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Surgical interventions rapidly trigger a cascade of molecular, cellular, and neural signaling
responses that ultimately reach remote organs, including the brain. Using a mouse model
of orthopedic surgery, we have previously demonstrated hippocampal metabolic,
structural, and functional changes associated with cognitive impairment. However, the
nature of the underlying signals responsible for such periphery-to-brain communication
remains hitherto elusive. Here we present the first exploratory study that tests the
hypothesis of extracellular vesicles (EVs) as potential mediators carrying information
from the injured tissue to the distal organs including the brain. The primary goal was to
investigate whether the cargo of circulating EVs after surgery can undergo quantitative
changes that could potentially trigger phenotypic modifications in the target tissues. EVs
were isolated from the serum of the mice subjected to a tibia surgery after 6, 24, and 72 h,
and the proteome and miRNAome were investigated using mass spectrometry and RNA-
seq approaches. We found substantial differential expression of proteins and miRNAs
starting at 6 h post-surgery and peaking at 24 h. Interestingly, one of the up-regulated
proteins at 24 h was a-synuclein, a pathogenic hallmark of certain neurodegenerative
syndromes. Analysis of miRNA target mRNA and corresponding biological pathways
indicate the potential of post-surgery EVs to modify the extracellular matrix of the recipient
cells and regulate metabolic processes including fatty acid metabolism. We conclude that
surgery alters the cargo of circulating EVs in the blood, and our results suggest EVs as
potential systemic signal carriers mediating remote effects of surgery on the brain.
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INTRODUCTION

There is a growing body of evidence that aseptic tissue injuries
including surgery are closely associated with rapid onset of
structural and functional changes within the brain,
predominately in regions involved in cognitive processes, that
are dependent on periphery-to-brain signaling pathways (1–4).
Using an animal model of orthopedic surgery, we have
previously shown a profound astrocytic response in the
hippocampal area entailing morphological, metabolic, and
functional alterations in neuronal circuits involved in
cognitive processing, including synaptic transmission and
plasticity (5, 6). However, the nature of the systemic signals
traveling to the brain and triggering the aforementioned
functional alterations remains largely unknown. We have
suggested that the surgery-mediated activation of the innate
immune system, which, within hours, orchestrates an adaptive
systemic inflammatory response (7) might be responsible for
such periphery-to-brain signaling. While such instantaneous
activation of the immune system is suggested to produce
rapid changes on the molecular and cellular levels in the
brain, the periphery-to-brain communication pathways
associated with more long-lasting cognitive and behavioral
effects remain unknown.

Emerging evidence suggests an important role of extracellular
vesicles (EVs) in inter-cellular-tissue communications including
periphery-to-brain signaling (8–10). It may therefore be
hypothesized that EV-dependent signaling provides an
alternative pathway that is responsible for long-term changes
in higher brain functions after surgery (5, 6).

Circulating EVs can be produced by a variety of tissues,
however, one of the main sources is the blood immune cells.
These EVs are suggested to serve as important modulators of
innate and adaptive immune responses (11). In addition, several
studies indicate that peripheral inflammation can modify the
cargo of the immune cell-produced EVs that can in an
endocrine-like manner regulate intracellular processes in the
distant tissues, including the brain (12).

Here, in this first exploratory study, we have mapped the
proteome and miRNAome of circulating EVs at different time
points after mouse orthopedic surgery to establish a potential
correlation/association with the temporal kinetics of the surgery-
triggered systemic inflammatory response, brain dysfunction as
previously described in a surgical animal model.
MATERIALS AND METHODS

Animals
14–16 weeks old male C57BL6 (Janvier, Germany) mice were
housed five per cage under temperature- and humidity-
controlled conditions in a 12 h light/dark cycle and fed
standard rodent chow and water ad libitum.

All experiments were approved by the Local ethics
Committee for Animal Research of Stockholm North and
Karolinska Institutet in Sweden.
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Surgery
The open stabilized tibia fracture was performed as previously
described (5). Briefly, under the isoflurane anesthesia (2.1%
inspired concentration in 0.30 FiO2) and analgesia
(buprenorphine, 0.1 mg/kg, s.c.) a longitudinal incision was
made on the left hind paw and the muscles were disassociated.
A 0.38 mm stainless steel pin was then inserted in the
intramedullary canal with the subsequent osteotomy. The
wound was irrigated, sutured with 6-0 Prolene, and mice were
allowed to recover in a warm box before returning to the home
cage. The temperature was monitored and maintained at 37°C
with the aid of a warming pad and temperature-controlled lights
(Harvard Apparatus).

Animals from the surgery pool were randomly divided into
three groups depending on the time point at which the blood
sampling was performed: 6- (S6h), 24- (S24h), and 72 h (S72h)
post-surgery. Each experimental group included 6 animals (in
the mass spectrometry and NTA analysis the C6h group
consisted of 7 animals). The S24h and S72h groups received a
daily dose of analgesia to avoid possible effects of pain on the
brain. Control mice received an equal volume of saline (s.c.). To
avoid experimental variation over time, control animals from the
same batch of animals were assigned to each of the groups (C6h
and C24-72h) and received a daily injection of saline (s.c).

Serum Sampling
Animals were deeply anesthetized with pentobarbital (0.1 ml, ip)
and blood was collected from the left ventricle of the heart with a
23-G needle attached to a 1 ml syringe and immediately
transferred to a 1.5-ml Eppendorf tube. Blood was allowed to
coagulate at room temperature for 45 min and posteriorly
centrifuged at 3000 g for 10 minutes at 4°C. Supernatants
(sera) were stored at -80°C until further use.

