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INTRODUCTION
Postoperative respiratory failure is a significant source of morbidity and 
mortality in postoperative patients. Postoperative pulmonary alterations 
after cardiac surgery include increased minute ventilation, breathing fre-
quency, CO2 production and oxygen consumption, and decreased tidal 
volume [1]. Postoperative pulmonary complications in open-heart sur-
gery also have an effect on gas exchange making it difficult to manage 
postoperative patients while on the mechanical ventilator and after 

extubation. Intrapulmonary shunting has been shown to be a large com-
ponent of impaired gas exchange before, during, and after cardiac sur-
gery [2]. Recruitment of lung tissue with increased lung volume may be 
beneficial in reducing intrapulmonary shunting and the resultant hypox-
emia [3]. The methods employed for lung recruitment are widely varied, 
and there is considerable variance among methods in clinicians treating 
this patient population. Some of the recruitment maneuvers include 
high positive end expiratory pressure (PEEP), prone positioning, inhaled 
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vasodilators, high-frequency oscillatory ventilation, and high-frequency 
percussive ventilation (HFPV) [4]. Although, these maneuvers can be 
effective, they are not without significant practical difficulties when uti-
lized in postoperative cardiac surgery patients. The often-fragile hemody-
namic status of postoperative cardiac surgery patients requiring 
vasopressors and inotropes would benefit from methods that maximize 
lung recruitment and improve gas exchange without hemodynamic 
embarrassment. In this manuscript we compare gas exchange with hemo-
dynamic performance of conventional mechanical ventilation (CMV) 
and HFPV.

HFPV was delivered via volumetric diffusive respirator (VDR-4; 
Percussionaire Corporation, Sandpoint Idaho USA). The VDR is classified 
as a pneumatically driven, time-cycled, high-frequency flow interrupter, 
intermittent mandatory ventilation [5]. It uses a sliding venturi to 
inject sub-tidal volumes at high frequencies. Settings include pulsatile 
flow rate, oscillatory continuous positive airway pressure (CPAP), 
PEEP, inspiratory time, expiratory time, pulse frequency, and pulse 
inspiratory and expiratory (I:E) ratio. The sliding venturi precisely 
stacks the injected sub tidal volumes at the high-frequency rate set, for 
the inspiratory time selected. The inspiratory time is time cycled off, 
allowing a drop to oscillatory CPAP/PEEP for the selected expiratory 
time. High-frequency rates may be varied from 80 to 1000 cycles per 
minute with the VDR-4.

HFPV has been used to improve gas exchange in patients with adult 
respiratory distress syndrome (ARDS) failing conventional ventilation, 
while increasing mean airway pressure and decreasing peak airway pres-
sure without affecting hemodynamics [6, 7]. Previous studies have shown 
HFPV to be effective in reducing intracranial pressure in traumatic brain 
injury [8, 9], treating lung injury associated with burns and inhalational 
injury [10–13], reducing time on extra-corporeal membrane oxygenation 
[14, 15], recruiting lung volume and improving hypoxemia in pulmonary 
resection [16], and improving oxygenation and providing lung protective 
ventilation in pediatric acute respiratory failure [17]. HFPV was also used 
as salvage therapy in patients after cardiac surgery [18] and in morbidly 
obese patients [19]. To date, there have been no studies demonstrating 

improvement in oxygenation in the immediate postoperative period in 
cardiac surgery patients and its effects on hemodynamics.

METHODS
This study was approved by the New York Methodist Hospital 
Institutional Review Board for scientific and ethical merit. Twenty-four 
consecutive cardiac surgery patients undergoing elective cardiac sur-
gery were recruited from February 2012 to April 2012. After arrival 
from the operating room the patients were transferred from the con-
ventional ventilator used in the operating room to HFPV mode. HFPV 
mode was utilized for ventilation until initial hemodynamic and respi-
ratory stability was achieved, followed by transitioning to CMV in two 
to four hours. Hemodynamic and respiratory stability was defined as 
stable vital signs, pressor, and inotrope requirements and stable acid 
base status of the patient.

