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Abstract
Hepatocellular carcinoma (HCC) is a malignancy with a dismal survival rate. The novel 
autoantibodies panel may provide new insights for the diagnosis of HCC. Biomarkers 
screened by two methods (bioinformatics and the antigen- antibody system) were 
taken as candidate tumor- associated antigens (TAAs). Enzyme- linked immunosorb-
ent assay was used to detect the corresponding autoantibodies in 888 samples of 
verification and validation cohorts. The verification cohort was used to verify the 
autoantibodies. Samples in the validation cohort were randomly divided into a train 
set and a test set with the ratio of 6:4. A diagnostic model was established by support 
vector machines within the train set. The test set further verified the model. Eleven 
TAAs were selected (AAGAB, C17orf75, CDC37L1, DUSP6, EID3, PDIA2, RGS20, 
PCNA, TAF7L, TBC1D13, and ZIC2). The titer of six autoantibodies (PCNA, AAGAB, 
CDC37L1, TAF7L, DUSP6, and ZIC2) had a significant difference in any of the pair-
wise comparisons among the HCC, liver cirrhosis, and normal control groups. The titer 
of these autoantibodies had an increasing tendency. Finally, an optimum diagnostic 
model was constructed with the six autoantibodies. The AUCs were 0.826 in the train 
set and 0.773 in the test set. The area under the curve (AUC) of this panel for diagnos-
ing early HCC was 0.889. The diagnostic ability of the panel reduced with the progress 
of HCC. The positive rate of the panel in diagnosing alpha- fetoprotein (AFP)- negative 
patients was 75.6%. For early HCC, the sensitivity of the combination of AFP with the 
panel was 90.9% and superior to 53.2% of AFP alone. The novel immunodiagnosis 
panel combining AFP may be a new approach for the diagnosis of HCC, especially for 
early- HCC cases.
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1  |  INTRODUC TION

Liver cancer, especially primary liver cancer, is one of the leading 
causes of cancer- related death worldwide, of which hepatocellular 
carcinoma (HCC) accounts for 80%- 90%.1 The morbidity and mor-
tality of liver cancer ranked seventh and second in all malignant tu-
mors, respectively.2 Clinically, only 10%- 20% of patients with HCC 
could be treated by surgical operation due to the difficulty of early 
diagnosis of HCC.3,4 Without a specific treatment plan, the median 
survival time of advanced liver cancer is only 1- 2 months.5,6 Alpha- 
fetoprotein (AFP), as the only serum biomarker for HCC diagnosis 
in clinical practice, has been widely used. However, its sensitivity is 
only about 60%.7,8 Hence, it is an urgent need to identify effective 
and noninvasive biomarkers for the early diagnosis of HCC.

A great deal of evidence showed that autoantibodies against 
tumor- associated antigen (TAAbs) arose in the blood at an early stage 
of tumorigenesis.9- 11 Compared with other serological markers,12- 14 
TAAbs persist in the blood for long periods.15,16 TAAbs can serve as 
tumor- diagnostic biomarkers also owing to their easy measurement 
in serum and immune amplification effect.17- 20 Researchers also 
found that the diagnostic value of a single TAAb was not particularly 
ideal in regard to sensitivity and specificity.16,21,22 Given the prob-
lem, scholars mainly focused on combining multiple TAAbs to diag-
nose tumors.23,24 Different panels are needed for different types of 
cancers to enhance diagnostic power.25

In recent years, the rapid development of bioinformatics provided 
many research methods for the screening of tumor markers. Among 
them, weighted gene coexpression network analysis (WGCNA) is an 
excellent means of extracting gene modules and correlating them with 
clinical traits.26,27 WGCNA has the unique advantage of converting 
gene expression data into coexpression modules and providing new 
insights into genes that may be responsible for phenotypic character-
istics.28,29 For these reasons, WGCNA was widely used in several can-
cers to identify pivot biomarkers for cancer diagnosis or prognosis.30- 33

Autoantibody- antigen system is used as a common method 
for disease detection such as chronic hepatitis B34 and plasmo-
dium.35 In the same way, the autoantibody- antigen system also 
can be used to screen disease markers. Among these, the utiliza-
tion of a human proteomics chip to screen tumor- related markers 
is a significant method.36,37 The chip used in this study contains 
all human recombinant proteins that can be purified at present 
to comprehensively screen tumor- associated antigens (TAAs) re-
lated to HCC.

In this study, bioinformatics and the autoantibody- antigen sys-
tem were used to screen TAAs related to HCC. After verification and 
validation, 753 samples in the validation phase were divided into a 
train set and a test set to evaluate the ability of the anti- TAAs panel 
as noninvasive markers to diagnose HCC.