Isolation of Extracellular Vesicles
EVs were isolated using the commercial kit ExoQuick ULTRA
(System Biosciences Inc., Mountain View, CA).

Following the manufacturer’s protocol serum samples were
cleared by centrifugation for 10 min at 12 000 g and transferred
to a new tube. Immediately after that 67 µl of the ExoQuick
buffer A was added to the 250 µl of the cleared serum, the mix
was incubated for 30 min at 4°C and centrifuged at 3000 g for 10
min at 4°C. The supernatant was saved for further analyses as the
EV-depleted serum (dEVs). EV-containing pellet was
resuspended in the 200 µl of Buffer B and EVs were isolated
using the purification columns from the kit in 500 µl of elution
buffer. Both the EV isolated fraction and the dEV serum were
stored at ‐80°C until further use.

We have submitted all relevant data of our experiments to the
EV-TRACK knowledgebase (EV-TRACK ID: EV210383) (13).

Nanoparticle Tracking Analysis
The size and particle concentration of the serum EVs were
determined by nanoparticle tracking analysis(NTA) using an
LM10 platform with an sCMOS camera from NanoSight Ltd.
The samples were diluted in sterile-filtered PBS to a particle
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concentration of 5x108 – 5x109 particles/ml and analyzed with
camera level 14 and detection threshold 3. For each sample, four
consecutive videos were recorded in RT while injecting the
sample with a syringe pump (speed 50).

The average from the four consecutive videos for each sample
was calculated and posteriorly used for the visualization of the
results as Concentration (particles/ml) vs. Particle Size (nm).

Due to a large number of samples (N=31), the NTA analysis
was performed in two different sessions (run 1 and run 2). In run
1 we included the S6h (N=6) group together with its
corresponding control group (C6h, N=7). In run 2 we included
C24-72h (N=6), S24h (N=6), and S72h (N=6).

Negative Stain Transmission
Electron Microscopy
Three microliters of the EV sample were applied on glow
discharged carbon-coated and formvar stabilized 400 mesh
copper grids (Ted Pella) and incubated for approximately 30s.
Excess of the sample was blotted off and the grid was washed
with MilliQ water prior to the negative staining using 2%
uranyl acetate. Transmission electron microscopy (TEM)
imaging was done using Hitachi HT7700 (Hitachi High-
technologies) transmission electron microscope operated at
100 kV equipped with a 2kx2k Veleta CCD camera (Olympus
Soft Imaging System).

Small RNA Sequencing
RNA isolation. RNA was isolated from all groups (N=6 in each
group). Total RNA was extracted from the 200 µl of EVs
fractions using the Exosomal RNA isolation kit from Norgen
Biotek Corp. (Nordic BioSite AB, Täby, Sweden). RNA was
eluted in a 25 µl of elution buffer and RNA concentrations
were determined by Qubit 4 fluorometer (Invitrogen).

Library preparation. RNA quality was controlled with Agilent
Bioanalyzer 2100 (Agilent, Palo Alto, CA) equipped with the
small RNA chip. Small RNA libraries were constructed using the
NEXTFLEX® Small RNA-Seq Kit v3 (Bioo Scientic Corp.,
Austin, Texas, USA) according to the manufacturer’s protocol.
Libraries were prepared with a starting amount of 2.3 ng of RNA
and amplified in 22 PCR cycles. Amplified libraries were purified
by running an 8% TBE gel and size-selected for insert sizes of
15-40 nt (library sizes of 143-168 bp).

Sequencing. All samples were pooled in equimolar ratio and
sequenced on the Illumina NextSeq 500/550 high output flowcell,
with a 75- cycle kit, single read for 84 cycles plus 7 cycles for the
index read. Library construction, quality control, and sequencing
were completed at the Genomics Core Facility, Institute of
Molecular Biology GmbH (IMB), Mainz, Germany.

Bioinformatic analysis. The raw sequence reads in FastQ
format were cleaned from adapter sequences and size-selected
for 14-34 base-long inserts (plus 8 random adapter bases) using
cutadaptv.2.4 (http://cutadapt.readthedocs.org) with parameters
‘-j 8 -a TGGAATTCTCGGGTGCCAAGG -m 22 -M 42’
followed by quality checks with FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc). Read alignment
to the mouse GRCm38/mm10 genome from Gencode release
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M25 (ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_
mouse/release_M25) with concomitant trimming of the 8
random bases was performed using Bowtiev.1.2.2 (https://
bowtie-bio.sourceforge.net).

For miRNA-focused analysis, the genome-aligned reads in
SAM format were selected in the size range 20-24 bases using
GNUAwkand Samtoolsv.1.10 (https://www.htslib.org),
converted into sorted BAM files with Samtools, and read
counts were summarized either per miRNA locus or per
mature miRNA using featureCountsusing miRNA annotation
either from Gencode M25 or from miRbase v.22 (ftp://mirbase.
org/pub/mirbase/22/genomes/mmu.gff3). The miRbase
annotation was converted from GFF3 into GTF format for
use with featureCountsusing, the Bioconductor package
rtracklayerin R v.3.6.0.

The expression of miRNAs was normalized as counts per
million reads (CPM). The value of 10 CPM was chosen as a cut-
off margin for filtering out the low-expression genes. Differential
expression analysis was carried out with DESeq2 v.1.26.0
(https://bioconductor.org/packages/release/bioc/html/DESeq2.
html) as implemented in the online tool iDEP (http://
bioinformatics.sdstate.edu/idep) using a significance cut-off of
5% false discovery rate (FDR). Since no statistical difference was
found between the two control groups (C6h and C24-72h), in
order to simplify the miRNA differential expression analysis,
only one set of controls (C6h, N=6) was selected and hereafter
referred to as Control.

