
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1669  | https://doi.org/10.1038/s41598-022-05675-0

www.nature.com/scientificreports

Feasibility of training 
the dorsolateral prefrontal‑striatal 
network by real‑time fMRI 
neurofeedback
Franziska Weiss1, Jingying Zhang1, Acelya Aslan2, Peter Kirsch1,3,4 & 
Martin Fungisai Gerchen1,3,4*

Real‑time fMRI neurofeedback (rt‑fMRI NF) is a promising non‑invasive technique that enables 
volitional control of usually covert brain processes. While most rt‑fMRI NF studies so far have 
demonstrated the ability of the method to evoke changes in brain activity and improve symptoms 
of mental disorders, a recently evolving field is network‑based functional connectivity (FC) rt‑fMRI 
NF. However, FC rt‑fMRI NF has methodological challenges such as respirational artefacts that could 
potentially bias the training if not controlled. In this randomized, double‑blind, yoke‑controlled, 
pre‑registered FC rt‑fMRI NF study with healthy participants (N = 40) studied over three training days, 
we tested the feasibility of an FC rt‑fMRI NF approach with online global signal regression (GSR) to 
control for physiological artefacts for up‑regulation of connectivity in the dorsolateral prefrontal‑
striatal network. While our pre‑registered null hypothesis significance tests failed to reach criterion, 
we estimated the FC training effect at a medium effect size at the end of the third training day after 
rigorous control of physiological artefacts in the offline data. This hints at the potential of FC rt‑fMRI 
NF for the development of innovative transdiagnostic circuit‑specific interventional approaches for 
mental disorders and the effect should now be confirmed in a well‑powered study.

Functional magnetic resonance imaging (fMRI) is a nowadays almost ubiquitous technique to study the brain and 
to gain information on alterations in brain functioning in mental disorders. With rising numbers of individuals 
affected by mental disorders in the recent  past1,2 and a relevant level of non-responders to current treatments, 
the need not only for basic scientific results but also for novel and innovative therapy approaches based on these 
insights is high. Orienting towards a more treatment-related usage, fMRI has been progressively used for the 
application of real-time fMRI neurofeedback (rt-fMRI NF) since its’ introduction around the turn of the last 
 century3–5. In rt-fMRI NF participants are trained to volitionally control a brain process, which is usually not 
directly accessible, in a predefined direction. The brain process is selected based on its involvement in a mental 
disorder and evoked changes in activity are expected to be accompanied by an improvement in  symptoms4. 
rt-fMRI NF specifically profits from the high spatial resolution and whole-brain  coverage6 provided by fMRI. 
Although the temporal resolution in contrast is relatively low, it still allows for feedback in nearly real-time7,8. As 
a further advantage of the method, compared to pharmacological treatments, no side effects have been  reported9.

So far, the largest number of rt-fMRI NF studies have been conducted with Region-of-Interest (ROI) based 
approaches that feedback activity of a single ROI as the training target. Those studies could successfully demon-
strate the feasibility of inducing changes in brain functioning (see for  example10,11) and in several cases associated 
improvement in symptoms could be  demonstrated12–15.

Notwithstanding, a transition of the focus to connectivity-based approaches has begun in the past years. 
First reports suggest that changes in connectivity as a consequence of rtfMRI NF can be  achieved16 and clinical 
measures might be  improved17.  Recently18, targeted DLPFC-ACC connectivity and found increased connectiv-
ity in the experimental group which correlated with symptom improvement in high trait anxiety after rt-fMRI 
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NF. Further technological advances are Dynamic Causal Modelling (DCM)-based  NF19,20 and whole-brain 
connectome-based  NF21.

Particularly for the development of transdiagnostic approaches addressing specific neural circuits that are 
involved in diverse mental disorders, like frontostriatal networks, connectivity-based rt-fMRI NF shows great 
promise. Before such approaches should be applied in clinical contexts, it is however necessary to address the 
methodological problems associated with the technology and gain a better understanding of the effects that can 
be expected.

