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Abstract

Background—Chronic or binge ethanol exposures during development can cause fetal alcohol 

spectrum disorder (FASD) which consists of an array of neurobehavioral deficits, together with 

structural, molecular, biochemical, and neurotransmitter abnormalities in the brain. Previous 

studies showed that perinatal neurodevelopmental defects in FASD are associated with inhibition 

of brain insulin and insulin-like growth factor (IGF) signaling. However, it is not known whether 

sustained abnormalities in adolescent brain structure and function are mediated by the same 

phenomena.

Aims—Using an early postnatal (3rd trimester equivalent) binge ethanol exposure model, we 

assessed neurobehavioral function, structure, and the integrity of insulin/IGF signaling in young 

adolescent cerebella.

Methods—Long Evans male rats were treated with 50 µl of saline (vehicle) or 2 mg/kg of 

ethanol by i.p. injection on postnatal days (P) 2, 4, 6, and 8. On P19–20, rats were subjected to 

rotarod testing of motor function, and on P30, they were sacrificed to harvest cerebella for 

histological, molecular, and biochemical studies.

Results—Binge ethanol exposures impaired motor function, caused sustained cerebellar 

hypocellularity, and reduced neuronal and oligodendrocyte gene expression. These effects were 

associated with significant deficits in insulin and IGF signaling, including impaired receptor 

binding, reduced Akt, and increased GSK-3β activation.

Conclusions—FASD-associated neurobehavioral, structural, and functional abnormalities in 

young adolescent brains may be mediated by sustained inhibition of insulin/IGF-1 signaling 

needed for cell survival, neuronal plasticity, and myelin maintenance.
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Introduction

Alcohol misuse during pregnancy causes significant neurodevelopmental abnormalities 

including microcephaly, cerebellar hypoplasia, motor deficits, and neuro-cognitive 

impairments ranging from attention deficit hyperactivity disorder to mental retardation. This 

pathology, combined with various stereotypical craniofacial defects is termed, ‘fetal alcohol 

spectrum disorders’ (FASD) [1,2]. Long-term consequences of ethanol’s selective targeting 

of the temporal lobe, hippocampus, and cerebellum include sustained deficits in cognitive 

and motor function [3] that lead to behavioral problems, poor achievement, and problematic 

social and academic outcomes in children, adolescents, and young adults [4–6].

One of the key adverse effects of ethanol on the immature central nervous system (CNS) is 

to profoundly inhibit insulin and insulin-like growth factor (IGF) signaling pathways [7]. 

Insulin and IGF regulate a broad array of cellular functions in the immature brain, including 

neuronal survival and differentiation, myelin formation and maintenance, neuronal 

migration, plasticity, metabolism, mitochondrial function, and neurotransmitter homeostasis 

and responsiveness [8–16]. Previous studies showed that ethanol inhibits insulin and IGF 

signaling at multiple points within the cascade, beginning at the receptor level and extending 

downstream through pathways that regulate growth, survival, energy metabolism, neuronal 

migration, and plasticity [17–22]. More specifically, ethanol mediates its adverse effects on 

insulin and IGF-1 signaling by: 1) inhibiting phosphorylation and activation of 

corresponding receptor tyrosine kinases (RTKs), and their immediate down-stream effector 

molecules, including insulin receptor substrate (IRS) proteins [23,24]; 2) inhibiting signaling 

through IRS-associated phosphotidyl-inositol-3-kinase (PI3K) with attendant reduced 

activation of Akt and increased activation of glycogen synthase kinase 3β (GSK-3β) 

[7,19,23–28]; and 3) increasing activation of phosphatases that negatively regulate RTKs 

(PTP-1b) and PI3K (PTEN) [24–26]. Akt promotes cell survival, cell migration, energy 

metabolism, and neuronal plasticity, and it inhibits GSK-3β activity, which when aberrantly 

increased causes oxidative stress and apoptosis [16]. In essence, ethanol’s inhibitory effect 

on insulin and IGF-1 receptor signaling produces a state of insulin/IGF resistance, and 

thereby accounts for several major CNS abnormalities in FASD [2,18,29–33].