The fold change (FC) threshold for selecting differentially
expressed genes was ≥1.5. Heat maps of differentially expressed
genes and principal component analysis (PCA) using log2
normalized CPM expression values were generated using
Qlucore Omics Explorer 3.2 (Qlucore, Lund, Sweden). Log2-
transformed CPM values were used to generate Volcano plots
(RStudio v 1.4.1717, PBC).

The miRNA sequencing data have been deposited in NCBI’s
Gene Expression Omnibus (14) and are accessible through GEO
Series accession number GSE115440).

Liquid Chromatography-Tandem Mass
Spectrometry–Based Proteome Analysis
Protein identification and quantification were carried out at the
Proteomics Biomedicum core facility, Karolinska Institutet
(https://ki.se/en/mbb/proteomics-biomedicum). Details of the
sample preparation, peptide labeling with TMTpro mass tag
reagent and subsequent separation of labeled peptides on EASY-
Spray C18 column and mass spectra acquisition on Orbitrap Q
Exactive HF mass spectrometer (ThermoFisher Scientific) are
described in the Supplementary File S1. As the TMT-labeled
experiments allow a maximum of 16 samples that could be
analyzed simultaneously, the data were acquired from two
independent runs, with C6h and S6h samples assigned for the
first run, and the C24-72h, S24h and S72h samples assigned for
the second run. Acquired raw data files were analyzed using
Proteome Discoverer v2.4 (ThermoFisher Scientific) with
Mascot Server v2.5.1 (Matrix Science Ltd., UK) search engine
against mouse protein database (SwissProt). Initial search results
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were filtered with 5% FDR using the Percolator node in
Proteome Discoverer. Quantification was based on the reporter
ion intensities, which were log2 and quantile normalized and
analyzed for the differential expression of proteins with
GraphPad Prism (v. 9.1.1) using multiple unpaired t-tests
analysis with FDR set to 5%. Quantile normalized and log2-
transformed protein abundances were used to generate Volcano
plots (RStudio v 1.4.1717, PBC).

The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE (15) partner
repository with the dataset identifier PXD030167

miRNA qPCR
TaqMan® Advanced miRNA Assays (Applied Biosystems,
ThermoFisher Scientific) were used for validation of miRNA-
seq results. cDNA templates from the selected EV total RNA
samples were prepared using the TaqMan® Advanced miRNA
cDNA Synthesis kit. The resulting cDNAs were amplified using
7500 Real-Time PCR System (Applied Biosystems, ThermoFisher
Scientific) and the following TaqMan® Advanced miRNA Assays:
mmu-miR-143-3p (assay ID, mmu480935_mir), mmu-miR-499-
5p (mmu482780_mir), mmu-miR-375-3p (mmu48114_mir),
mmu-miR-1a-3p (mmu482914_mir), mmu-miR-541-
5p (mmu481211_mir).

All samples were amplified in triplicate. Mmu-miR-103-3p
was chosen as the housekeeping miRNA based on the analysis of
expression stability of several miRNAs using the RefFinder tool
(https://www.heartcure.com.au/reffinder/). The relative
abundance of each miRNA was estimated according to the
2–DDCt method.

Bead-Based Purification of EVs
Streptavidin-coated magnetic beads (SVMS-40-10, Spherotech)
were coated with the biotinylated CD63 (clone MEM-259,
BioSite Flow), CD9 (clone HI9a, Biolegend), and CD81 (clone
M38, BioSite Flow) antibodies as it is described elsewhere (16).
EVs (15 µg of total protein) from C24-72h and S24h groups were
incubated overnight with antibody-coated beads. A sample with
no EVs was included as a negative control. Beads were recovered
on a magnetic stand, resuspended in RIPA buffer (Abcam)
including protease and phosphatase inhibitors (Roche),
sonicated, vortexed, and centrifugated at 10000 g. The
supernatant containing EVs’ proteins was collected for the a-
synuclein immunodetection.

Western Blot
EVs, dEVs, and serum samples were solubilized with 2% SDS or
RIPA buffer and thoroughly vortexed. Protein concentration was
determined using the micro BCA Protein Assay Kit (Thermo
Scientific) and samples containing equal amounts of protein (5 µg)
were resolved by SDS-PAGE and transferred to a PVDF
membrane (Invitrogen). Depending on the secondary antibodies
(HRP- or IRDye-conjugated) protein bands were detected using
either enhanced chemiluminescence reagents (GE Healthcare)
and ChemiDoc MO analyzer (Bio-Rad) or Odyssey infrared
fluorescence detection system (LI-COR, Lincoln, NE, USA).
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The following primary antibodies were used at a 1:500
dilution: CD81 (sc-166029, Santa Cruz Biotechnology), HSP70
(ab181606, Abcam), CD63 (ab59479, Abcam), a-syn (610786,
BD Bioscience).

Statistics
For the statistical analyses of miRNA qPCR experiments we have
used ANOVA one-way test followed by Dunnett’s multiple
comparisons test (Graph Pad Prism v. v. 9.1.1). Data are
presented as means ± SEM. P<0.05 was considered significant.
RESULTS

Characterization of EVs
EVs were isolated from the blood serum with further
characterization of EVs and analyses of the EV cargo as
schematically presented in Figure 1.

