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Abstract

We address gene selection and machine learning methods for cancer classification using

microarray gene expression data. Due to the high dimensionality of microarray data, tradi-

tional gene selection algorithms are filter-based, focusing on intrinsic properties of the data

such as distance, dependency, and correlation. These methods are fast but select far too

many genes to use for the classification task. In this work, we present a new hybrid filter-

wrapper gene subset selection algorithm that is an improved modification of our prior algo-

rithm. Our proposed method employs interaction information to rank candidate genes to add

into a gene subset. It then conditionally adds one gene at a time into the current subset and

verifies whether the resultant subset improves the classification performance significantly.

Only significant genes are selected, and the candidate gene list is updated every time a

gene is added to the subset. Thus, our gene selection algorithm is very dynamic. Experi-

mental results on ten public cancer microarray data sets show that our method consistently

outperforms prior gene selection algorithms in terms of classification accuracy, while requir-

ing a small number of selected genes.

Introduction

In recent years, analysis of microarray gene expression data has become an important tool for

providing clinical decision support in cancer diagnosis [1,2], for genes have been found to be

expressed at significantly different levels in normal and cancer cells. One of the main applica-

tions of microarrays in medicine is class prediction [3], which is to identify the class member-

ship of a sample based on its gene expression profile. The process involves the construction of

a statistical classifier that learns from the training set data and predicts the class membership

of the test samples. However, microarray data contain the expression of thousands of genes,

while there are a limited number of samples available for analysis. This curse of dimensionality

presents a challenging problem for class prediction, for it often results in high generalization

error. One effective solution to alleviate the problem is to perform gene selection to reduce the

dimensionality of the microarray data [4,5].
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Gene selection is to select a highly discriminative subset of the original genes for use in

model construction and gene expression analysis. Based on how they select genes and utilize

the learning classifier, gene selection algorithms [6] fall into three categories, namely filter,

wrapper, and embedded methods. Filter methods [7–9] select subsets without any knowledge

of a learning classifier and thus evaluate subsets based on the intrinsic properties of the data

such as distance, dependency, and correlation. They are relatively fast and unbiased in favor of

a specific classifier. On the other hand, wrapper methods [10,11] use the performance of a clas-

sifier as the criterion function to assess the quality of a selected subset. The wrapper method

generally achieves better classification performance than the filter method for the same num-

ber of selected genes, but it is also more time-consuming. Some hybrids of filter and wrapper

methods are also introduced in the literature [12]. Embedded methods [13,14] perform the

search for an optimal subset by interacting with the unique structure of a specific classifier.

Unlike wrapper methods, they embed gene selection with classifier construction during learn-

ing. They are faster than wrapper methods but are specific to the classifier.

Many gene selection techniques in the literature are filter-based because they are fast and

computationally efficient. The fast correlation-based filter (FCBF) algorithm developed by Yu

and Liu [15] ranks genes in descending order according to their correlation values with the

class. It then adopts correlation measure to remove genes that are redundant to the top ranked

genes. The minimal-redundancy-maximal-relevance (mRMR) method [7] selects a gene subset

based on mutual information. An information-theoretic criterion is proposed to choose genes

that are irredundant to already selected genes and highly correlated with the class. On the

other hand, although they are time-consuming, wrapper-based gene selection algorithms have

been studied because they are capable of giving high classification accuracy. Inza et al. [16]

employed sequential search algorithm on two public microarray data sets. Like FCBF, the best

incremental ranked subset (BIRS) algorithm [10] begins by ranking genes according to their

individual discriminative power. The search then proceeds from the best to the worst ranked

feature, and a feature is selected if adding it to the currently selected feature subset improves

the accuracy significantly. The paired t-test statistical significance was used as the criterion for

gene addition. Wrapper methods are computationally intensive, since they require a classifica-

tion model to assess the performance of each subset during search. Furthermore, they may be

prone to overfitting. To lower time consumption, Guyon et al. [13] proposed an embedded

method utilizing support vector machines (SVM) and recursive feature elimination (RFE)

called the SVM-RFE method for cancer classification. The authors used the weights of the

SVM classifier to produce a feature ranking and iteratively removed the least important genes

during training. Experimental results on two microarray data sets showed that SVM-RFE out-

performed a prior method based on gene correlation with the classes. Variants of the

SVM-RFE method [14] are also available in the literature.

Recently, we proposed a hybrid of filter and wrapper methods called the interaction infor-

mation-guided incremental selection (IGIS) algorithm [17] for high-dimensional feature selec-

tion. The IGIS method attempts to find a subset of features that interact with one another and

are relevant with the class, since some weak individual features can provide strong discrimina-

tive power when combined together. However, we found that IGIS selected many more fea-

tures on average than prior wrapper and hybrid methods and that the search terminated too

early. For gene selection applications, that many genes are selected by a gene selection algo-

rithm is not preferable, since it becomes difficult to analyze the results. Thus, the IGIS method

needs to be improved.