In a previous single-session rt-fMRI NF study we found that FC rt-fMRI NF is heavily influenced by physi-
ological artefacts, particularly from  respiration22. In subsequent offline analyses of the acquired data we tested 
whether model-based physiology correction with the TAPAS PhysIO  toolbox23, and global-signal regression 
(GSR)24 can eliminate the influence of these non-neural artefacts, and found that GSR is a promising approach 
for online physiology correction. GSR also has the further advantage that it can be implemented in a simple and 
straightforward manner during the estimation of the online feedback signal.

In the present double-blind randomized yoke-controlled pre-registered study we now tested in healthy con-
trols over three training days whether an updated rt-fMRI NF approach with online GSR can be used to train 
participants to up-regulate FC in a bilateral frontostriatal network comprising the DLPFC and the striatum. 
With this study we aimed at demonstrating the principle feasibility of this approach, gain insight into the time 
course of the training effect, obtain basic effect size estimates and by this pave the way for future confirmatory 
studies and clinical applications of the developed technology to modulate frontostriatal circuitry in the diverse 
clinical conditions where they are involved.

Methods
Participants. 40 healthy participants took part in this double-blind randomized yoke-controlled rt-fMRI 
NF experiment. Participants (24 female, 16 male) were between 19 and 30 years of age (mean: 23.28; SD: 2.39), 
did not present with any current or prior psychiatric diagnosis, had normal or corrected-to-normal vision, were 
free of a history of mental and neurological disorders and were not on acute psychopharmacological medication. 
Female participants were not pregnant. The study was approved by the Ethics Committee of the Medical Faculty 
Mannheim at the University of Heidelberg, Germany (2018-520N-MA) and complies with the World Medical 
Association’s Declaration of Helsinki. Informed consent was obtained from all participants.

Pre‑registration. The study was pre-registered at the Open Science Foundation (OSF NeCoSchi II https:// 
osf. io/ znrbk/). Specifically, we tested here the following two pre-registered hypotheses:

1. Averaged correlations between DLPFC and striatum are higher in the real neurofeedback group in compari-
son to the yoke control group during rt-fMRI neurofeedback sessions (directional).

2. Participants from the real neurofeedback group in contrast to participants from the yoke control group will 
demonstrate a higher increase of averaged correlations between DLPFC and striatum from the initial resting 
state period (directional).

MRI scanning. MRI scanning was administered at a Siemens Biograph Scanner with 3 T (Siemens Health-
ineers, Erlangen, Germany) at the Central Institute of Mental Health in Mannheim, Germany. MR images 
were acquired with a 32-channel head coil. T1-weighted structural images were obtained with a repetition 
time (TR) of 2 s, echo time (TE) = 2.58 ms, flip angle = 10°, 192 slices, slice thickness = 0.9 mm, voxel dimen-
sions = 0.4 mm × 0.4 mm × 0.9 mm, FoV = 192 mm. Echo planar imaging (EPI) sequences were acquired with a TR 
of 1.64 s, TE = 30 ms, flip angle = 73°, 30 slices, slice thickness = 3 mm, voxel dimensions = 3 mm × 3 mm × 3 mm, 
FoV = 192 mm, GRAPPA factor 2. 343 Volumes were acquired and EPI sequence was the same for all functional 
runs. Physiological signals were measured with built-in equipment during functional scans.

Brain network definition. The rt-fMRI NF approach and all analyses focused on a predefined bilateral 
network including the dorsolateral prefrontal cortex (DLPFC) and the striatum (see Fig. 1a). 22 ROIs in the 
DLPFC and 12 ROIs in the striatum were extracted from the cortical parcellations  by25 and the striatal parcel-
lation  by26 which are both based on the 7-network cortex parcellation  by27. The DLPFC ROIs were identified 
based on an automatic metaanalysis with Neurosynth (https:// neuro synth. org/28; with the term “DLPFC”. We 
selected a broad measure of DLPFC-striatum FC as feedback target instead of targeting specific striatal subnet-
works. Cortical regions have widespread projection fields in the striatum which enables them to influence other 
 networks29), and the location of maximal connectivity is dynamically changing over the  striatum30). Thus, with 
our approach we are aiming at training the general ability of the DLPFC to exert control over striatal processes 
without focusing on a specific sub-network. However, our approach based on several ROIs within the target 
regions would allow for the identification of potential sub-networks linked with symptom changes in clinical 
studies. This could then facilitate refinement of the target networks. It is further important to note that while we 
used averaged connectivity as a rather simple network measure in this study our approach provides the techno-
logical basis for future NF applications that could take more complex graph-theoretical network measures into 
account.