Isolated EVs were characterized using different approaches:
transmission electron microscopy (TEM), Nanoparticle
Tracking Analysis (NTA), and immunochemical detection of
EV enriched proteins (western blot).

TEM was performed in C24-72h (N=4) and S24h (N=4)
groups and no differences were observed regarding the number,
morphology, and size of the detected particles (data not shown).
Figure 2A shows a representative TEM image from a control
mouse demonstrating the presence of particles ranging from 30
to 150 nm, which is a common pattern for the EVs isolated using
the ExoQuick kit (17). In addition, these particles appear to be
encircled by the membranous structures, identifying them as
typical extracellular vesicles (Figure 2A, right panel).

NTA analysis, which determines the size distribution and the
number of isolated particles (particles/ml), was performed on all
samples but in two different sessions (run 1 or run 2; see
Methods). The size distribution of the isolated EVs’ particles
was similar for all the experimental groups, independently of the
assigned session. In all cases, the averaged particle size
distribution ranged between 50-200 nm with the size of the
most frequently detected particle (mode) close to 100 nm
(Figure 2B). The average concentration of the particles was
also similar between the control and surgical groups within the
same session (run1: C6h vs S6h and run 2: C24-72h vs S24h and
S72h). However, we found considerable differences in the
number of particles detected during the different sessions
(Figure 2B). This difference is probably due to the intrinsic
high variability associated with the NTA method itself, which
makes this method not suitable for the comparison of particle
concentrations between the groups.

Finally, two EV enriched proteins, CD63 and CD81, known to
be located on the surface of EVs, and an intra-vesicular protein,
HSP70 were identified in the lysed EVs by western blot
(Figure 2C). At the same time, the abundant serum protein,
albumin was substantially depleted from the EV fraction
(Figure 2C). It can be concluded that all the above-mentioned
EV characteristics including the size and morphology of isolated
particles, and the presence of EV enriched proteins are identical
January 2022 | Volume 12 | Article 824696
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to the ones described by other groups using similar isolation
methods (17).

Surgery Effects on the Proteome of
Serum EVs
The EV proteome was investigated using the LC-Tandem Mass
Spectrometry approach (for details see Materials and Methods
and Supplementary File S1). Analysis of the acquired data
identified 343 proteins in the samples from the first run (C6h
and S6h) and 417 proteins in the samples from the second run
(C24-72h, S24h and S72h) (see Materials and Methods)
(Supplementary Tables S1, S2). Although several of them can
be related to the pool of common serum proteins (albumin,
apolipoproteins, and various chains of immunoglobulins), the
gene ontology (GO) analysis identified many GO cellular
component terms that can be specifically associated with EVs
(Table 1). The most prominent EV-related groups are the late
endosome lumen, blood microparticle, and the integrin alpha9-
beta1 complex. The latter includes three integrins: Itgb1, Itgb3,
Frontiers in Immunology | www.frontiersin.org 5
and Itga2b, characteristic EV surface proteins that facilitate the
interaction of EVs with the extracellular matrix of the target
tissues and even function as organotropic cues (18).

Comparison of the different experimental groups using the
principal component analysis (PCA) demonstrates separation of
the 6- and 24 h post-surgery group from the corresponding control
samples, C6h and C24h-72h, respectively (Figure 3). Based on these
data it was expected that most of the differentially expressed
proteins would appear in the 24 h samples. Indeed, the
expression levels of 12 proteins were found to be significantly
different from the controls (FC>1.5, FDR<0.05) (Figure 4A,
Supplementary Table S3). In addition, three different isoforms of
glycogen phosphorylase (PYG) were also differentially expressed at
6 h post-surgery, of which the muscle isoform remains up-
regulated even after 24 h (Figure 4A and Supplementary Table
S3). These data can be better represented by the Volcano plots that
enable quick visual identification of the up-and down-regulated
proteins (Figure 4B). Interestingly, one of the top up-regulated
proteins in the 24 h group was a-synuclein (a-syn), a protein whose
FIGURE 1 | Flowchart of the study design. Mice were subjected to tibia surgery, blood was collected from the control and surgery animals after 6, 24, and 72 h
post-surgery. Isolated blood serum was used for the purification of EVs using the ExoQuick ULTRA kit. EVs were characterized by Nanoparticle Tracking Analysis
(NTA), transmission electron microscopy (TEM), and identification of EV enriched proteins by western blot. EVs’ proteome and miRNAome were investigated by LC/
MS and RNA-seq and findings were validated by qPCR and western blot.
January 2022 | Volume 12 | Article 824696
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expression is largely associated with neural tissues (right panel in
Figures 4B, C).

To confirm the EV origin of the a-syn we have analyzed
serum, EVs, and dEVs samples from C24-72h and S24h groups
by western blot. The a-syn signal was detected in the EV fraction
from the 24 h surgical mouse, whereas it was absent in the serum
and dEVs samples (Figure 4D). In the EVs from the control
mouse, the signal was weak but detectable in all the samples.
These data are complemented by yet another western blot
analysis of the EVs that were additionally purified using
magnetic beads coated with CD63, CD9, CD81 antibodies (see
Materials and Methods). a-syn was identified in such enriched
EVs from both control and 24 h surgical groups (Supplementary
Figure S1). However, contrary to the MS data, we did not
observe similar quantitative changes between the control and
surgical mice. This is probably due to several reasons, such as the
semiquantitative nature of the western blot and the difficulty to
Frontiers in Immunology | www.frontiersin.org 6
accurately quantify the low protein amounts after the
EV enrichment.