This work focuses on developing a new gene selection and machine learning method to

accurately predict cancer outcomes using microarray data. We present an improved interac-

tion information-guided incremental selection (IGIS+) algorithm which is an extension of the
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original IGIS algorithm. Our aim is to reduce the number of selected genes and to improve the

classification accuracy of the original method. We have thoroughly revised three major aspects

of the original work and applied it on microarray data sets for cancer classification. The three

modifications include (1) selecting a better first selected gene with high discriminative power,

(2) introducing a different significance criterion for adding a new gene to the subset, and (3)

proposing new stopping criteria to allow more thorough search. These modifications are sig-

nificant and greatly improve the performance of the original IGIS algorithm. We test our pro-

posed IGIS+ algorithm on ten cancer microarray data sets using the K-nearest-neighbor

(KNN) and the decision tree classifiers and compare the results with those of the original IGIS

algorithm. These experimental results are new. They confirm that our gene selection method

consistently yields higher classification accuracy than prior state-of-the-art wrapper and

hybrid algorithms do and requires a small number of selected genes.

Materials and methods

The original IGIS algorithm

The IGIS method [17] is a hybrid method that selects a subset of features using interaction

information. First, it computes a list of candidate features that have strong interaction infor-

mation with current selected features. Next, it sequentially adds candidate features one at a

time to the selected subset and calculates the performance of the resultant subset. Only a fea-

ture that improves the accuracy significantly when added to the current subset is selected. The

algorithm re-ranks the candidate features every time the selected feature set is updated. In

addition, IGIS employs early stopping to prevent overfitting and to accelerate the speed.

For a feature set F with N features, F = {X1, X2, . . ., XN}, with the target class C, IGIS selects

a subset of feature S, where S� F, that aims to maximize the classification accuracy. The target

class C can be either binary or multiclass. IGIS can be summarized as follows.

Step 1 (Initialization): Let the selected feature set S be an empty set. The first selected feature

Xk from the full set F is one that gives the largest information gain [7].

Xk ¼ arg max
Xj2F
½IðXj;CÞ�; ð1Þ

where I(Xj; C) measures the information about C provided by Xj. Xk is added to the set S
and then removed from the set F.

Step 2 (Filter approach): The next candidate feature Xd to be added to S is one that maximizes

the joint mutual information (JMI) criterion [18]:

Xd ¼ arg max
Xj2F

IðXj;CÞ þ
1

jSj

X

Xi2S

IðXj;Xi;CÞ

" #

; ð2Þ

where I(Xj; Xi; C) is the interaction information [19] between Xj, Xi, and class C. Xd is thus

the candidate feature that has the largest value of information gain and average interaction

information with currently selected features and class C.

Step 3 (Wrapper approach): The candidate feature Xd is conditionally added to the current

set S, and a k-fold cross-validation is used to calculate the classification accuracy of the

training set using the resultant subset. If there is a statistical difference of the classification

accuracy between before and after adding Xd to the set S measured by a Student’s paired

right-tailed t-test (at 0.1 level), go to step 4. Otherwise, Xd is not selected and then removed

from the set F. If F is empty, terminate the algorithm. Otherwise, go to step 2.
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Step 4 (Incremental selection): The classification accuracy for the validation set with the sub-

set S [ Xd using a given classifier is computed. If it does not decrease significantly (using a

Student’s paired left-tailed t-test at 0.1 level), permanently add Xd into the set S and then

remove Xd from the set F, update the accuracy rates for the training and validation sets, and

go to step 2. Otherwise, Xd is not selected and the search terminates.

To summarize, since the JMI criterion in Eq (2) may become inaccurate for high-dimen-

sional data sets, IGIS uses a wrapper approach in step 3 to verify whether or not the candidate

feature is useful by adding it to the currently selected feature set and computing the classifica-

tion accuracy using a given classifier. Only a feature that improves the accuracy significantly

when added to the selected subset is selected. Step 4 implements early stopping to prevent

overfitting and poor generalization and terminates as soon as the validation set accuracy rate

decreases. The IGIS algorithm yields higher classification rates than prior hybrid and wrapper

methods for high-dimensional data sets but also selects more features for classification [17].

The improved IGIS (IGIS+) algorithm

We now discuss the major drawbacks of the original IGIS method. First, the algorithm selects

more features (genes) on average than prior wrapper or hybrid algorithms do. Second, the

paired t-test for significance testing requires that the differences between the two groups are

normally distributed. However, due to the small sample size, the data may violate the normal

assumption, and the t-test can be invalid. Third, IGIS terminates very early in some cases due

to some outlier genes that overfit the training data and incur high error rates on the validation

set. Thus, many good genes may never be evaluated by a given classifier because of early

termination.

We propose three major modifications to improve the original IGIS algorithm for gene

selection as follows.

1. A better first selected gene. To reduce the number of selected genes, we need to select

the best first selected gene. Since the best first selected gene will yield a high performance rate,

it is very likely that only a small number of features will be needed to be added to the selected

subset after the first gene addition. The first modification to the original IGIS method is to

select the first gene that gives the highest training set accuracy rate, not one that gives the larg-

est mutual information between the feature and the class target C. That is, the first selected

gene, Xk, becomes

Xk ¼ arg max
Xi2F
ðAccðXiÞÞ; ð3Þ

where Acc(Xi) is the training set accuracy rate obtained using only gene Xi for classification.