Previous studies focused on the effects of chronic prenatal ethanol exposure in relation to 

cerebellar structure and gene expression in the perinatal period, shortly after birth 

[24,30,34]. However, it has been well documented that either chronic or binge ethanol 

exposures during development can have significant long-term adverse consequences with 

respect to neurobehavioral function in adolescents [2,29], yet the mediators of such 

responses are poorly understood. Since chronic ethanol exposures in adult humans and 

experimental animals also cause brain insulin/IGF resistance with reduced signaling 

downstream through IRS-PI3K-Akt, neuronal loss, impaired mitochondrial and 
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neurotransmitter functions, and increased oxidative stress [31,35], we hypothesized that 

similar abnormalities might persist in young adolescent brains, even in the absence of 

subsequent developmental exposures to ethanol. Herein, using a binge ethanol exposure 

model in which rat pups were exposed to ethanol in the early postnatal period, we assessed 

the potential role of persistent insulin/IGF resistance as a mediator of impaired cerebellar 

motor function in the early adolescent period.

Materials and Methods

Materials

Qiazol reagent, EZ1 RNA universal tissue kit, QuantiTect SYBR Green polymerase chain 

reaction (PCR) master mix, and the BIO Robot Z1 were from Qiagen Inc (Valencia, CA). 

Histofix was purchased from Histochoice (Amresco, Solon, OH). The AMV first strand 

cDNA synthesis kit was obtained from Roche Diagnostics Corporation (Indianapolis, IN). 

The Akt Pathway Total and Phospho 7-Plex panels were purchased from Invitrogen 

(Carlsbad, CA). Bicinchoninic acid (BCA) reagents were from Pierce Chemical Corp. 

(Rockford, IL). All other fine chemicals were purchased from CalBiochem (Carlsbad, CA), 

Pierce (Rockford, IL), or Sigma (St. Louis, MO).

Early postnatal binge ethanol exposure model

Long Evans rats were used to generate a human 3rd trimester-equivalent binge ethanol 

exposure model. At birth, litters were culled to 8 pups per dam. Pups from 12 different litters 

were administered intra-peritoneal (i.p.) injections (50 µl) of sterile saline or 2 mg/kg 

ethanol (diluted in saline) on postnatal days (P) 2, 4, 6, and 8 [36–38]. Injections were made 

at the same time each day between 12 PM and 2 PM to control for diurnal fluctuations in 

stress responses. Rats were weighed twice weekly. After weaning, rats were pair-fed with 

regular chow.

Motor function assessment

On P19, rats were trained to remain balanced on the rotating Rotamex-5 apparatus 

(Columbus Instruments) at 1–5 rpm. On P20, rats (N=8–10 per group) were administered 10 

trials at incremental speeds up to 10 rpm, with 10 minutes rest between each trial. The 

latency to fall was automatically detected with photocells placed over the rod. However, 

trials were stopped after 30 seconds to avoid exercise fatigue. Data from trials 1–3 (2–5 

rpm), 4–7 (5–7 rpm), and 8–10 (8–10 rpm) were culled and analyzed using the Mann-

Whitney test. On P30, rats were sacrificed by isofluorane inhalation, and cerebella were 

harvested for histological, biochemical and molecular studies. Freshly isolated cerebella 

were hemisected in the mid-sagittal plane; one hemisphere was snap frozen in a dry ice-

methanol bath and stored at −80°C for later RNA and protein studies, and the other half was 

immersion fixed in Histofix. The Lifespan-Rhode Island Hospital IACUC committee 

approved these procedures and the use of rats in experiments.

Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assays

We used qRT-PCR analysis to measure relative mRNA abundance corresponding to Hu 

(neuronal gene), myelin-associated glycoprotein 1 (MAG-1) for oligodendrocytes, glial 
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fibrillary acidic protein (GFAP) for astrocytes, allograft inflammatory factor 1 (AIF1) for 

activated microglia, acetyl cholinesterase (AChE), choline acetyltransferase (ChAT), 

insulin, IGF-1, and IGF-2 polypeptides and receptors, and insulin receptor substrates (IRS), 

types 1, 2, and 4 [39–41]. Gene specific primer pairs were designed using MacVector 10 

software (MacVector, Inc., Cary, NC) and target specificity was verified using NCBI-

BLAST (Basic Local Alignment Search Tool). The amplified signals were detected and 

analyzed using the Master cycler ep realplex instrument and software (Eppendorf AG, 

Hamburg, Germany). Relative mRNA abundance was calculated from the ng ratios of 

specific mRNA to 18S rRNA measured in the same samples. Assays were performed in 

triplicate.