rt‑fMRI NF training. For a graphic representation of the NF-setup, please refer to Fig. 1b. NF training was 
performed on three separate fMRI scanning days. At the start of the first day, demographic information was col-
lected and questionnaires were answered. The questionnaires included the German Version of the Beck Depres-

https://osf.io/znrbk/
https://osf.io/znrbk/
https://neurosynth.org/
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sion Inventory (BDI-II)31, the Schizotypal Personality Questionnaire (SPQ)32, the 10 Item Big Five Inventory 
(BFI-10)33 and a sensory  inventory34. The first and the third scanning day comprised a T1-weighted anatomical 
MPRAGE scan (5 min), an initial resting state scan, two NF runs and a transfer run with each one being of 
9:29 min length. On the second training day the third run was also a NF run instead of a transfer run. The initial 
resting state run was conducted with open eyes while a fixation cross was displayed at the center of the screen. 
The transfer run aims at testing for the generalizability of NF learning without a feedback signal and was in 
essence equal to the resting state run with the difference that participants were instructed to regulate their brain 
as in the NF run. The NF run included the presentation of a fixation cross which was located in the center of the 
screen. The fixation cross was surrounded by two thermometer bars that indicated the value to be up-regulated. 
The value was updated every TR and consisted of the averaged Z-transformation Pearson’s correlation of DLPFC 
and striatal ROIs. Participants were not informed about specific mental strategies but were instructed to try 
out different strategies and were told to pursue the one they find most successful. Participants were randomly 
assigned to the real (N = 20) or yoke control group (N = 20) in a double-blind fashion by an automatic procedure 
implemented in the MATLAB code with a pre-specified randomization list. Participants in the yoke control 
group were paired with unique participant from the real group with a first-in-first-out procedure and received in 
each run the saved feedback signal of this participant from the same run. Data processing and handling were the 
same for both groups; just the sent feedback signal was automatically replaced in the yoke group. Thus, the staff 
was unaware of the group identity of the participants. The received feedback signal was consistent between the 
real and yoke control group in every run. The first three participants were deliberately allocated to the real group 
to ensure that sufficient recordings for the yoke procedure were available. After each scanning session partici-
pants rated their subjective performance, reported used strategies, and indicated which group they thought they 
belong to. At the end of the last session group allocation was disclosed.

Online data analysis. Online and offline analyses were conducted in MATLAB (R2019a, Math Works Inc., 
Sherborn, MA, USA). In-house software based on SPM  functions22,35 was used for online rt-fMRI NF process-
ing. During the resting state scan the anatomical image was segmented and normalized to the SPM 12 TPM MNI 
template. ROI masks were then projected into individual subject space. For rt-fMRI processing, during scanning 
every collected volume was immediately transferred to the laptop where the analysis was run. Each volume was 
realigned to the first volume of the series and averaged intensity values from all ROIs were extracted and added 
to the ROI signal time series. A general linear model (GLM) was estimated at every step over all acquired data 
to correct for movement parameters, a cerebrospinal fluid (CSF) signal, spikes correlated with head movements 
(framewise displacement (FD) > 0.5 mm) and the global signal. The last 15 volumes were used to calculate Fisher 
Z-transformed Pearson correlations (i.e. achieving a sliding window size of 15 volumes) between all ROIs in 
the DLPFC and all ROIs in the striatum. These were then averaged to obtain the online feedback signal. The 
first feedback value was presented after ~ 1 min (37 volumes = 60.68 s). This delay was included to ensure that 
sufficient data for a stable estimation of the nuisance regression model was available. Only windows including a 

Figure 1.  Experimental setup. (a) DLPFC-striatum target network. Bilateral ROIs in the DLPFC and the 
striatum were predefined and projected into the individual anatomy of the participant to extract the online 
feedback signal during NF training. (b) rt-fMRI NF setup. Images are sent to a laptop running in-house 
MATLAB scripts for pre-processing and extraction of the neurofeedback signal. The feedback signal represents 
the averaged functional connectivity between the ROIs in the DLPFC and the striatum. The feedback value is 
forwarded to a computer running Presentation software and is displayed in the scanner as a thermometer value 
that is continuously updated every TR.
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minimum of 10 volumes that were not influenced by head motions (FD < 0.5 mm) were used for the calculation 
of the feedback signal. If a window contained insufficient information the feedback value was kept constant.