2. A different significance criterion. When the sample size k (k = 4 from fourfold cross-

validation in our experiment) is small, the paired t-test to compare two accuracy averages can

be invalid because the data may violate the normal assumption. Thus, in the IGIS+ method,

Cohen’s d effect size [20,21], rather than the paired t-test, is used to measure the standardized

difference between two means of classification accuracy (before and after gene addition).

Cohen’s d estimates the magnitude of an effect relative to the variability in the population. It is

defined [20] as

d ¼
mt � mc

spooled
; ð4Þ
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where

spooled ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnt � 1Þst2 þ ðnc � 1Þsc2

nt þ nc

s

: ð5Þ

μ, s, and n are the mean, the standard deviation, and the number of cases, respectively. Sub-

scripts t and c refer to the treatment and control conditions, respectively. In our cases, μc and

μt are the means of k classification accuracy rates obtained from k-fold cross-validation before

and after gene addition, respectively, and nt and nc are both equal to k. As noted in [21], effect

sizes d of 0.15 are small, 0.40 are medium, and 0.75 are large. Cohen [20] stated that medium

effect sizes “represent an effect likely to be visible to the naked eye of a careful observer.” A

gene is added to the selected gene subset if and only if adding it provides a medium or larger

positive effect size on the training set accuracy rates and a small or larger positive effect size on

the validation set accuracy rates.

3. New stopping criteria. To prevent the search from terminating prematurely, we pro-

pose the following modification. If adding gene Xd to the selected gene subset gives a medium

or larger positive effect size on the training set accuracy rates but does not give a small or larger

positive effect size on the validation set accuracy rates, Xd is discarded and the algorithm con-

tinues. The search terminates when one of these stopping criteria occurs: (a) all genes are

explored by a given classifier; (b) all unexplored genes give negative JMI criterion values in

Eq (2) (i.e., all unexplored genes are redundant); or (c) the average accuracy rate for the train-

ing or validation set reaches 100% (i.e., optimal performance is obtained). As a result, the IGIS

+ algorithm can be more computationally expensive than the original IGIS method, since

more genes are expected to be evaluated by the classifier. We expect that a more thorough

search will provide a better search result.

The IGIS+ algorithm is designed to select a small number of genes and to provide high clas-

sification performance by choosing a good first gene, employing a valid significance criterion,

and performing a thorough search. The pseudocode of the IGIS+ algorithm is as follows:

IGIS+ (improved interaction information-guided incremental selection) algorithm
Input: A data matrix of size M × N, where M is the number of samples
and N is the number of genes, a target class C of size M × 1, a full
gene set F of N genes, and a given classifier
Output: The selected gene subset S
1 Select the first gene Xk using Eq (3) and initialize set S = {Xk}
2 Remove Xk from set F
3 Compute k training set accuracy rates, BestAcctrain, with set S
using k-fold cross-validation
4 Compute k validation set accuracy rates, BestAccval, with set S
using k-fold cross-validation
5 while the stopping criterion is not true
6 Select the candidate gene Xd using Eq (2)
7 Remove Xd from set F
8 Stmp = S [ {Xd}
9 Compute k training set accuracy rates, Acctrain, with set Stmp
using k-fold cross-validation
10 if Cohen’s d effect size between Acctrain and BestAcctrain is
greater than or equal to 0.40
11 Compute k validation set accuracy rates, Accval, with set Stmp
using k-fold cross-validation
12 if Cohen’s d effect size between Accval and BestAccval is
greater than or equal to 0.15
13 BestAcctrain = Acctrain
14 BestAccval = Accval

A hybrid gene selection algorithm based on interaction information for microarray-based cancer classification
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15 S = Stmp
16 end if
17 end if
18 end while
19 Output set S

The MATLAB codes of the IGIS+ algorithm are available from https://figshare.com/

projects/Gene_selection_for_microarray-based_cancer_classification/56858.

Microarray data sets

Table 1 details ten public microarray data sets [22–30] used in this work. These data sets repre-

sent a broad range of cancer-related two-class and multiclass classification problems. They are

very high-dimensional, for the number of genes in each data set is large (from 2000 to 15,154)

compared to the number of samples (from 60 to 253). The ten data sets are obtained in the for-

mats provided by the original authors. For example, the colon data set is unprocessed, while

the ALL-AML data set is transformed to base 10 logarithms. We then perform a simple rescal-

ing for each data set, so that each gene value in the data set is between 0 and 1 in order to avoid

bias in a classifier. The datasets generated and/or analyzed during the current study are for-

matted and saved in MAT-files for use in MATLAB and also in tab-delimited format for use in

other programming languages. They are publicly available at https://figshare.com/projects/

Gene_selection_for_microarray-based_cancer_classification/56858.