Multiplex ELISA

We used bead-based multiplex ELISAs to examine the integrity of insulin and IGF-1 

signaling networks by measuring immunoreactivity to the insulin receptor (IR), IGF-1 

receptor (IGF-1R), IRS-1, Akt, glycogen synthase kinase 3β (GSK-3β), pYpY1162/1163-

IR, pYpY1135/1136-IGF-1R, pS312-IRS-1, pS473-Akt, and pS9-GSK-3β according to the 

manufacturer’s protocol. Brain tissue samples were homogenized in lysis buffer (50 mM 

Tris-HCl, pH 7.5, 1% Triton X-100, 2 mM EGTA, 10 mM EDTA, 100 mM NaF, 1 mM 

Na4P2O7, 2 mM Na3VO4) containing protease and phosphatase inhibitors [42]. 200 µg 

proteins in 100 µl of lysis buffer were incubated with antibody-bound beads. Captured 

antigens were detected with biotinylated secondary antibody and phycoerythrinconjugated 

Streptavidin. Plates were read in a Bio-Plex 200 system (Bio-Rad, Hercules, CA). Data are 

expressed as fluorescence light units (FLU) corrected for protein concentration.

Receptor binding assays

Insulin, IGF-1, and IGF-2 receptor binding in the brain was measured using competitive 

saturation assays [41]. Membrane proteins extracted from fresh frozen tissue were incubated 

in 100 µl reactions containing binding buffer and 0.0031 to 1 µCi/ml of 125I (2000 Ci/mmol) 

insulin, IGF-1, or IGF-2. Non-specific binding was measured in duplicate reactions 

containing excess (0.1 µM) cold ligand. Radioactivity was measured in polyethylene glycol 

8000 precipitates (bound ligand) and the corresponding supernatants (free ligand) in an LKB 

CompuGamma CS Gamma counter. Specific binding was calculated by subtracting fmols 

bound in the presence of excess cold ligand (non-specific), from fmols bound in the absence 

of cold ligand (total). Best-fit analysis predicted a one-site model, and Scatchard analysis 

was used to calculate saturation binding (BMAX) and binding affinity (Kd). Binding assay 

results were analyzed using the Graph Pad Prism 5 software (Graph Pad Software, Inc., San 

Diego, CA).

Statistics

The experimental model was generated with 12 litters (8 pups each) in which 2 each were 

treated with vehicle or ethanol. All assays were performed with 12 samples per group. Data 

corresponding to levels of gene expression or immunoreactivity are depicted in boxplot 

graphs representing the medians (horizontal bars), 95% confidence intervals (box limits), 

and range (whiskers) for each group. Inter-group comparisons were made using Student t-
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test. Statistical analyses were performed using the Graph Pad Prism 5 software (San Diego, 

CA) and significant P-values (<0.05) are indicated within the graph panels.

Results

Early postnatal binge ethanol exposures lead to impaired motor function in young 
adolescent rats

Data from rotarod tests of cerebellar function were grouped into trials according to the speed 

of the rotating bar. For all 3 trial clusters, the ethanol-exposed group exhibited significantly 

reduced latencies to fall relative to control (Figure 1). In Trials 1–3, which were the least 

challenging, the differences between the control and ethanol-exposed group were modest but 

statistically significant (Figure 1A). For Trials 4–6, performance among controls was similar 

to that observed for Trials 1–3, whereas for the ethanol-exposed group, mean latency to fall 

was further reduced (Figure 1B). Finally, for Trials 7–10, which were the most challenging, 

although performance among controls declined relative to earlier trials, the ethanol-exposed 

group exhibited its worst performance, and the shortest mean latency to fall (Figure 1C).