Offline data analysis. SPM 12 (v6906) was used for offline data analysis. The anatomical image was seg-
mented and normalized to SPM 12 TPM MNI space. We removed the first 10 volumes of the functional data. The 
images were slice-time corrected, realigned to the mean image, and co-registered to the anatomical image. The 
images were normalized, scaled to a resolution of 2 × 2 × 2 mm and smoothed with an isotropic Gaussian kernel 
of 6 mm full width at half maximum. In a first level General Linear Model (GLM) six movement parameters, 
the cerebrospinal fluid (CSF) signal, dummy regressors for volumes affected by head motion identified with the 
ART toolbox (framewise displacement > 0.5 mm; scan-to-scan global signal change z > 4, physiological nuisance 
regressors (see next paragraph)) and a constant were included. Runs with > 20% movement-affected volumes 
were excluded from further analyses.

Physiological noise correction. A built-in respiration belt and a pulse finger clip (PMU Wireless Physio 
Control, Siemens Healthineers, Erlangen, Germany) were utilized for recording of respiration and heart rate 
during MRI scanning with a sampling rate of 400 Hz. To allow for evaluation of physiological parameters, physi-
ological recordings were cut on the basis of recorded volume triggers for precise alignment with the fMRI data. 
Next, the TAPAS PhysIO  Toolbox23 was applied for estimation of 20 physiological nuisance regressors, including 
heart rate variability (HRV), respiratory volume per time (RVT) and cardiac × respiratory interaction. Deduced 
physiology nuisance regressors were implicated in the first level GLM of the analyses.

Respiratory parameters. To assure that our results were not confounded by respiratory  artifacts22 and 
demonstrate that GSR and model-based physiology correction worked efficiently in cleaning up the data, we 
further computed summarizing respiratory parameters from the time courses that are possibly related to the 
BOLD  signal22,36. Breath Rate that is defined as peaks/breaths per minute and Pause CV which is the coefficient 
of variance of respiration pause duration were calculated. For a more detailed description,  see22,36.

Offline connectivity estimates. Offline connectivity was estimated over the same averaged ROI-to-ROI 
connections as in the online approach, but over the whole available time course. For testing the second hypoth-
esis the connectivity estimates of the initial resting state period of each day were subtracted from the respective 
estimates of the NF and transfer runs within each participant to normalize the modulation effect with respect to 
the individual baseline.

Second level analyses. Second level analyses were performed based on the DLPFC-striatal large-scale 
network connectivity values. For each NF and transfer run, connectivity estimates corrected for age and gender 
as covariates were compared between the two groups with one-sided independent samples t-tests implemented 
in a GLM model. Hedges’g and its confidence interval were estimated based on the obtained t-values to estimate 
the effect size per  run37. Pearson’s correlations were used to assess associations of offline and online connectivity 
with respiratory parameters.

Results
Functional connectivity group comparison. The randomized groups did not differ in terms of age 
(t(38) = 0.1964, p = 0.8454) and gender,  x2(1, N = 40) = 1.667, p = 0.197). Participants were not able to indicate 
above chance which group they were assigned to (training day1:  x2(1, N = 39) = 0.205, p = 0.651; training day2: 
 x2(1, N = 40) = 0.404, p = 0.525; training day3:  x2(1, N = 40) = 1.616, p = 0.204).