2  |  MATERIAL S AND METHODS

2.1  |  Serum samples and research design

A total of 888 serum samples were taken into consideration, in-
cluding 296 HCC cases, 296 liver cirrhosis (LC) cases, and 296 
normal controls (NCs). The subjects among the three groups were 
age (±2 years) and sex matched according to 1:1 ratio. These sam-
ples were acquired from the Tumor Epidemiology Laboratory of 
Zhengzhou University. All subjects signed informed consent forms, 
and the study was approved by the Ethics Review Committee of 
Zhengzhou University (ZZURIB 2019- 001). The verification phase 
including HCC (n = 45), LC (n = 45), and NC (n = 45) patients was 
used to validate the selected TAA. The remaining samples included 
in the evaluation phase were randomly divided into a train set and 
a test set according to the ratio of 6:4. The train set was used to 
build a diagnostic model, and the test set further verified the model 
(Figure 1).

F I G U R E  1  Work flow chart of the 
research. HCC, hepatocellular carcinoma; 
LC, liver cirrhosis; NC, normal control; 
TAAs, tumor- associated antigens; TAAbs, 
autoantibodies against tumor- associated 
antigens; SVM, support vector machines
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2.2  |  Data download and preprocessing

Seven microarray datasets, including GSE84005,38 GSE76297,39 
GSE64041,40 GSE54236,39 GSE57957,41 GSE39791,42 GSE77314,43 
were downloaded from the Gene Expression Omnibus (GEO, https://
www.ncbi.nlm.nih.gov/geo/) database (Table S1). The expressions 
of the probes in the chip were normalized by the “normalizeBe-
tweenArrays” function in the “limma” package.44 Each dataset was 
annotated with its corresponding annotation platform. When a gene 
had multiple probes, the maximum value was used as the expression 
value of the gene. GSM1979485, GSM1979420, and GSM1979407 
were removed because they did not match the adjacent tissues in 
GSE76297. GSM1310594 in GSE54236 was deleted for the same 
reason. The “Combat” function in the “sva” package45 was used to 
perform batch calibration among microarray datasets. The corrected 
dataset was analyzed.

2.3  |  Screening of candidate TAAs

One of the methods used in this study to screen HCC- related mark-
ers was WGCNA. The basic theory of the WGCNA algorithm has 
been presented in a previous study.46 The “WGCNA” package was 
used to calculate the gene coexpression network.26 The “step- 
by- step” method was used to build the WGCNA network. Cluster 
analysis was used to remove outliers by the average linkage method. 
The scale- free topology fit index served as a function of the soft- 
thresholding power to choose an optimum threshold. The threshold 
was used to construct adjacency matrix and coexpression similarity. 
Based on dissimilarity topological overlap, genes were hierarchically 
clustered to construct geneTree. Dynamic hybrid branch cutting 
method was used to identified gene modules. The cutoff values of 
minimum size (minimum cluster size) and sensitivity to cluster split-
ting were 30 and 2, respectively. The threshold was set at 0.25 to 
merge modules with similarities. WGCNA has an ability to calculate 
the correlation between gene modules and clinical phenotypes.27 
The correlation was tested by the Pearson test. Finally, the most rel-
evant module was selected.

Another method for screening candidate TAAs was the human 
proteomics chip. The human proteomics chip used in the study 
is currently the highest throughput protein chip. It contains 
more than 21 000 recombinant proteins (https://cdi.bio/hupro 
t/). Hence, the human proteomics chip is an effective method for 
comprehensive screening of TAAs.47 It was applied to detect the 
TAA concentration in the sera of 10 HCC cases and 10 NCs. The 
experiment was completed under the company standard proce-
dure (BCBIO Biotechnology).48 The detected data were normal-
ized based on signal- to- noise ratio (SNR) value. When the SNR of 
a protein was greater than 4, it was defined as positive protein. 
On this basis, we set an appropriate cutoff threshold for each 
protein based on the SNR of the protein in the control group and 
calculated the positive rate of the protein in the cancer group 
and the healthy control group. For each protein, we assumed the 

two sets of samples were from two identical populations. Then, a 
one- tailed test was performed by Mann- Whitney’s U, represented 
by P- value. The following criteria were used to screen meaning-
ful TAAs in the human proteomics chip: fold change (FC) > 1 and 
P < .05; positive rate in HCC cases ≥ 50%; and negative rate in the 
NC group ≥ 90%.

The intersection of the biomarkers screened by WGCNA and the 
human proteomics chip was treated as candidate TAAs.