Effects of early postnatal binge ethanol exposures on cerebellar structure in young 
adolescent rats

Histological sections of P30 rat cerebella demonstrated slender folia with deep and complex 

sulci (grooves), uniform molecular layers and white matter cores, and well-populated 

Purkinje and granule cell layers in the cortex (Figures 2A, 2C). In contrast, cerebella of 

ethanol-exposed rats exhibited conspicuous blunting and simplification of the folia with 

irregular white matter cores and thicknesses of the molecular and granule cell layers, and 

numerous gaps corresponding to neuronal loss in the Purkinje cell layer (Figures 2B, 2D). In 

addition, many residual Purkinje cells had eosinophilic cytoplasms with pyknotic nuclei, 

corresponding to changes associated with early necrosis.

Reduced neuronal and oligodendrocyte gene expression following early postnatal binge 
ethanol exposures

mRNA transcripts corresponding to Hu (neurons), myelin-associated glycoprotein 1 

(MAG-1; oligodendrocytes), glial fibrillary acidic protein (GFAP; astrocytes), allograft 

inflammatory factor 1 (AIF-1; activated microglia), acetyl cholinesterase (AChE), and 

choline acetyltransferase (ChAT) were measured by qRT-PCR analysis with results 

normalized to 18S rRNA (Figure 3). These genes were selected for study to help gauge the 

long-term impact of developmental exposure to ethanol on cerebellar structure, particularly 

with regard to survival of neurons and oligodendrocytes. Cholinergic neurotransmitter 

function was also assessed because acetylcholine is a major neurotransmitter utilized for 

cerebellar motor functions [43,44]. Corresponding with the ethanol-associated motor 

impairments, cerebellar atrophy, cell loss in Purkinje and granule cell cortical layers, and 

irregular structure of the subcortical white matter, Hu, MAG-1, and ChAT mRNA levels 

were significantly reduced in the ethanol-exposed cerebella (Figures 3A, 3B, 3F). In 

contrast, GFAP (Figure 3C), AIF-1 (Figure 3D), and AChE (Figure 3E) mRNA levels were 

similar in control and ethanol-exposed cerebella. These findings suggest that early postnatal 

binge ethanol exposure-induced impairments in young adolescent motor function were 
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mediated in part by reduced populations of cholinergic neurons rather than increased 

degradation of acetylcholine.

Early postnatal binge ethanol exposure impairs insulin/IGF signaling in young adolescent 
cerebella

We used qRT-PCR analysis to measure expression of insulin and IGF trophic factors and 

receptors, and IRS molecules as previously described [24,28,35]. Due to their inter-

relatedness, data corresponding to the trophic factors, receptors, or IRS genes were grouped 

and analyzed by two-way ANOVA with the Bonferroni post-hoc significance test (Figure 4). 

Insulin and IGF-1 receptors were similarly expressed in control and ethanol-exposed 

cerebella, whereas IGF-2R mRNA transcripts were significantly more abundant in ethanol-

exposed relative to control cerebella (Figure 4A). In both control and ethanol-treated rats, 

insulin and IGF-1 polypeptide mRNA transcripts were similarly low-level in abundance 

compared with IGF-2 (Figure 4B). The mean level of IGF-2 mRNA was significantly lower 

in the ethanol-exposed relative to control cerebella. In ethanol-exposed cerebella, both IRS1 

and IRS2 mRNA levels were significantly reduced relative to control, while IRS4 

expression was similar in the two groups (Figure 4C).

We used multiplex ELISAs to further interrogate ethanol’s long-term effects on the integrity 

of insulin/IGF signaling in the cerebellum. We measured total and phosphorylated levels of 

insulin receptor (pY1162/pY1163), IGF-1 receptor (pY1135/pY1136), IRS-1 (pS312), Akt 

(pS473), and GSK-3β (pS9), and calculated the relative levels of phosphorylation from the 

ratios of phospho-/total protein (Figures 5 and 6). Early postnatal binge ethanol exposures 

significantly increased cerebellar insulin receptor (Figure 5A), IGF-1 receptor, IRS-1 

(Figure 5C), and pYpY1135/1136-IGF-1R (Figure 5E), and reduced the relative levels 

(ratios) of pYpY1162/1163 to total insulin receptor (Figure 5G) and pS312/total IRS-1 

(Figure 5I) relative to control. In contrast, no significant inter-group differences were 

observed with respect to pYpY1162/1163 insulin receptor (Figure 5D) and pS312 IRS-1 

(Figure 5F).