Experimental design

We compare the performance of the IGIS+ algorithm with those of the BIRS algorithm, the

BIRS method with re-ranking mechanism [31] and the original IGIS algorithm. These meth-

ods have been shown to outperform prior filter-based gene selection algorithms. As noted ear-

lier, the BIRS algorithm is a well-known wrapper method that selects a few genes for

classification and outperforms traditional gene selection algorithms. BIRS with the re-ranking

mechanism, denoted by BIRSR, employs conditional mutual information maximization

(CMIM) criterion to rank a block of best B (B = 30) genes and incrementally added genes one

at a time to the selected subset similar to BIRS. If new genes are added to the current subset, a

new set of B ranked genes are computed, and the process is repeated. If there is no new gene

added to the subset when evaluating a block of best B genes, the process terminates. To calcu-

late the information-theoretic criterion in BIRSR, IGIS, and IGIS+, each gene value is discre-

tized into three states at the positions μ ± σ, where μ is the mean value and σ is the standard

deviation; it becomes −1 if the value is less than μ − σ, +1 if the value is larger than μ + σ, and 0

Table 1. Number of genes, samples, and class cardinality in each cancer-related microarray data set.

Data set Description Samples Genes Classes Reference

Colon tumor Colon cancer and normal parts 60 2000 2 Alon et al. [23]

SRBCT 4 types of the small, round blue-cell tumors (SRBCTs) 83 2308 4 Khan et al. [24]

Lymphoma 3 prevalent adult lymphoid malignancies 62 4026 3 Alizadeh et al. [25]

CNS Patient outcomes for central nervous system (CNS) embryonal tumors 60 7129 2 Pomery et al. [26]

ALL-AML Acute lymphoblastic leukemia (ALL) and acute myelogenous leukemia (AML) 72 7129 2 Golub et al. [27]

ALL-AML-3 AML, ALL B-cell, and ALL T-cell 72 7129 3 Golub et al. [27]

ALL-AML-4 AML bone marrow, AML peripheral blood, ALL B-cell and ALL T-cell 72 7129 4 Golub et al. [27]

MLL AML, ALL, and mixed-lineage leukemia (MLL) 72 12,582 3 Armstrong et al. [28]

Lung cancer 4 types of lung tumors and normal lung 203 12,600 5 Bhattacharjee et al. [29]

Ovarian cancer Normal and ovarian cancers 253 15,154 2 Petricoin et al. [30]

https://doi.org/10.1371/journal.pone.0212333.t001
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otherwise. We only use discretized data to compute the criterion value for the gene selection.

After the candidate gene is selected, we feed un-discretized data with the resultant subset into

a classifier to obtain the exact accuracy rates.

Due to a limited number of samples in each data set, we perform nested cross-validation

based on two loops for performance estimates. In the outer loop, a stratified fivefold cross-vali-

dation is used to assess the overall accuracy. A fourfold cross-validation (k = 4) in the inner

loop is used to determine the best number of genes selected by the gene selection algorithm for

use. Fig 1 illustrates an example of nested stratified fivefold cross-validation used in our experi-

ment. We partition data into five mutually exclusive sets P1 to P5. For the outer loop, a set of

four partitions is used for training, and the remaining partition is used for testing. The gene

selection algorithm performs cross-validation in the inner loop to determine the best number

of genes for use in the outer loop. For our example, when the four partitions (P1, P2, P3, and

P4) are trained by the gene selection algorithm in a cross-validated fashion, we assume that

five genes are selected, for they yield the best average validation set accuracy rate over four vali-

dation sets. To optimize the speed of the IGIS+ algorithm, we use the four partitions to select

the first gene with the highest accuracy rate. Then, the fourfold cross-validation in the inner

loop is employed to add more genes into the selected subset that improve the performance sig-

nificantly. In the outer loop, the first training set (P1, P2, P3, and P4) with the selected five

genes is used to compute the test set accuracy rate on the test set P5. Thus, the test set P5 is

unseen and not trained by the gene selection algorithm. For fair comparisons, all four gene

selection algorithms use the same partitions for training and testing. The average performance

of fivefold cross-validation in the outer loop is recorded on each run. We perform ten runs for

each gene selection algorithm on each data set and report the average results of these ten runs.

All codes are implemented in MATLAB, and all experiments are run on an Intel Core i5 com-

puter with 16 GB of RAM.

Fig 1. Simplified example of a nested stratified fivefold cross-validation.

https://doi.org/10.1371/journal.pone.0212333.g001
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We consider using two classifiers in our work: the KNN classifier with K = 3 and the CART

decision tree classifier. The KNN classifier assigns an object to the class by a majority vote of

its K nearest neighbors. We choose K = 3 because we feel that it provides low bias and accept-

able variance. A decision tree is a tree where each decision node represents a decision rule and

each leaf node is a classification outcome. User-defined parameters are set as default values in

MATLAB R2016b. We choose these two classifiers for their simplicity and speed.