Surgery Effects on the miRNAome of
Serum EVs
Next-generation sequencing of small RNA libraries detected a mix
of various RNA species including approximately 10% of mature
miRNAs (Figure 5A). After removing miRNAs below the
expression threshold (see Materials and Methods) the remaining
252 miRNAs were chosen for further analysis (Supplementary
Table S4). PCA demonstrates clear separation of the control
samples from the S24h and S72h groups, whereas the S6h group
was clustered closer with the control samples (Figure 5B). At the
same time, there is a partial overlap between the 24 and 72 h
groups. Further analysis confirmed this trend, revealing the
presence of 50 dysregulated miRNAs (FC>1.5, FDR<0.05) in the
EVs from the S24h group (Supplementary Table S5). The surgery
A

B C

FIGURE 2 | Characterization of circulating EVs. (A) TEM image of the isolated particles, scale bar, 500 nm. Encircled are representative spherical particles. White
arrows indicate putative lipid bilayers of EVs. The dotted insert is represented in higher magnification on the right panel. (B) Representative size distribution profile of
isolated particles and their concentrations estimated by NTA. However, no differences in the control vs. S6h and the control vs, S24h and S72h comparisons were
detected. (C) Western blot identification of EV enriched proteins and albumin. SDS-PAGE for CD63 western blot was run under non-reducing conditions. dEV,
serum depleted of EVs, S, serum.
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effect declines after 72 h as judged by the lower number of
dysregulated miRNAs (21) observed in the S72h group
(Figure 6A and Supplementary Table S5). These data are
graphically interpreted by the plot showing temporal kinetics of
the fold changes of dysregulated miRNAs with peak values at 24 h,
which decrease after 72 h almost to the baseline levels (Figure 6B
and Supplementary Table S5), and by the corresponding Volcano
plots (Figure 6C). Interestingly, only four out of 21 dysregulated
miRNAs at 72 h post-surgery were not differentially expressed at
24 h (Figure 6D), which indicates the lasting, though declining
effect of surgery on miRNA expression.

The heatmap presented in Figure 6E offers an even more
nuanced view of the surgery effects. Thus, in addition to the
already shown PCA clustering of control and experimental groups
(control/C6h and S24h/S72h), the hierarchical clustering of
miRNAs reveals two distinct clusters where cluster 1 includes
down-regulated, and cluster 2, up-regulated at 24- and 72
h miRNAs.

miRNAs from circulating EVs are suggested to be involved in
the post-transcriptional regulation in the target tissues (20). The
Frontiers in Immunology | www.frontiersin.org 7
miRNAs from both clusters were examined by the DIANA-
miRPath online tool (21) that combines the prediction of
miRNA target mRNAs (based on experimental data) with the
analysis of the extent of enrichment of these genes in the different
biological pathways. The bar graphs in Figure 7A show several
KEGG pathways that are predicted to be regulated by the
miRNAs from both clusters. A number of these pathways are
involved in lipid metabolism, ECM-receptor interaction, gap
junction, and various signal transduction pathways.

In order to validate the miRNA sequencing findings, we have
estimated the expression of several differentially expressed miRNAs
using the qPCR approach. Overall, the pattern of changes of the
expression levels for the selected miRNAs was similar between the
RNA-seq and qPCR analyses (Supplementary Figure 2).

Finally, it should be concluded that there is certainly a
synergism in the temporal kinetics of the changes in the
expression levels of both EV cargo molecules, proteins, and
miRNA, as judged by the significant correlation between the
numbers of both classes of dysregulated molecules at each post-
surgery time point (Figure 8).
TABLE 1 | Gene ontology (cellular component category) analysis of the differentially expressed EV proteins at 24 h post-surgery.

Gene onthology_cell component Fold enrichment FDR

late endosome lumen (GO:0031906) 54.02 3.83E-02
other organism part (GO:0044217) 54.02 3.79E-02
membrane attack complex (GO:0005579) 54.02 1.02E-07
fibrinogen complex (GO:0005577) 54.02 1.34E-06
myosin II filament (GO:0097513) 54.02 3.04E-03
integrin alpha9-beta1 complex (GO:0034679) 54.02 3.75E-02
blood microparticle (GO:0072562) 43.22 2.55E-08
spherical high-density lipoprotein particle (GO:0034366) 40.52 4.12E-06
intermediate-density lipoprotein particle (GO:0034363) 36.02 6.07E-04
proteasome core complex, alpha-subunit complex (GO:0019773) 33.77 8.03E-05
extrinsic component of external side of plasma membrane (GO:0031232) 30.01 1.19E-04
January 2022 | Volume 12 | Artic
Proteins are ranked according to the fold enrichment of the corresponding cellular component term (http://geneontology.org/).
A B

FIGURE 3 | Principal component analysis (PCA) of the proteomic data of circulating EVs. LC/MS produced quantitative proteomic data (protein abundances) were
quantile normalized, log2-transformed, and used by Qlucore software for creating the PCA plots. (A) Control and 6 h post-surgery (S6h) experimental group form
individual clusters. (B) Control and S24h groups are completely separated whereas the S72h group overlaps with the control samples.
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DISCUSSION

The principal aim of the present study was to determine whether
surgical trauma, as represented by the mouse orthopedic surgery
model is capable of modifying the cargo composition of circulating
EVs, which would constitute a first step towards the elucidation of
the potential role of EVs as active systemic mediators of surgery-
induced periphery-to-brain communication.