Insulin, IGF-1 and IRS-1 signal downstream to activate Akt and inhibit GSK-3β through 

phosphorylation of specific Ser residues on these proteins. In addition, signaling through 

Akt and GSK-3β can be regulated by altering the expression levels of these proteins. 

Multiplex ELISAs demonstrated that early postnatal binge ethanol exposures significantly 

reduced cerebellar levels of pS473-Akt (Figure 6C), pS473/ total Akt (Figure 6E), and pS9-

GSK-3β (Figure 6D). In contrast, the mean levels of total Akt (Figure 6A), GSK-3β (Figure 

6B), and pSer9/ total GSK-3β (Figure 6F) were similar in control and ethanol-exposed 

cerebella.

Competitive saturation binding assays were used to examine long-term effects on insulin, 

IGF-1, and IGF-2 receptor binding in the cerebellum, as previous studies linked impairments 

in receptor binding to ethanol-induced insulin and IGF resistance in liver and brain 

[28,35,45]. Non-linear curve fitting analysis predicted single-site specific binding for each 

receptor in both groups; the goodness of fits (R2) ranged from 0.82 to 0.94 (Table 1). 

Scatchard analysis was used to calculate Bmax (top-level binding) and Kd (binding affinity). 

In control and ethanol-exposed cerebella, the highest top-level (Bmax) binding was 
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observed for IGF-2R, followed by IGF-1R, and then insulin receptor (Figure 7 and Table 1). 

Early postnatal binge ethanol exposures significantly reduced the Bmax for insulin (P<0.05) 

and IGF-1 (P<0.01), whereas the Bmax for IGF-2 receptor binding was nearly the same for 

control and ethanol exposed cerebella. In contrast, there were no significant inter-group 

differences found with respect to receptor binding affinity (Kd) (Table 1).

Discussion

Effects of early postnatal binge ethanol exposures on adolescent cerebellar function and 
structure

This study demonstrates that early postnatal binge ethanol exposures cause sustained 

structural and functional abnormalities in the cerebellum. The Structural damage was 

characterized by blunting and simplification of cerebellar folia with reduced thickness of the 

granule cell layer and reduced neuronal densities in the Purkinje cell layer. The motor 

deficits were manifested by impaired rotarod test performance. Further studies employing 

qRT-PCR analysis demonstrated significant reductions in Hu, MAG-1, and ChAT 

expression, reflecting reduced populations of neurons, particularly cholinergic, as well as 

oligodendrocytes. The reduced levels of Hu and ChAT correlate with the conspicuous 

reductions in granule and Purkinje cell populations, whereas the reductions in MAG-1 

expression correspond to hypotrophy or atrophy of central white matter in ethanol-exposed 

cerebella.

The loss or impaired development of neurons in the granule and Purkinje cell layers, and 

reductions in MAG-1 expression in ethanol-exposed cerebella were likely due to sustained 

inhibition of insulin/IGF signaling [17,20,30,31,46]. Insulin and IGF mediate neuronal and 

oligodendrocyte survival, growth, and metabolism, in addition to neuronal plasticity, myelin 

maintenance, and cholinergic function [7,8]. Since the binge ethanol exposures were 

performed within the critical period of robust postnatal cerebellar growth, cerebellar granule 

cell proliferation, and myelination [47–51] it is conceivable that the toxic effects of ethanol 

caused a permanent loss or impairment in function of cerebellar neurons and 

oligodedrocytes. In essence, our findings support the concept that late gestation binge 

ethanol exposures cause permanent damage to the program of cerebellar development, and 

thereby produce several of the well-characterized features of FASD [24,28,30].

