and/or compression. The other two

of them showed neither infiltration nor compression. In the six patients tumor infiltration in

MC were observed, are three of them showed M1 reorganization and had no SM deficits

whereas two without reorganization had pre- and postoperative SM deficits. Summarized, all

patients with reorganization had positive good outcome with regard to SM deficits. The
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connection between M1 reorganization and better outcome regarding SM deficits seems to be

obvious.

Pre-operative PT or MC compression was observed in seven patients, after the operation

and the associated decompression a significant improvement of the SM function occurred.

We found with default settings for fMRI postprocessing no fMRI activation in the PMA in

patient ID 5 with a very large tumor and pronounced edema. This could lead to compression

of the brain areas and associated changes in the fMRI signal. For that reason, it’s important to

adapt threshold and cluster size settings for compensation of lesion induced BOLD signal

attenuations.

Attention should be focused on the general discussion having started about the possible

replacement of invasive presurgical procedures by non-invasive ones, like fMRI and MEG

launched by Papanicolaou et al. [42]. They conclude that there are no longer compelling rea-

sons for opting for invasive mapping in many if not the most cases provided that the non-inva-

sive methods are available.

5. Conclusion

The comparison of localization results of fMRI and MEG reveals a high degree of spatial con-

gruence in healthy volunteers and preoperative patients with cerebral lesions. This multimodal

approach of functional mapping demonstrates the occurrence of M1 reorganization in close

proximity to high-grade gliomas, excluding neurovascular uncoupling by MEG confirmation.

The superior temporal resolution of MEG allowed detecting an activational delay between the

contralateral and the ipsilateral M1 areas which may contribute to a better understanding of

the reorganization process.

The clinical use of non-invasive functional mapping yields a reduction of post-operative

motor deficits. Future works will be necessary to use its full potential to enable more radical

resections leading to an improved patient outcome and postoperative quality of life.
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