To measure the performance of the gene selection algorithms, we use classification accuracy

(Acc), which is the percentage of samples that are assigned to the correct class.

Acc ¼
TPþ TN

TPþ TNþ FPþ FN
; ð6Þ

where TP (true positives) and TN (true negatives) are the numbers of positive and negative

samples that are correctly classified. FP (false positives) are the numbers of negative-class sam-

ples misclassified as the positive class, and FN (false negatives) are the numbers of positive-

class samples misclassified as the negative class. When the data sets are not balanced, other per-

formance metrics should be considered. For our experiments, we measure the F-score because

it is resilient to class imbalance. It is defined as follows.

F � score ¼ 2 �
precision � recall
precisionþ recall

; ð7Þ

where

precision ¼
TP

TPþ FP
; ð8Þ

and

recall ¼
TP

TPþ FN
: ð9Þ

For multi-class classification problems, we compute the macro-averaged F-score by averag-

ing the F-score of each individual class. The best F-score is 1 and the lowest possible F-score is

0.

Results

In this section, we apply our IGIS+ algorithm for gene selection on ten microarray data sets.

We compare the performance of our proposed algorithm with prior gene selection algorithms

in terms of classification accuracy, the number of selected genes, and the number of required

wrapper evaluations. We first report the gene selection results using the KNN classifier and

then show those using the CART decision tree classifier.

Results using the KNN classifier

Table 2 summarizes the average test set accuracy rates and the average numbers of selected

genes of ten runs of fivefold cross-validation obtained by different methods using the KNN

classifier. The best results for each data set are shown in bold. For each data set, the algorithm

which obtains the highest accuracy rate ranks first among the four algorithms, while the one

with the lowest accuracy rate ranks fourth. For a comparison of the number of selected genes,

the algorithm which selects the smallest number of genes ranks first, and the one with the larg-

est number of genes ranks fourth. Average ranks are provided for a fair comparison of the

algorithms over ten data sets. Compared with the other methods, the BIRS method is the only

A hybrid gene selection algorithm based on interaction information for microarray-based cancer classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0212333 February 15, 2019 8 / 17

https://doi.org/10.1371/journal.pone.0212333


method that does not employ any information-theoretic criterion during the search. Using the

KNN classifier, BIRS has the highest (worst) average rank of 3.40. The BIRSR algorithm, on the

other hand, uses the re-ranking mechanism to rank listed genes. To accelerate the search

speed, it terminates when evaluating a blocks of ranked B = 30 genes does not improve the

result. BIRSR obtains acceptable accuracy rates within a short search time. IGIS and IGIS

+ select a group of genes that strongly interact with one another and obtain relatively high

accuracy rates. We note that IGIS+ outperforms the original IGIS algorithm on many data

sets. This is expected, since IGIS+ improves upon IGIS. Overall, IGIS+ produces the best aver-

age accuracy rates on six out of ten data sets and has the lowest (best) average rank of 1.60.

Fig 2 shows the box plots of the average accuracy rates of the four gene selection methods on

ten microarray data sets using the KNN classifier. It illustrates the spread and differences of

ten accuracy averages for each algorithm. Regarding the number of selected genes, a small

number of selected genes is preferred. From Table 2, BIRS and BIRSR select the smallest num-

bers of genes on all data sets at the cost of low accuracy rates. On average, the number of genes

selected by IGIS+ is more than 20% smaller than that selected by IGIS because IGIS+ has a bet-

ter first gene and employs a more meaningful significance criterion than IGIS does.

Regarding the computational complexity, we record the number of wrapper evaluations

needed by each algorithm because each wrapper evaluation is compute-intensive, for it

requires a classification model to assess the performance of each subset. Fig 3 shows the aver-

age numbers of wrapper evaluations of ten runs of fivefold cross-validation required by the

four gene selection methods using the KNN classifier. A base-10 log scale is used for the Y axis.

The higher the average number of wrapper evaluations, the more time-consuming the algo-

rithm. From Fig 3, we see that BIRSR is the fastest algorithm, for only a few blocks of B = 30

genes are evaluated before terminating. For a full set of N genes, BIRS needs N wrapper evalua-

tions to rank all the genes based on their individual discriminative power and performs 4N
wrapper evaluations using fourfold cross-validation for N genes. Thus, the BIRS algorithm

requires a fixed number of 5N wrapper evaluations, and it is the slowest algorithm. On average,

IGIS+ requires more wrapper evaluations than IGIS, since IGIS+ searches more thoroughly

than IGIS. We note that even though the ovarian cancer data set has more genes than the lung

cancer data set (15,154 versus 12,600), IGIS and IGIS+ need fewer average numbers of wrapper

evaluations because the stopping criterion (average training set accuracy rate is 100%) is met

Table 2. The average test set accuracy rates and the average numbers of selected genes of ten runs of fivefold cross-validation obtained by BIRS, BIRSR, IGIS, and

IGIS+ using the KNN classifier as the classifier.