Early postnatal binge ethanol exposure causes sustained impairments in cerebellar 
insulin/IGF signaling

The integrity of upstream signaling through the insulin and IGF-1 receptors was assessed by 

measuring ligand and receptor gene expression by qRT-PCR analysis, and immunoreactivity 

corresponding to total and tyrosine phosphorylated insulin and IGF-1 receptors with 

multiplex ELISAs. The qRT-PCR studies demonstrated similar levels of insulin and IGF-1 

polypeptide and receptor gene expression in control and ethanol-exposed cerebella. In 

contrast, insulin and IGF-1 receptor protein levels were significantly higher in the ethanol-

exposed cerebella, marking discordances between mRNA and protein study results. 

Although tyrosine phosphorylated IGF-1 receptor expression was also increased in ethanol-

exposed brains, the relative levels of phosphorylated/total IGR-1 receptor were similar to 
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control. On the other hand, tyrosine phosphorylated insulin receptor levels and the 

calculated phospho/total insulin receptor levels were significantly reduced by early postnatal 

binge ethanol exposures. The reduced levels of receptor tyrosine phosphorylation and 

calculated ratio of phospho/ total insulin receptor immunoreactivity reflect a state of brain 

insulin resistance. With regard to the IGF-1 receptor, the increased levels of IGF-1R protein 

and tyrosine phosphorylated IGF-1R suggest that signaling through IGF-1R pathways was 

increased, perhaps as a compensatory response to insulin resistance.

To better understand the mechanisms of sustained insulin resistance in ethanol-exposed 

brains, we used competitive saturation assays to measure ligand-receptor binding. Those 

studies demonstrated that binge ethanol exposure in the early postnatal period leads to 

significantly impaired insulin as well as IGF-1 receptor binding in adolescent brains. This 

suggests that both insulin and IGF-1 resistance contributed to the ethanol-associated 

impairments in cerebellar structure and function in adolescent brains. These results 

correspond with previous observations in chronic prenatal ethanol exposure models in which 

we demonstrated that impaired insulin and IGF receptor binding and signal transduction in 

the perinatal period were mediated by alterations in membrane lipid composition [7,24,28].

With regard to upstream signaling mechanisms, our additional new findings are as follows: 

1] ethanol-impaired insulin and IGF-1 signaling persist well beyond the period of exposure 

and are detectable in young adolescent brains; 2] rather than reducing expression of both the 

ligands and receptors as occurs in the early postnatal period following chronic prenatal 

ethanol exposure, postnatal binge ethanol exposures mediate their inhibitory effects on 

insulin/IGF-1 signaling by impairing ligand-receptor binding, which would likely have 

resulted in decreased activation of the corresponding receptor tyrosine kinases (at least with 

respect to the insulin receptor); and 3] although late gestation-equivalent binge ethanol 

exposures significantly increased IGF-2R and decreased IGF-2 expression, in contrast to the 

findings in chronic prenatal ethanol exposure models [7,24,28], there were no significant 

adverse effects of ethanol on IGF-2 receptor binding. It is conceivable that the sustained 

deficits in brain insulin/IGF-1 signaling might have been compensated for by alternate use 

of IGF-2 activated networks. However, the effectiveness of this type of response would 

likely be limited due to reduced levels of IGF-2 polypeptide gene expression in ethanol-

exposed brains.

Effects of early postnatal binge ethanol exposures on IRS expression and signaling in 
adolescent brains

The stimulatory effects of insulin and IGF-1 are mediated by receptor binding and activation 

of receptor tyrosine kinases (RTKs) [8,52–58] that phosphorylate IRS proteins. IRSs 

transmit downstream growth, metabolism, survival, myelin synthesis and myelin 

homeostasis signals by activating Erk MAPK and PI3K/Akt [16]. Previous studies 

demonstrated that ethanol impairs insulin and IGF-1 signaling through IRS proteins in 

various models [23,59], including FASD [24]. The present study shows that early postnatal 

binge ethanol exposures lead to inhibition of IRS1 and IRS2, but not IRS4 gene expression. 