Basic initial VDR settings include high-frequency rate of 500–600 
percussions per minute, convective rate of 12 to 16 breaths per minute, 
oscillatory CPAP of 5 cm H20, the lowest pulsatile flow rate leading 
to the rise of the chest, fraction of inspired oxygen (FiO2) of 70%, and 
I:E ratio of 1:1 on both convective and percussive rate (Figure 1). 
Humidification was provided by humidifier (MR 850, Fisher & Paykel, 
Auckland, New Zealand) set up at 37° C. Arterial blood gases (ABGs) 
were recorded at 15–30 minutes during the first and second hour HFPV, 
and 45 minutes after transition to CMV from HFPV. When hemody-
namic and respiratory stability was achieved after two to four hours of 
HFPV, the patients were transferred to CMV for weaning and extuba-
tion (Hamilton G5, Hamilton Medical AG, Bonaduz, Switzerland). The 
mode used on the Hamilton G5 for weaning and extubation was adap-
tive support ventilation (ASV), which is classified as pressure-controlled 
intermittent mandatory ventilation.

ASV is a closed-loop mode of ventilation that provides ventilatory 
support based on the patient’s work of breathing. ASV uses Otis’ 
equation to predict a tidal volume and respiratory rate that minimizes 
the patient’s work of breathing [20]. The operator enters the patient 
height, gender, and percent minute volume (%MV), PEEP, FIO2, 

FIGURE 1
Screenshot of the waveform display on volumetric diffusive respirator (VDR-4; Percussionaire Corporation, Sandpoint 
Idaho USA).
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expiratory trigger sensitivity, trigger, ramp speed, and ASV pressure 
limit. The Hamilton G5 in ASV mode continuously monitors the 
work of breathing relative to the selected %MV, adjusting peak pres-
sure, tidal volume, and breathing frequency accordingly [21]. The 
range of %MV used in ASV mode was 130–160%, with FiO2 of 0.70, 
and PEEP of 5 cm H2O.

Ventilatory and hemodynamic parameters and values recorded were 
FiO2, mean airway pressure (MAP), peak inspiratory pressures (PIP), 
respiratory rate, PEEP, tidal volume, I:E ratio, partial pressure of oxygen 
(PaO2) to FiO2 (P/F ratio), mixed venous oxygen saturation, central 
venous pressure, systemic and pulmonary blood pressure, cardiac  output, 
and index.

ANALYSIS
Statistical analysis was performed using SPSS statistical package soft-
ware. Continuous data were expressed as a mean ± standard deviation. A 
paired t-test was used in a side-by-side comparison of the mean of the first 
and second hour P/F ratios on HFPV with the corresponding values on 
ASV. Assessment of the effect of two ventilatory modes on hemody-
namic parameters was made using an ANOVA test, to compare the first 
and second hours on HFPV to the first hour on ASV. All statistical tests 
were two sided and alpha was set at p < 0.05.

RESULTS
The mean age for these open-heart surgery patients was 61.2 ± 14.7 years 
(range 29–80 years). There were 12 males (50%), and 12 females (50%) 
included in this study analysis (Table 1). The mean P/F ratio was signifi-
cantly higher when utilizing HFPV during the first and second hour as 

compared with ASV (420.0 ± 158.8, 459.2 ± 138.5, and 260.2 ± 98.5, 
p < 0.05, respectively). The mean MAPin HFPV group was similar to 
MAP in CMV group (11.0 ± 1.8 cm H20 vs. 10.4 ± 2.1 cm H20). 
Additionally, there were no statistical differences in hemodynamic 
parameters observed between both modes of ventilation (Table 2).

DISCUSSION
This study is the first descriptive analysis of the applicability of HFPV in 
comparison with CMV in cardiac surgery patients with close monitor-
ing of their hemodynamics. The mean P/F ratio was significantly higher 
when utilizing HFPV during the first and second hour as compared 
with ASV (420.0 ± 158.8, 459.2 ± 138.5 and 260.2 ± 98.5, p < 0.05, 
respectively). The mechanism by which HFPV carries out gas exchange 
is suggested by various theories, including direct bulk flow, longitudinal 
dispersion of gas molecules at terminal airways and alveoli, Pendelluft 
air flow between neighboring lung regions thereby increasing dead 
space ventilation, laminar flow, cardiogenic mixing, and molecular 
 diffusion [22].