2.4  |  Indirect enzyme- linked immunosorbent assay 
(ELISA)

Indirect ELISA was used to detect the concentration of TAAbs in 
serum. The specific experimental methods and procedures have 
been introduced in detail in previous studies.49,50 The 11 recombi-
nant proteins (AAGAB, C17orf75, CDC37L1, DUSP6, EID3, PDIA2, 
RGS20, PCNA, TAF7L, TBC1D13, and ZIC2) were all diluted in the 
coating buffer at a concentration of 0.125 μg/mL. HCC, LC, and NC 
samples were evenly distributed on each plate. Every plate had five 
replicate sera and three blanks. Different plates were normalized by 
repeated sera.

2.5  |  Diagnostic model construction based on SVM

Support vector machines (SVM) are a set of machine learning 
methods. Compared with other machine learning methods, SVM is 
very powerful in discerning nuances in complex data sets,51 which 
has been used as a classifier for cancer classification.52 To build 
the most suitable SVM learning diagnosis model, the kernel func-
tion was selected and the "radial" and gamma was set to 0.1. The 
model was used to distinguish HCC from NC and applied to the 
diagnosis of HCC subgroups such as early stage (Barcelona Clinic 
Liver Cancer [BCLC], stage 0- B) and late stage (BCLC, stage C- D). 
Electrochemiluminescence immunoassay was used to detect the 
concentration of AFP. The positive rates of three groups (TAAb 
panel, AFP, and combination of TAAb panel and AFP) in recogniz-
ing HCC were compared. And the positive rates of these three 
groups were also compared in early and late HCC. According to 
clinical standards, the threshold of AFP was set to 7 ng/mL. HCC 
patients were divided into an AFP- positive group (AFP[+]) and an 
AFP- negative group (AFP[−]). The panel was used to diagnose AFP(+) 
patients and AFP(−) patients. The model's ability to recognize LC was 
also evaluated. The diagnostic ability of the models was assessed by 
receiver operating characteristic curves (ROC) analysis and the area 
under the ROC curve (AUC).

2.6  |  Statistical analysis

The processing of microarray datasets and the realization of 
WGCNA were carried out in the R 4.0.4 language. Sample 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://cdi.bio/huprot/
https://cdi.bio/huprot/
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matching and analysis of differences among the three groups 
were implemented by the IBM SPSS 26.0 software. Before 
analysis, data were assessed for normal distribution by the 
Kolmogrov- Simirnov normality test. If the data conformed to 
the normal distribution, they were analyzed by the ANOVA; 
otherwise, they were tested by the Kruskal- Wallis test. The 
statistical difference between the two AUCs were evalu-
ated by the MedCalc 11.0 software. The P- values calculated 
were two tailed, and significant differences were set at 95% level 
(P < .05).

3  |  RESULTS

3.1  |  Demographic characteristics

This experiment was mainly divided into three phases (Figure 1). 
In the discovery phase, WGCNA and human proteomic chips were 
used to screen candidate TAAs. In the verification and validation 
phase, ELISA was used to detect the titers of 11 corresponding 
TAAbs in the serum samples, including 296 HCC cases, 296 LC 
cases, and 296 NCs. The basic information of the participants is 
shown in detail in Table 1. Statistical analysis showed that there 
was no difference in the distribution of age and gender among the 
three groups (P > .05).

3.2  |  Weighted coexpression network 
construction and key module identification

A total of 794 samples were included to construct a gene coexpres-
sion network. Sample clustering demonstrated that three outliers 
(GSM979132, GSM979123, and GSM1398656) need to be unlocked 
(Figure 2A). Then, the remaining 791 samples were used for 
WGCNA. The thresholding of β = 4 was selected to determine the 
scale- free scale of the network (Figure 2B). Through the threshold-
ing power, genes were divided into 17 modules in total (Figure 2C). 
The turquoise module was obtained because it had the highest cor-
relation with the sample category (r = .73, P < .0001, Figure 2D). It 
also showed a high correlation with clinical information (cor = 0.9, 
P < .001 Figure 2E). Therefore, the genes in the turquoise module 
were chosen for subsequent analyses.

3.3  |  Tumor- associated antigen selected in the 
discovery phase

The human proteomics chip data were analyzed according to the 
standards established in the method. Finally, 11 TAAs were ob-
tained by the two methods, including AAGAB, C17orf75, CDC37L1, 
DUSP6, EID3, PDIA2, RGS20, PCNA, TAF7L, TBC1D13, and ZIC2. 
The basic characteristics of the 11 TAAs are shown in Table S2.