Reduced expression of IRS1 and IRS2 compromise the brain’s capacity to transmit signals 

downstream of the insulin and IGF-1 receptors, and thereby exacerbate states of insulin/
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IGF-1 resistance, irrespective of the integrity of receptor tyrosine kinase phosphorylation of 

IRS proteins. However, in contrast to the qRT-PCR analyses, the multiplex ELISA studies 

demonstrated higher levels of IRS1 protein, and reduced relative levels of pS312/total-IRS-1 

in the ethanol exposed brains. Since S312 phosphorylation of IRS1 inhibits downstream 

signaling, reduced inhibition corresponds to increased activation. This phenomenon could 

reflect a compensatory means of supporting downstream signaling vis-à-vis insulin/IGF-1 

receptor resistance and thereby account for the fact that cerebellar structure and function are 

maintained in FASD, albeit at lower levels relative to control.

Effects of early postnatal binge ethanol exposures on Akt pathway signaling in the 
cerebellum

Ethanol has profound inhibitory effects on insulin/IGF signaling through PI3K/Akt in 

immature neurons and the developing brains [27,30,34,60]. Ethanol mediates these effects 

by: 1] inhibiting IRS-associated PI3K activity, and subsequent phosphorylation and 

activation of Akt and phosphorylation/inhibition of GSK-3β [7,19,23– 27]; and 2] increasing 

the activity of phosphatases that negatively regulate receptor tyrosine kinases, e.g. PTP-1b 

and PI3K (PTEN) [24– 26]. Akt promotes cell survival, cell migration, energy metabolism, 

and neuronal plasticity, and it inhibits GSK-3β activity. Consequently, ethanol inhibition of 

PI3K-Akt leads to increased GSK-3β-mediated oxidative stress, DNA damage, 

mitochondrial dysfunction, apoptosis, and disordered neuronal migration [16,27,60,61]. The 

reduced relative levels of S473 phosphorylation of Akt and S9 phosphorylation of GSK-3β in 

ethanol-exposed young adolescent cerebella indicates that the inhibitory effects of ethanol 

on signaling downstream of the insulin receptor are sustained beyond the period of exposure 

and likely mediated by persistent brain insulin resistance as discussed earlier [7].

In conclusion, early postnatal binge ethanol exposures cause long-term deficits in motor 

function associated with structural abnormalities in the cerebellum, including 

hypocellularity and hypofoliation. These adverse effects were likely due to sustained 

inhibition of signaling through insulin/IGF-1 pathways, and downstream through IRS and 

PI3K/Akt. Future studies will determine the degree to which restoration of insulin/IGF 

signaling with insulin sensitizer agents abrogates structural and functional abnormalities in 

the cerebellum.
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Figure 1. 
Long-term effects of early postnatal binge ethanol exposure on rotarod motor performance.

Long Evans rat pups were treated with 50 µl i.p. injections of saline (vehicle) or 2.0 mg/kg 

ethanol in saline on postnatal days 2, 4, 6, and 8. On postnatal 19, rats (N=12/group) were 

subjected to 10 rotarod test trials in which speed of the rotating rod was incremented with 

each trial. Latency to fall was recorded. Data from Trials 1–3 (2–5 rpm), Trials 4–6 (5–7 

rpm), or Trials 7–10 (8–10 rpm) were culled and analyzed using the Mann-Whitney test. 

Significant inter-group differences are shown in the panels.
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Figure 2. 
Sustained structural abnormalities in adolescent cerebella following early postnatal binge 

ethanol exposures.

Long Evans rat pups were treated with 50 µl i.p. injections of saline (vehicle) or 2.0 mg/kg 

ethanol in saline on postnatal days 2, 4, 6, and 8. Rats were sacrificed on P30 and cerebella 

were fixed and embedded in paraffin. Histological sections were stained with Hematoxylin 

and Eosin. (A, B) Low (original, 40×) and (C, D) high (original, 160×) magnification 

images demonstrating (A, B) control cerebella with long slender folia with uniform 

thickness of the molecular layer (ml), and well-populated Purkinje (pc) and granule cell (gc) 

layers in cortex, compared with (C, D) ethanol-exposed cerebella, which had shallow, 

blunted and simplified folia with irregular thickness of the molecular layer, irregular 

thinning of the granule cell layer (gcl) and white matter (wm) cores, and numerous gaps 

corresponding with loss of neurons in the Purkinje cell layer. White lines span the 

thicknesses of the granule cell layers.
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Figure 3. 
Early postnatal binge ethanol exposures alter neuronal and glial gene expressions in early 

adolescent cerebella. RNA extracted from cerebella (N=8 samples per group) was reverse 

transcribed, and the cDNAs were used to measure gene expression by qPCR analysis.