We have, indeed, found statistically significant differences in
the proteome and miRNAome of circulating EVs within the first
72 h after surgery. Their temporal appearance coincides with
both the pattern of initiation and resolution of the systemic
cellular and humoral inflammatory response and with the brain
structural, metabolic, functional, and behavioral changes
observed after orthopedic surgery in mice (5–7).

Proteomic profiling of the circulating EVs revealed that three
proteins, i.e., brain, skeletal muscle, and liver isoforms of PYG,
Frontiers in Immunology | www.frontiersin.org 8
were rapidly up-regulated after surgery (Figure 4B). PYG is an
enzyme involved in the breakdown of glycogen to glucose and as
such essential for the maintenance of glucose homeostasis. The
expression of PYG isozymes is not strictly tissue-specific (22),
therefore it is difficult to pinpoint the precise tissue origin of EVs
in our study.

Nevertheless, the surgery-injured muscles can be suggested as
the most probable source of EVs carrying these proteins. Similarly,
the increased levels of the same set of proteins were detected in the
circulating EVs following yet another tissue injury (cardiacmuscle)
after the chemotherapy treatment (23). Therefore, the release of
these EV-localized PYG isoforms appears to be an early indicator of
tissue injury. Inaddition, the enrichmentofEVsbyPYGsmightalso
occur due to the increased glycogenolysis in the muscle and liver,
which is often observed during stress (24).

Alternatively, the increase of the brain isoform of PYG in the
EVs may reflect the metabolic state of the brain after surgery.
A B

C D

FIGURE 4 | Differential expression of proteins in the post-surgery circulating EVs. (A) Bar diagram representing the number of differentially expressed proteins in the
6, 24, and 72 h post-surgery groups compared to the control values as assessed by GraphPad Prism (v. 9.1.1) using multiple unpaired t-tests analysis with FDR <
0.05 and fold change (FC) > 1.5. (Materials and Methods). (B) Volcano plots showing the differentially expressed proteins at 6h (left) and 24h (right) post-surgery
compared to their corresponding control groups (C6h and CS24-72h). Dotted lines represent FC > 1.5 threshold (log2-FC) and FDR <0.05 (-log10FDR), respectively.
(C) Differential expression of a-synuclein in the EVs from S24h and S72h groups using log2-transformed LC/MS data. (D) a-synuclein expression validation by
western blot. Mouse brain (hippocampus) homogenate was used as a positive control. SDS-PAGE was run under non-reducing conditions. dEV, serum depleted of
EVs, S, serum. Snca in the 24h Volcano plot is the official gene symbol for a-synuclein (a-syn). **p < 0.005, ***p < 0.0005.
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A B

FIGURE 5 | RNA mapping and miRNA PCA. (A) The averaged RNA-seq data from the control samples were used to map RNA categories [sRNAbench webserver
(19)]. (B) Principal component analysis of the circulating EVs’ miRNA data. Normalized miRNA read counts [Counts Per Million reads (CPM)] were log2-transformed
and used by Qlucore software to create a PCA plot. 24 h and 72 h post-surgery groups cluster together and are separated from the control whereas the 6 h group
clusters with the control.
A B

D E

C

FIGURE 6 | Differential expression of miRNAs in the post-surgery circulating EVs. (A) Bar diagram representing the number of differentially expressed miRNAs in
the 6, 24, and 72 h post-surgery groups compared to control values as assessed by DESeq2 analysis (FDR<0.05 and fold change (FC)>1.5; see Materials and
Methods). (B) Post-surgery temporal kinetics of the differentially expressed miRNAs. Each line represents an individual differentially expressed miRNA. (C) Volcano
plots showing the differentially expressed proteins at 24- (left) and 72 h (right) post-surgery compared to the control group (Control). The dotted lines represent FC >
1.5 threshold (log2-FC) and FDR <0.05 (-10logFDR), respectively. (D) Venn diagram showing the overlap between the differentially expressed miRNAs at 24 and 72
h post-surgery. (E) The log2-transformed CPM values of differentially expressed miRNAs at 24 and 72 h and the same miRNAs from the control and S6h groups
were used to generate heatmap (Qlucore). Cluster 1 (blue) and cluster 2 (red) include down-regulated and up-regulated miRNAs at 24 and 72 h, respectively.
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Indirect evidence confirming this hypothesis is our data on the
modified glucose and glutamate metabolism in the hippocampus
accompanied by changes in lactate levels at the same time points
after surgery (6).

The most prominent changes in the EVs’ protein cargo occur at
24 h post-surgery when 12 proteins were found up-regulated.
Mining the functions and tissue expression profiles of these
Frontiers in Immunology | www.frontiersin.org 10
proteins allows conditional division of this group into two
clusters: proteins related to the muscle structure and function
[Myosin Heavy Chain 1, 4, and 7 (Myh1, Myh4, Myh7), PYGm,
Titin (Ttn), Actin, Alpha Skeletal Muscle (Acta1)] and proteins
involved in the acute-phase response to stress [Serpina3g,
Serpina3n, Serpina3a, Serum Amyloid P-Component (Apcs),
Inter-Alpha-Trypsin Inhibitor Heavy Chain H4 (Itih4)]. The
FIGURE 7 | Pathway analysis of differentially expressed miRNAs. Down- (cluster 1 from Figure 6E) and up-regulated (cluster 2 from Figure 6E) at 24 h post-
surgery miRNAs were analyzed by the miRPath online tool (see Materials and Methods) that determines the miRNA target mRNAs (based on experimental data) and
analyses the overrepresentation of these genes in the different KEGG pathways.
FIGURE 8 | Correlation analysis between the differentially expressed protein and miRNA data sets. Temporal kinetics of the differential expression of EVs’ proteins
and miRNAs demonstrates a high degree of correlation as to the Pearson’s linear correlation coefficient (GraphPad Prism).
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muscle-related cluster represents the same tendency that was
detected already at the 6 h time point, that is the profound
disruption of the surrounding tissues, including the muscle
upon tibia surgery. Considering the known activation of the
inflammatory response after surgery (25, 26) the elevation of
levels of many acute-phase proteins from the second cluster is
also not surprising. For instance, the circulating levels of Itih4 were
found elevated after the surgical trauma as shown using yet
another animal model of surgery (27). It can be therefore
suggested that post-surgery EVs might also spread inflammatory
signals to remote organs.