With the use of HFPV, we noticed significant improvement in the 
P/F ratio without any effect on hemodynamics. HFPV was shown to 
improve gas exchange at lower PIP, yet higher MAP [11, 12, 17]. Higher 
MAP theoretically can compromise cardiac function, especially in the 
setting right after cardiac surgery, therefore raising concerns for possible 
worsening of hemodynamics with HFPV. Several previous reports didn’t 
detect any major effects of HFPV on hemodynamics in burn and adult 
respiratory distress syndrome patients [23, 24]. Reper and his colleagues 
[23] compared hemodynamics, blood oxygenation, and ventilatory 
parameters in eight stable ICU burn patients. Hemodynamic data were 
not significantly affected, PIPs were significantly lower with HFPV, but 
MAPs were unchanged. Oxygenation and CO2 removal were signifi-
cantly better. Gallagher and his colleagues [24] compared HFPV with 
CMV. PaO2 on HFPV improved significantly (p < 0.01) compared with 
PaO2 on CMV at the same level of FIO2. Cardiac output was unaffected 
by the change to HFPV.

This study is unique in that it directly compares oxygenation in two 
vastly different ventilation modes after cardiac surgery within the same 
patient. Heretofore, HFPV has only been used and studied as a salvage 
therapy for patients failing CMV. In our study, the striking difference in 
the P/F ratio in the first and second hour on HFPV, compared with con-
ventional ventilation, at a comparable MAP (Table 2), may represent a 
more effective method of augmenting lung recruitment and improving 
ventilation/perfusion (V/Q) matching. The potential benefits of HFPV in 
postoperative open-heart cardiac surgery patients are promising. Further 
studies comparing HFPV to conventional ventilation in the immediately 
postoperative cardiac surgery patient are therefore warranted.

TABLE 1
Demographic and perioperative data of the cohort
Male, n (%) 12 (50%)
Age, years (range) 61.2 ± 14.7 (30–80)
Procedure (n)

CABG
Valve (AVR, MV procedure)
Valve/CABG
Other (atrial myxoma, ASD repair)

13
7
2
2

FEV1 (%) 83 ± 16.6
Preoperative LVEF (%) 49 ± 14

CABG, coronary artery bypass grafting; AVR, aortic valve replacement; MV, 
mitral valve; ASD, atrial septal defect; FEV1, forced expiratory volume at 1 
second; LVEF, left ventricular ejection fraction. Continuous data are 
expressed as a mean ± standard deviation.

TABLE 2
Cardiopulmonary data (mean ± standard deviation) during high-frequency percussive ventilation (HFPV) and conventional 
mechanical ventilation (CMV)

First hour HFPV Second hour HFPV CMV

FiO2, % 69.6 ± 0.02 68.1 ± 0.04 68.3 ± 0.04
Mean airway pressure, cm H2O 11.0 ± 1.8 10.8 ± 1.9 10.4 ± 2.1
pH 7.4 ± 0.1 7.4 ± 0.09 7.4 ± 0.07
PaCO2, mm Hg 34.6 ± 8.2 34.1 ± 8.8 36.8 ± 6.4
PaO2, mm Hg 293.3 ± 112.3* 313.2 ± 95.9* 178.5 ± 70.4*
P/F ratio 420.0 ± 158.8* 459.2 ± 138.5* 260.2 ± 98.5*
Cardiac output, L/min 5.1 ± 1.1 5.2 ± 1.0
Cardiac index, L/min/m2 2.6 ± 0.6 2.6 ± 0.5
Mixed venous PaO2, % 73.5 ± 6.2 73.9 ± 6.0
PAS, mm Hg 31.9 ± 7.1 31.6 ± 6.5
PAD, mm Hg 16.9 ± 4.7 16.7 ± 3.9
CVP, mm Hg 11.9 ± 3.7 12.1 ± 2.6
Mean Arterial Pressure, mm Hg 83.5 ± 10.8 84.5 ± 10.3

Data are expressed as a mean ± standard deviation. FiO2, fraction of inspired oxygen; PaCO2, arterial carbon dioxide tension; PaO2, arterial oxygen tension; P/F 
ratio, ratio between PaO2 and FiO2; PAS, systolic pulmonary arterial pressure; PAD, diastolic pulmonary arterial pressure; CVP, central venous pressure.
*P < 0.05.
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The limitations of the study are related to dynamic improvement in 
pulmonary function in cardiac surgery patients as time progresses. 
Improvement in P/F ratio may be partially related to improvement in 
V/Q mismatch as the pulmonary function “settles” and effects of 
 cardiopulmonary bypass taper off. We also didn’t incorporate pressor 
requirements into the study, they may be affected by higher mean  airway 
pressures and mask some of subtle hemodynamic effects of HFPV.

CONCLUSIONS
In this population of postoperative open-heart cardiac surgery patients, 
HFPV was able to significantly improve gas exchange as reflected by a 
better P/F ratio without hemodynamic consequence.
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