Data set Accuracy rate (%) Number of selected genes

BIRS BIRSR IGIS IGIS+ BIRS BIRSR IGIS IGIS+

Colon tumor 73.64 70.15 77.47 76.04 1.6 1.5 5.3 3.6

SRBCT 85.54 86.99 90.00 91.35 4.2 4.5 9.2 8.3

Lymphoma 84.70 85.59 93.33 94.37 1.5 1.9 3.3 3.0

CNS 58.67 58.33 55.17 57.83 2.4 1.3 5.7 3.3

ALL-AML 86.98 88.63 89.87 90.56 1.2 1.4 5.0 3.1

ALL-AML-3 84.78 87.63 87.71 89.05 2.3 2.6 7.5 4.7

ALL-AML-4 79.84 81.26 81.16 81.94 2.8 2.9 9.0 6.1

MLL 81.13 85.35 84.12 83.91 2.3 2.2 7.0 5.6

Lung cancer 89.03 85.71 92.06 91.69 7.7 4.5 12.4 10.6

Ovarian cancer 97.98 97.78 99.49 99.49 1.9 2.1 2.8 2.9

Average rank 3.40 2.90 2.00 1.60 1.40 1.60 3.90 3.10

https://doi.org/10.1371/journal.pone.0212333.t002
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very early during the search. In terms of computer time, the computational time depends on

many factors including the programmer’s coding style, the used software, the amount of RAM

memory, and the processor speed, but it is important to note that the computer time is propor-

tional to the number of wrapper evaluations. To perform one run of fivefold cross-validation

on the lung cancer data set (five classes with 12,600 genes), BIRSR takes two minutes, IGIS

needs 25 minutes, IGIS+ requires 32 minutes, and BIRS searches for 44 minutes. When we run

the four gene selection algorithms on the ovarian cancer data set (two classes with 15,154

Fig 2. The box plots of the average accuracy rates (for n = 10 samples) obtained by BIRS, BIRSR, IGIS, and IGIS+ on each microarray data set

using the KNN classifier as the classifier. The whiskers are extended to the most extreme data points that are not outliers.

https://doi.org/10.1371/journal.pone.0212333.g002
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genes), BIRSR, IGIS, IGIS+ and BIRS take two minutes, ten minutes, 11 minutes, and 80 min-

utes, respectively. This is expected, since the amount of search time is proportional to the num-

ber of wrapper evaluations required by each algorithm as shown on Fig 3.

Many of the microarray data sets are imbalanced, for there are far more negative samples

than positive samples. Using accuracy as the performance measure can lead the classification

models to be biased towards the majority class. Thus, we consider employing the F-score as

the performance metric of the classifier for the gene selection algorithms and compare the

results. Table 3 shows the average F-scores and the average numbers of selected genes of ten

runs of fivefold cross-validation obtained by four gene selection methods using the KNN clas-

sifier. Compared with the accuracy performance, the highly imbalanced data sets such as the

ALL-AML-4 and lung cancer data sets yield low F-scores as expected. From Table 4, although

IGIS obtains a lower average rank than IGIS+ does regarding the average F-score, both IGIS

Fig 3. The bar chart of the average numbers of wrapper evaluations of ten runs of fivefold cross-validation required by BIRS, BIRSR, IGIS, and

IGIS+ on each microarray data set using the KNN classifier as the classifier.

https://doi.org/10.1371/journal.pone.0212333.g003

Table 3. The average F-scores and the average numbers of selected genes of ten runs of fivefold cross-validation obtained by BIRS, BIRSR, IGIS, and IGIS+ using

the KNN classifier.

Data set F-score Number of selected genes

BIRS BIRSR IGIS IGIS+ BIRS BIRSR IGIS IGIS+

Colon tumor 0.654 0.627 0.730 0.709 2.4 1.4 5.6 3.6

SRBCT 0.863 0.823 0.912 0.913 5.6 4.2 8.7 8.7

Lymphoma 0.781 0.744 0.872 0.879 2.0 1.6 3.6 3.1

CNS 0.519 0.525 0.529 0.504 1.7 1.2 6.3 3.1

ALL-AML 0.869 0.870 0.880 0.901 1.9 1.5 5.2 2.9

ALL-AML-3 0.767 0.761 0.813 0.804 2.7 2.7 7.4 5.8

ALL-AML-4 0.647 0.632 0.637 0.629 4.8 3.7 9.4 4.9

MLL 0.804 0.838 0.837 0.828 2.2 2.1 7.2 5.5

Lung cancer 0.779 0.769 0.854 0.854 5.6 4.7 12.6 10.8

Ovarian cancer 0.977 0.977 0.998 0.998 1.9 2.0 2.8 2.9

Average rank 3.00 3.20 1.50 2.00 1.80 1.10 3.80 3.10

https://doi.org/10.1371/journal.pone.0212333.t003
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and IGIS+ algorithms produce the best average F-scores on five out of ten data sets. In terms

of the number of selected genes, the number of genes selected by IGIS+ is more than 25%

smaller on average than that selected by IGIS. This is consistent with the results obtained using

the accuracy performance.