In line with our first pre-registered hypothesis, we investigated whether absolute averaged correlations 
between DLPFC and striatum were increased in the real group in comparison to the yoke control group. Here, 
no significant group differences could be found (see Supplementary Table 1). In accordance with our second 
pre-registered hypothesis we further investigated whether the real group would present with an increased rela-
tive FC in the NF runs normalized to individual baseline FC in the initial resting state run of the respective day. 
On a purely descriptive level, while at the start of the training FC in the target network was similar in the two 
groups, this began to change on the second training day (Fig. 2). From the second NF run on day 2 on, the real 
group shows higher connectivity than the yoke group and this difference augments until the end of the train-
ing. We also did not find any significant group differences with the pre-registered null hypothesis significance 
tests at the specified criterion of p < 0.05. In the second NF run on the third scanning day, which was the last of 
all conducted NF runs, significance testing led to a result of t(33) = 1.5469, p = 0.0657 (see Table 1) for an effect 
with a medium effect size (Hedges’ g = 0.5206) that however had an accordingly large 90% confidence interval 
ranging from a very small to a medium effect (Fig. 3).

The effect in the subsequent transfer run was also not significantly different in the two groups, (t(32) = 1.2275, 
p = 0.1143) and had a slightly smaller effect size of Hedges’ g = 0.4199.

Physiological associations. We further explored the presence of remaining physiological associations 
after the online and offline processing procedures. In the offline data, over all NF and transfer runs, we identified 
one run in the real group in which FC was associated with respiration and one run in which the same applied 
to the yoke group (Pause CV for both) (see Supplementary Table 2). Unfortunately, more physiological associa-
tions were present in the online data. Within the real group we found four significant associations (Pause CV: 
2, Breath Rate: 2) and the same was true for the yoke group. For further details, please refer to the supplement 
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(Supplementary Table 3). It is important to note here that our effect size estimates are based on the offline data, 
and that no physiological associations were present in run 2 of day 3 in which we detected moderate evidence 
against the null (offline association over whole sample: Breath rate: rho = 0.043, p = 0.803; Pause CV: rho = − 
0.0182, p = 0.287, see Supplementary Fig. 3  for more details).

Discussion
In this study we tested the feasibility of functional connectivity NF training in a large-scale DLPFC-striatal net-
work and estimated a medium effect size for the difference between the experimental (real) and control (yoke) 
group at the end of the third training day. Throughout the study we aimed at rigorously controlled experimental 
procedures including pre-registration, online physiology correction, double-blind randomization, and a yoke 
control group.

Unfortunately, our pre-registered null hypothesis significance tests failed to reach significance at the speci-
fied criterion of p < 0.05, and thus do not provide clear evidence against the null hypothesis. This is likely due to 
our study being clearly underpowered. When we planned the study we were not having a good estimate of the 
expected effect size and thus planned the study with the minimum reasonable sample size with the intention to 
obtain effect size estimates from the study. It is important to note that it is still rather common for current NF 
studies to be  underpowered6. While our sample size of N = 40 in two groups is small, it is not one of the smallest 
in the field of rt-fMRI NF (see for  example4,38,39). To address this issue in future research it is important to have 
realistic estimates of effect sizes in rt-fMRI  NF40. Our medium effect size of Hedges’ g = 0.5206 is similar to the 
estimation  of41 who found medium effect sizes (Hedges’ g = 0.59) for regulation over all included NF studies  and6 

Figure 2.  Functional connectivity over runs. Functional connectivity per group during NF runs normalized by 
initial resting state FC of the respective day and corrected for age and gender is displayed (blue = real feedback 
group, red = yoke feedback group). Shaded areas represent ± 1SD from the group mean. 7 NF training runs were 
conducted over three training days. A moderate group difference was found during NF run 7 (the last NF run of 
day3).

Table 1.  Group comparisons of DLPFC-striatum functional connectivity per run corrected for age and gender 
as covariates. Functional connectivity was normalized by initial resting state activity of the respective day.

Runs Group differences functional connectivity

Day1_NF1 t(31) = 0.1685, p = 0.43365

Day1_NF2 t(30) = − 0.0370, p = 0.48535

Day1_transfer t(31) = − 0.5548, p = 0.2915

Day2_NF1 t(35) = − 0.2495, p = 0.4022

Day2_NF2 t(31) = 0.2456, p = 0.4038

Day2_NF3 t(33) = 0.7689, p = 0.2237

Day3_NF1 t(33) = 0.7515, p = 0.2288

Day3_NF2 t(33) = 1.5469, p = 0.0657

Day3_transfer t(32) = 1.2275, p = 0.1143
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who showed that an effect size of 0.73 (Cohen’s d) can be detected with a power of 95% based on ROI activation 
and connectivity regulation NF studies.