One of the differentially expressed proteins at 24 h post-surgery
is a-syn, which cannot be categorized into either of these two
subgroups. a-syn is expressed predominantly in neurons and
mostly localizes at the presynaptic terminal where it regulates
vesicle turnover (28). The aggregated form of a-syn is a hallmark
of a group of neurodegenerative diseases, including PD and
dementia with Lewy bodies (DLB) (29). However, a-syn is also
expressed in peripheral tissues, including muscle cells (30) and
blood cells, such as erythrocytes and platelets (31–33) whereas
lesser amounts are found in peripheral blood mononuclear cells
(PBMC) (34). This suggests potential source tissues of the a-syn
found in the circulating EVs. One possibility is that it is
released into EVs from the damaged muscles along with the
abovementioned muscle proteins. It can also be hypothesized
that PBMCs activated after surgery can shed “inflammatory”
EVs carrying a-syn as one of the cargo molecules.

Up-regulation of a-syn in the circulating EVs after surgical
trauma prompts an intriguing hypothesis that associates EV-born
a-syn with acceleration and/or exacerbation of neurodegenerative
diseases (35, 36) and the risk for late-onset dementia (37, 38) after
surgery. Consistent with this hypothesis different preclinical and
clinical studies demonstrated thata-syn bearing EVs are capable of
amplifying and propagating PD-related pathology (39–42). In
addition, it was also reported that LPS-induced peripheral
inflammation may potentiate the delivery of erythrocyte-
produced EVs containing a-syn across the BBB (43).

However, further detailed studies are certainly needed to explore
this hypothesis and decipher possible clinical implications of a-syn
up-regulation in the circulating EVs after surgery.

Whereas the protein fraction of EV cargo can potentially
provide more information on the tissue origin of EVs, the
miRNAs endowed with a strong post-transcriptional regulation
potential are important for understanding and predicting the
phenotypic changes of the recipient cells and tissues. It should be
noted that despite the same temporal pattern of differential
expression (Figure 8) the number of dysregulated miRNAs at
24 h post-surgery is significantly higher than the number of
proteins at the same time point. Moreover, these changes do not
completely subside as in the case with proteome but remain at a
certain, albeit lower level at 72 h post-surgery, which might be
indicative of a functionally more important role of EVs’miRNAs
as compared to proteins, with a wider temporal window
of action.

Analysis of the miRNA differential expression at 24 h post-
surgery revealed an explicit pattern of biological pathways that
Frontiers in Immunology | www.frontiersin.org 11
these miRNAs (via their target mRNAs) may affect in the
putative recipient tissue(s). Thus, the set of down-regulated
miRNAs is involved in several pathways, the majority of which
are unified by a common theme - regulation of extracellular
matrix (ECM) (Figure 7). Interestingly, this set includes only few
miRNAs out of 27 down-regulated miRNAs (mmu-miR-29c-3p,
mmu-miR-145a-3p, mmu-miR-148a-3p, mmu-miR-29a-3p,
mmu-miR-25-3p) (Supplementary Figure S3, left panel).
Nearly the same set of miRNAs is also associated with a much
broader scope pathway, the PI3K/AKT/mTOR signaling. The
ECM components targeted by miRNAs are represented by a
group of various collagens and their cell receptors, namely
integrins. Notably, different members of the human miR-29
family that were found down-regulated in this study, are
known to have anti-fibrotic properties (44) due to their
capacity to interact with many mRNAs coding for ECM
proteins. It can therefore be suggested that down-regulation of
these miRNAs in the EVs could stimulate the synthesis of ECM
proteins in the target tissue(s), a process that is closely associated
with wound healing, especially at the initial stages (45). In line
with this, it was reported that various cargo molecules of
circulating EVs including miRNAs are capable of modulating
this pathway (46), and therefore might facilitate healing at the
injury site.

Such up-regulation of ECM components is reminiscent of
ECM re-modeling upon the metastatic process when tumor EVs
are preparing the “soil” for the arriving cancer cells - a metastatic
niche formation (47, 48). Considering the involvement of the
same set of miRNAs in the regulation of PI3K/AKT/mTOR
pathway (Supplementary Figure S3, left panel) it is tempting to
speculate that such “soiling” of the recipient tissue might
represent an important first step facilitating the following
activation of the PI3K/AKT/mTOR system with the very same
miRNAs. However, due to the immense complexity of this
pathway and uncertain target tissues of post-surgery EVs, it is
difficult so far to predict specific miRNA-mediated effects via
such a mechanism.