Results using the CART decision tree classifier

We now discuss the gene selection results using the decision tree classifier. Table 4 presents

the average test set accuracy rates and the average numbers of selected genes of ten runs of five-

fold cross-validation obtained by different gene selection methods using the decision tree clas-

sifier. We see that using decision tree classifier generally yields lower average accuracy rates

than using the KNN classifier. Among the four gene selection algorithms, IGIS+ again has the

best average accuracy rates on six out of ten data sets and has the lowest (best) average rank of

1.50, while BIRSR has the highest (worst) average rank. These results confirm that IGIS+ is

superior to the BIRS, BIRSR, and IGIS methods for the accuracy performance. Fig 4 shows the

box plots of the average accuracy rates of the four algorithms on the ten microarray data sets.

The box plots illustrate the distributions of ten accuracy averages for each algorithm that are

consistent with data in Table 4. Regarding the number of selected genes, Table 4 shows that

BIRSR has the lowest average rank, followed by BIRS, IGIS+, and IGIS, respectively. We again

see that IGIS+ selects a smaller number of genes on average than IGIS by more than 11%.

Fig 5 shows the average numbers of wrapper evaluations of ten runs of fivefold cross-valida-

tion required by BIRS, BIRSR, IGIS, and IGIS+ using the decision tree classifier. We obtain

similar trends as when the KNN classifier is used as the classifier. BIRSR is the fastest algo-

rithm, while BIRS is the slowest one. On average, IGIS+ requires more wrapper evaluations

than IGIS, since it searches more thoroughly than IGIS. Regarding computer time, BIRSR

takes six minutes, IGIS needs 42 minutes, IGIS+ requires 55 minutes, and BIRS searches for 67

minutes to perform one run of fivefold cross-validation on the lung cancer data set. The deci-

sion tree classifier takes a longer time to assess the performance of each subset than the KNN

classifier does. Thus, each gene selection algorithm requires a longer computer time using the

decision tree classifier even when it needs the same number of wrapper evaluations. To per-

form one run of fivefold cross-validation on the ovarian cancer data set. BIRSR, IGIS, IGIS+

and BIRS take eight minutes, 24 minutes, 41 minutes, and 104 minutes, respectively. Again,

Table 4. The average test set accuracy rates and the average numbers of selected genes of ten runs of fivefold cross-validation obtained by BIRS, BIRSR, IGIS, and

IGIS+ using the decision tree as the classifier.

Data set Accuracy rate (%) Number of selected genes

BIRS BIRSR IGIS IGIS+ BIRS BIRSR IGIS IGIS+

Colon tumor 67.95 70.03 73.47 73.15 2.7 2.6 4.5 4.5

SRBCT 81.15 78.65 82.42 83.63 3.9 3.3 5.5 5.3

Lymphoma 85.15 85.15 90.03 87.58 2.0 1.9 2.4 2.6

CNS 52.50 53.33 52.67 55.83 2.9 2.3 5.0 5.6

ALL-AML 85.70 85.15 85.42 85.40 1.4 1.4 3.7 2.1

ALL-AML-3 82.51 81.95 80.69 83.10 2.7 2.6 4.6 3.6

ALL-AML-4 75.69 76.31 74.48 76.49 3.2 2.8 5.8 4.1

MLL 83.65 83.24 78.34 83.96 2.4 1.8 3.8 3.6

Lung cancer 83.86 83.50 84.92 86.73 4.8 4.1 8.0 6.7

Ovarian cancer 95.73 95.73 97.99 97.27 2.2 2.2 2.7 2.7

Average rank 2.80 3.10 2.40 1.50 1.80 1.00 3.60 3.20

https://doi.org/10.1371/journal.pone.0212333.t004
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the amount of search time is proportional to the number of wrapper evaluations required by

each algorithm as shown on Fig 5.

Table 5 summarizes the average F-scores and the average numbers of selected genes of ten

runs of fivefold cross-validation obtained by the four algorithms using the CART decision tree

classifier. Compared with Table 4, we see similar trends that in terms of the average F-score,

Fig 4. The box plots of the average accuracy rates (for n = 10 samples) obtained by BIRS, BIRSR, IGIS, and IGIS+ on ten microarray data sets

using the decision tree as the classifier.

https://doi.org/10.1371/journal.pone.0212333.g004
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IGIS+ has the lowest average rank, followed by IGIS, BIRS and BIRSR, respectively. BIRSR

selects the smallest number of genes on average, while IGIS needs the largest number of genes

among the four algorithms for classification as expected. The experimental results confirm

that IGIS+ is superior to IGIS, since IGIS+ provides a higher F-score and requires a smaller

number of genes than IGIS does.