The time course of the NF training effect in our data looks promising. Increased FC in the experimental group 
in contrast to the yoke group is on a purely descriptive level visible from the second NF training run of day 2 and 
then increases until the end of the third day.

The trend of this time course suggests that the effect might even increase when additional training days would 
be added. Our findings fit into the framework of a growing number of methodological papers that investigate 
optimal conditions for rt-fMRI  NF42–44 and are in line  with18  and45 which demonstrate that NF training effects 
begin to appear after two training days. Along these lines, in an extensive NF study including 12 training  days46, 
found an increase in training efficiency as far as the 3rd–4th day. Thus, single-session NF training might not be 
sufficient, although some studies find effects in just one training  session9,47,48.

On these grounds, our effect size estimated prepare the ground for an adequately powered confirmatory study 
to validate the time course and the effect size of the training effect, which should include at least one further 
training day. A reason for the non-significant results despite a medium effect size and a decent sample size might 
be a high signal-to-noise ratio in the data. One potential source of interindividual noise might be the use of a 
yoke control procedure together with a target process involved in executive control. It could be that perceived 
group assignment or the dynamics of the feedback signal might have had an influence on the target process in 
our study, especially in the yoke control group.

Importantly, when comparing NF studies, a differentiation should be made between activation NF and FC 
NF as the latter is a more complex signal and this probably harder to train.

(Online) control of confounding noise sources is essential for FC rt-fMRI  NF22,43. Importantly, unintended 
sources should optimally be corrected in the data already in the online analyses, because of their potential to bias 
the training if the feedback value is confounded. In our previous study we identified GSR as a promising approach 
to clean up the online  signal22, and implemented it in the present experiment. GSR is however a controversial 
 method49,50 and has been criticized for being too rigid potentially removing real signal along with  noise51 and 
might thus reduce the power of the study, i.e. the probability to uncover real NF effects. On the other side, GSR 
is one of the most efficient methods for correction of global artefacts and has been recommended for correction 
of respiratory noise, for example in modern multiband  sequences52,53.

Unfortunately, despite the application of online GSR, in some runs associations of the online signal with 
respiratory measures were still present in the data (see Supplementary Table 3). For additional investigation 
of physiology correction and a comparison between artefactual physiological artefacts offline and online, we 
conducted analyses without specific physiology correction (without GSR and Physio) and GSR only (without 
PhysIO) (see Supplementary Tables 4 and 5). These findings replicate the findings in the preceding  paper22. Most 
importantly, the offline analyses without GSR and PhysIO correction identified substantial physiological associa-
tions in the vast majority of runs (21/28 “corrupt” runs), which is much higher than the number of associations 
in the online training data. This clearly demonstrates that our online correction machinery with GSR was more 
effective in cleaning the data than the usual offline analysis without further correction. GSR thus seems to have a 
strong incremental value despite its controversial aspects and can be recommended for online use, although it is 
slightly less effective online. Regarding more insights into the relationship of the different processing strategies, an 

Figure 3.  Effect sizes of the group comparison. Effect sizes (Hedges’ g with 90% confidence interval) of the 
group comparison testing for differences in DLPFC-striatum FC between the real feedback group and the yoke 
control group for each NF run. An effect of g = 0.5206 was found in NF run 7 at day 3.



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1669  | https://doi.org/10.1038/s41598-022-05675-0

www.nature.com/scientificreports/

exemplary network connectivity time course with the different processing strategies is shown (see Supplementary 
Fig. 4). This figure demonstrates the strong influence of GSR on the network connectivity estimate and why it 
has such a strong influence on the detection of physiological associations. While GSR might be a helpful tool in 
addressing physiological artefacts, it does not solve the issue completely and further improvements are necessary, 
for example by online implementation of model-based physiology correction algorithms using simultaneously 
acquired physiological  signals54. Such approaches are however technically much more demanding than simple 
GSR and are not available yet.