Results were normalized to 18S rRNA measured in parallel reactions. Graphs depict relative 

levels of gene expression for (A) neuronal Hu, (B) myelin-associated glycoprotein-1 

(MAG-1), (C) glial fibrillary acidic protein (GFAP), (D) allograft inflammatory factor -1 

(AIF), (E) acetylcholinesterase (AChE), and (F) choline acetyltransferase (ChAT), and. 

Inter-group comparisons were made using Student t-tests. Significant P-values are shown 

over the graphs.
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Figure 4. 
Effects of early postnatal binge ethanol exposures on expression of insulin, insulin-like 

growth factor-1 (IGF-1), IRS-2, and insulin receptor substrate genes in young adolescent 

cerebella.

RNA extracted from cerebella (N=8 samples per group) was reverse transcribed, and the 

cDNAs were used to measure gene expression corresponding to the (A) insulin, IGF-1, and 

IGF-2 polypeptides, (B) insulin, IGF-1, and IGF-2 receptors, and (C) IRS1, IRS2, and IRS4. 

Results were normalized to 18S rRNA measured in parallel reactions. Graphs depict relative 

levels of gene expression Inter-group comparisons with respect to trophic factors, receptors, 

or IRS molecules were made by repeated measures two-way ANOVA tests with the 

Bonferroni post hoc significance test. Significant P-values are shown over the graphs.
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Figure 5. 
Sustained insulin and IGF-1 resistance in young adolescent cerebella following early 

postnatal binge ethanol exposures

Cerebella protein homogenates were used to measure immunoreactivity to (A) insulin 

receptor (IR), (D) IGF-1R, (G) IRS-1, (B) pYpY1162/1163-IR, (E) pYpY1135/1136-

IGF-1R, (H) pS312-IRS-1 using the bead-based Akt and phospho-specific Akt pathway 

multiplex ELISA kits. Phospho-/total protein ratios for (C) IR, (F) IGF-1R, and (I) IRS-1 

were calculated. Comparisons (N=8 samples per group) were made using Student T-tests. 

Significant differences are indicated within the panels.
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Figure 6. 
Effects of early postnatal binge ethanol exposures on signaling through Akt and GSK-3β in 

young adolescent cerebella.

Cerebellar protein homogenates were used to measure immunoreactivity to (A) Akt, (B) 

pS473-Akt, (D) GSK-3β, and (E) pS9-GSK-3β using bead based total Akt and phospho-

specific Akt multiplex ELISA kits. In addition, relative degrees of phosphorylation 

represented by (C) pS473/Total Akt and (F) pS9/Total GSK-3β were calculated. Inter-group 

comparisons were made using Student T-tests. Significant differences are indicated within 

the panels.
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Figure 7. 
Impaired insulin and IGF-1 receptor binding in young adolescent cerebella following early 

postnatal binge ethanol exposures

Competitive saturation binding assays were performed by incubating cerebellar membrane 

protein extracts with 0.5–500 pM [125I]-labeled insulin, IGF-1, or IGF-2 as tracer, in the 

presence or absence of 100 nM cold ligand. Membrane bound tracer was precipitated and 

radioactivity in the supernatants (containing free ligand) and pellets (containing bound 

ligand) was measured in a gamma counter. Graphs depict specific binding (fmol/mg protein) 

Ewenczyk et al. Page 19

J Clin Exp Pathol. Author manuscript; available in PMC 2015 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



± S.D. relative to pM input of radiolabeled (A–B) insulin, (C,D) IGF-1, and (E,F) IGF-2 in 

(A,C,E) control (vehicle-treated) and (B,D,F) ethanol-exposed samples. The calculated 

binding indices and inter-group statistical comparisons are provided in Table 1.
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