Analysis on selected genes for potential biomarkers

We now analyze the genes selected by our IGIS+ algorithm for the colon tumor and

ALL-AML-3 data sets, for these data sets are extensively studied. Fig 6 shows Venn diagrams

of all genes selected by the four gene selection algorithms using the KNN classifier for ten runs

of fivefold cross-validation. From Fig 6A, there are nine genes shared by all four algorithms for

the colon tumor data set. One of them is J05032 (human aspartyl-tRNA syntetase alpha-2

Fig 5. The bar chart of the average numbers of wrapper evaluations of ten runs of fivefold cross-validation required by BIRS, BIRSR, IGIS, and

IGIS+ on each microarray data set using the decision tree classifier.

https://doi.org/10.1371/journal.pone.0212333.g005

Table 5. The average F-scores and the average numbers of selected genes of ten runs of fivefold cross-validation obtained by BIRS, BIRSR, IGIS, and IGIS+ using

the decision tree classifier.

Data set F-score Number of selected genes

BIRS BIRSR IGIS IGIS+ BIRS BIRSR IGIS IGIS+

Colon tumor 0.680 0.652 0.700 0.697 3.4 2.5 4.6 4.6

SRBCT 0.768 0.763 0.841 0.821 3.9 3.3 5.4 5.6

Lymphoma 0.748 0.714 0.831 0.785 1.9 1.6 2.4 2.6

CNS 0.526 0.493 0.471 0.512 4.3 2.2 5.3 5.5

ALL-AML 0.869 0.854 0.822 0.870 1.7 1.4 3.6 2.1

ALL-AML-3 0.785 0.801 0.722 0.793 2.5 2.6 4.6 4.2

ALL-AML-4 0.636 0.628 0.604 0.652 3.7 2.9 5.8 4.1

MLL 0.825 0.825 0.757 0.814 1.9 1.9 4.5 3.7

Lung cancer 0.676 0.674 0.706 0.734 5.8 4.6 8.7 6.1

Ovarian cancer 0.958 0.956 0.977 0.972 2.0 2.1 2.7 2.7

Average rank 2.40 3.10 2.60 1.80 1.70 1.20 3.50 3.30

https://doi.org/10.1371/journal.pone.0212333.t005
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subunit mRNA). M26383 (human monocyte-derived neutrophil-activating protein (MONAP)

mRNA) is selected by BIRS, BIRSR, and IGIS+, whereas M63391 (human desmin gene) is cho-

sen by only IGIS and IGIS+. IGIS+ selects 58 unique genes that are not chosen by other three

algorithms. One of them is H08393 (collagen alpha 2(XI) chain (Homo sapiens)). These genes

listed above are relevant genes for colon tumor detection [32,33]. Within the ten runs of five-

fold cross-validation, IGIS+ selects J050032, M26383, and M63391 more than five times.

For the ALL-AML-3 data set, there are 14 genes shared by all four algorithms as seen in

Fig 6B. These genes include U05259 (MB-1 gene), X95735 (Zyxin), M23197 (CD33 antigen

(differentiation antigen)), and M83652 (PFC properdin P factor, complement). M31523

(TCF3 Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)) is

selected by BIRS, BIRSR, and IGIS+, while M84526 (DF D component of complement (adip-

sin)) is chosen by BIRSR, IGIS, and IGIS+. These genes are important biomarkers for identify-

ing the AML and ALL classes [27]. One of the 37 unique genes selected by IGIS+ is M21624

(TCRD T-cell receptor, delta), which is a crucial biomarker for being a direct target of acti-

vated NOTCH1 and being upregulated in T-cell ALL [34]. Thus, the IGIS+ algorithm is able to

identify more known biomarkers than BIRS, BIRSR, and IGIS do. Within the ten runs of five-

fold cross-validation, IGIS+ selects M31523 four times, U05259 six times, and X95735 more

than eight times.

Discussion

Our goal in this study is to use gene selection and machine learning methods to accurately pre-

dict cancer outcomes using microarray data. We propose a hybrid gene selection named the

IGIS+ algorithm that improves upon the original IGIS algorithm. The new modifications of

the IGIS+ method include selecting the gene with the highest accuracy rate as the first gene,

utilizing Cohen’s d effect size as the significance criterion to add a new gene into the selected

gene set, and adopting new stopping criteria for extensive search. IGIS+ employs a dynamic

search mechanism that is able to find a subset of genes that interact one another and are useful

for cancer classification. We compare our proposed algorithm with prior wrapper and hybrid

gene selection methods using the KNN and decision tree classifiers. The experimental results

demonstrate that using the KNN classifier, the IGIS+ algorithm provides solutions with

Fig 6. Venn diagrams of genes selected by the four gene selection algorithms using the KNN classifier on (A) the

colon tumor data set and (B) the ALL-AML-3 data set.

https://doi.org/10.1371/journal.pone.0212333.g006
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accuracy rates that equal or exceed those of the BIRS, BIRSR, and IGIS algorithms for six out of

ten microarray data sets. Furthermore, IGIS+ selects far fewer genes on average than IGIS.

Using the decision tree classifier, IGIS+ remains superior to other gene selection algorithms

regarding the accuracy rates and needs fewer genes than the original IGIS algorithm as

expected. When the F-score is used as the performance metric for the imbalanced data sets, we

see similar trends that IGIS+ outperforms IGIS on average using both KNN and decision tree

classifiers.
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