It is important to note that in the offline analyses we additionally conducted model-based physiology cor-
rection with the TAPAS PhysIO  toolbox23 before we calculated FC estimates. After this additional correction, 
associations with respiratory measures were widely diminished (Supplementary Table 2), but the reported evi-
dence of a NF training effect was still present. Thus, GSR alone might not already be the optimal method to 
control online physiological artefacts, but our NF approach seems at least sufficient for generating evidence of 
FC training effects beyond physiological artefacts.

A further methodological rigor of our experiment is the use of a double-blind yoke-controlled design. A 
majority of rt-fMRI NF studies is conducted single-blind (see for  example13,55,56) and double-blind designs are still 
rare, although they are highly recommended, for example in the CRED-nf protocol for neurofeedback  studies57.

While the recommendation for a double-blind procedure is unambiguous, several different control procedures 
for NF studies are available. It is for example possible to use computer-generated sham feedback in the control 
 group58 or employ a within-subjects design in which participants received real feedback in the first session and 
control feedback in the second  session17. Our selected yoke-control procedure guaranteed that all facets of the 
conditions apart from control over the ROI signal were  matched44. An important aspect of the interpretation 
of results from a yoke-controlled design is whether participants can accurately indicate which group they were 
assigned to. If participants in the yoke control group are able to correctly identify themselves, this could cause 
frustration and influence performance. Accordingly, this could artificially inflate group differences. However, as 
our participants were not able to accurately guess their group identity, this was likely not a problem in our study.

We used a design with continuous NF regulation over whole runs because this corresponded well with the 
requirements of the FC-based feedback measure. However, the task was demanding and fatigue might have 
prevented a better performance. It remains open whether a block design with alternating NF and rest blocks 
would have provided a better training outcome.

We estimated FC based on a sliding window of 15 volumes (24.6 s). This is a window size within the normal 
range in the field of FC NF but can introduce a substantial delay in the feedback signal. We chose this window 
size because it covers the full waveform of the canonical hemodynamic response function, leaves sufficient data 
for estimating connectivity even when several volumes are censored, and corresponds to the continuous nature 
of our training. It can however not be excluded that a shorter window might have provided better learning and 
future research is needed to empirically address the influence of the window size on NF learning.

Of note, the FC values were normalized by the individual baseline FC in the initial resting state scan of the 
respective day (hypothesis two). Instead of taking the resting state scan as the baseline it would be another pos-
sibility to conduct the transfer run before the NF runs and use this pre-training transfer as baseline. We conclude 
that it is important and particularly more sensitive to take an individual baseline into account when calculating 
group differences in FC.

In comparison to the last NF run on training day three, the effect size was smaller in the transfer run without 
a feedback signal (Supplementary Figs. 1 and 2) again suggesting that additional training runs might improve 
the effects. Nonetheless, our findings might cautiously be interpreted in a way that successful regulation in the 
transfer task could potentially be achieved after further training.

The patterns in our data, if confirmed, would underline the potential of FC rt-fMRI NF to induce actual 
changes in FC beyond physiological artefacts and thus provide various options to develop innovative and trans-
diagnostic treatment approaches for different mental disorders sharing common neural features like frontostri-
atal dysconnectivity. However, it is still to demonstrate that changes in FC also lead to changes in behavioral or 
disorder associated alterations. Given the relatively high scanning costs, rtfMRI NF is however a rather expensive 
method. On the other hand, rt-fMRI NF is completely non-invasive, is able to address very specific and complex 
phenotypes in the brain, and has the potential to evoke changes in  FC59. To avoid unnecessary costs, it will be 
important to identify predictors of successful NF training (see for  example14,60) to inform precise individualized 
treatment approaches.

Conclusion
Our findings extend the hitherto thin but increasing literature on connectivity fMRI NF  studies9,18,61,62 by add-
ing effect size estimates for NF modulations of complex fMRI signals. The moderate effects could only be seen 
after extensive training and several FC rt-fMRI NF training sessions. Extra caution is needed in controlling the 
online target signal for artefacts. Overall, our study supports the further exploration of FC-based rt-fMRI NF 
as a contingently promising method to develop circuit-specific treatment approaches for mental disorders in 
adequately powered confirmatory studies.

Data availability
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