In addition to the 27 down-regulated EV miRNAs, 23 up-
regulated miRNAs were found associated with several KEGG
pathways. Again, it is just a few miRNAs in this group that are
driving most of the regulatory functions. These are four different
mmu-let miRNAs and mmu-miR-339-5p, mmu-miR-423-5p
that are involved in several pathways linked to the fatty acid
metabolism, along with yet another group of miRNAs (mmu-
miR-181a-5p, mmu-miR-26b-5p, mmu-miR-26a-5p, mmu-
miR-378a-3p, mmu-miR-181c-5p, mmu-miR-378c) that is
connected with the phosphatidylinositol signaling system
(Supplementary Figure S3, right panel). The same group of let
miRNAs can also regulate the ECM (Supplementary Figure S2,
right panel). Interestingly, the same pathway is targeted by
down-regulated miRNAs (see above), however, let miRNAs
can modulate translation of only a few collagen mRNAs,
whereas the down-regulated miRNAs target many more ECM
components including integrin receptors.

As indicated above, most pathways linked to the up-regulated
miRNAs are related to the fatty acid metabolism and involve
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mRNAs coding for both the enzymes participating in the fatty
acid catabolism and the elongation and saturation of fatty acids.
Therefore, it can be predicted that the overall effect of the
miRNA up-regulation in the EVs would be the suppression of
the fatty acid catabolism in the putative recipient tissue(s).

Interestingly, consistent with this prediction, unpublished
hippocampal gene expression and metabolomic data from our
laboratory indicate partial replacement of glucose as an energy
source by fatty acids at 6 h post-surgery, whereas these changes
were largely reversed 72 h after surgery and lipid catabolism was
even decreased.

As in the case of down-regulated miRNAs, the group of up-
regulated miRNAs is involved in the modulation of yet another
complex multifunctional signal transduction pathway,
phosphatidylinositol-dependent signaling. Similar to the PI3K/
AKT/mTOR pathway, this signaling cascade is an active actor in
many physiological and pathological intracellular events, which,
on one hand, allows prediction of the active functional role of the
post-surgery EVs in the various distant tissues, but, on the other
hand, makes it equally difficult to envision any specific
downstream effects.

In both up- and down-regulated miRNA groups, the miRPath
pathway analysis tool singled out only a few dysregulated
miRNAs that were considered to drive main metabolic effects.
However, it cannot be ruled out that other differentially
expressed miRNA might also modify gene expression in target
cells. For instance, one of the top (FDR ranking) down-regulated
at 24 h mmu-miR-143-3p is predicted to be involved in lipid and
carbohydrate metabolism. Yet another top down-regulated
mmu-mir-541-5p target is predicted to modify the MAPK
signaling pathway (results not shown).

It should be mentioned that this study is not devoid of certain
limitations. Thus, it is difficult to separate the effects of surgery
and anesthesia without a corresponding experimental group of
animals subjected only to anesthesia. We have previously
demonstrated that the systemic immune activation in response
to orthopedic surgery in mice is independent of the isoflurane
anesthesia (7, 49). Nevertheless, it is still an open question if the
modification of EVs composition under the same conditions is
following the same pattern.

Another confounding factor is the use of only male animals in
the study. We have unpublished yet data where we could not
detect any sex differences in the behavioral experiments using the
same tibia surgery model.

Proteomic data indicated a-synuclein as differentially
expressed in the 24 h surgery samples. Western blot validation
revealed a protein band slightly larger in size as compared to the
brain positive control (Figure 4D). We believe that this size
difference can be attributed to the different tissue sources of the
protein and/or to the potential posttranslational modification(s)
(50). However, more sensitive methods, such as immunoelectron
microscopy might be needed to confirm the presence of the
protein in the EVs.

Finally, there is an ongoing debate concerning the choice of
the EV isolation method. The choice is largely dictated by the
tissue type, available amounts, throughput options, suitability for
Frontiers in Immunology | www.frontiersin.org 12
various downstream applications, and the research question to
be addressed. Taking all of these and also many comparative
studies (17, 50–54) into account, we chose to use the commercial
kit ExoQuick ULTRA. The ULTRA version enriches for EVs and
has a relatively high yield, important for the small sample
volumes obtained from mice. The disadvantage of using the
ExoQuick, as well as similar precipitation methods is that it
might produce certain amounts of contaminating proteins and
also miRNAs associated with lipoproteins. However, whereas the
gold standard EV isolation method, the ultracentrifugation could
have provided with more refined EV fraction, it would had been
not possible to apply using the minute amounts of mouse blood
serum. The same reasoning can be applied to the other methods,
such as size-exclusion chromatography (SEC), density gradient,
affinity chromatography, etc. Interestingly, a comparison of SEC
with the ExoQuick ULTRA using the identical serum volumes
(250 µl) demonstrated the isolation of nearly the same set of EV-
related proteins (17).

With the current study, we began to explore the hypothesis of
circulatory EVs as potential mediators of the physiological effects
of surgical trauma. The main question of the current project,
whether the surgery is capable of modifying the expression of
cargo molecules in circulating EVs, can be answered now
positively. Moreover, differential expression of a specific set of
miRNAs in the “surgical” EVs suggests that they can be involved
in the regulation of several metabolic pathways, such as ECM-
receptor interaction and lipid metabolism in the recipient tissues,
which is consistent with our data on hippocampal metabolic and
functional dysregulation after surgery (5, 6). Another interesting
finding is the increased levels of a-syn in the circulating EVs
after surgery, which might have potential long-term neurological
consequences. We conclude that surgery alters the EV
composition in the blood, which paves the way for further
studies on the functional effects of these EVs on the brain.
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