TA B L E  1  Characteristics of participants

Characteristics

Verification dataset Validation dataset

HCC (n = 45) LC (n = 45) NC (n = 45) HCC (n = 251) LC (n = 251) NC (n = 251)

Male n (%) 33 (73.3) 33 (73.3) 33 (73.3) 204 (80.3) 204 (80.3) 204 (80.3)

Age

Mean ± SD 53.8 ± 9.9 53.5 ± 9.6 53.4 ± 9.8 52.6 ± 10.5 52.4 ± 1.05 52.1 ± 10.3

BCLC, n (%)

0 0 (0) IA IA 4 (1.6) IA IA

A 4 (8.8) IA IA 40 (15.9) IA IA

B 8 (17.8) IA IA 35 (13.9) IA IA

C 9 (20.0) IA IA 55 (21.9) IA IA

D 0 (0) IA IA 8 (3.2) IA IA

NA 24 (53.4) IA IA 109 (43.7) IA IA

AFP, n (%)

>7 ng/mL 22 NA NA 131 (52.2) NA NA

<7 ng/mL 18 NA NA 86 (34.3) NA NA

NA 5 NA NA 34 (13.5) NA NA

Abbreviations: AFP, alpha- fetoprotein; BCLC, Barcelona Clinic Liver Cancer; HCC, hepatocellular carcinoma; IA, inapplicable; LC, liver cirrhosis; NA, 
not available; NC, normal control; SD, standard deviation.

F I G U R E  2  Identification of modules related to the clinical features of hepatocellular carcinoma. A, Identification and deletion of abnormal 
samples. B, Recognition of soft threshold in weighted gene coexpression network analysis (WGCNA). C, Gene clustering dendrogram 
based on dissimilarity measure (1- TOM). D, Heat map of correlation between the gene clustering module and clinical characteristics of 
hepatocellular carcinoma. E, Module membership vs gene significance in the turquoise module
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3.4  |  Detection of autoantibodies in the 
verification and validation phase

To determine whether the 11 TAAbs had a potential diagnostic 
value, their titers were measured in two phases. In the verifica-
tion phase, ELISA was used to detect the titer of the 11 TAAbs 
in 135 samples. The scatter plot of the optical density (OD) val-
ues of the 11 TAAbs is shown in Figure 3A. The titer of autoan-
tibodies against CDC37L1, ZIC2, DUSP6, PCNA, EID3, TAF7L, 
and AAGAB had differences among the three groups. Then, the 
seven TAAbs were examined in the validation cohort. Results 
showed that the average level of the OD values of six autoanti-
bodies (PCNA, AAGAB, CDC37L1, TAF7L, DUSP6, and ZIC2) had 
a significant difference in any of the pairwise comparisons be-
tween the three groups (Figure 3B). Furthermore, the OD value 
of the six autoantibodies was the highest in the HCC group and 
the lowest in the NCs group. Finally, six autoantibodies (PCNA, 
AAGAB, CDC37L1, TAF7L, DUSP6, and ZIC2) were chosen for 
further analysis.

3.5  |  Establishment of a diagnostic model for 
distinguishing HCC from NC

Receiver operating characteristic curves analysis was carried out to 
appraise the diagnostic value of each anti- TAA autoantibody in the 
validation cohort. The AUCs of the six TAAbs ranged from 0.671 to 
0.741 (Figure 4A- F).

The six TAAbs were used as a panel to construct a diagnostic 
model by the train set. The AUC of the model was 0.826 (95% con-
fidence interval [CI]: 0.779- 0.873). Sensitivity, specificity, and accu-
racy rates were 77.5%, 76.2%, and 77.0%, respectively (Figure 5A, 
Table 2). The test set was used to verify the model, and a slightly 
lower AUC (Figure 5B, Table 2) was acquired. There was no sta-
tistical difference in AUC between the train set and the test set 
(z = 1.299, P = .1940).

The model produced by the train set was also used to diagnose 
the early stage (BCLC, stage 0- B) and late stage (BCLC, stage C- D) 
of HCC. The AUC of this panel to diagnose early HCC was 0.889 
(Figure 5C and Table 2), and that to diagnose late stage was 0.811 

F I G U R E  3  Scatter plot of the titers of 11 autoantibodies against tumor- associated antigen in verification phase (A) and validation phase 
(B). The superscript letter “a” indicates that the OD value of this autoantibody was different among the three groups. OD, optical density
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(Figure 5D and Table 2). The difference between the two AUCs was 
not statistically significant (z = 1.673, P = .094).

3.6  |  Combination of AFP and autoantibodies

There were 217 HCC patients with AFP information. The positive 
rate of AFP was only 59.9% (130/217) (Table 3), while the posi-
tive rate of the panel was 77.9% (169/217). When the AFP and the 
panel were connected in parallel, the positive rate reached 90.3% 
(196/217). There were statistical differences in positive rates among 
them (χ2 = 55.69, P < .001, Table 3).

According to the clinical cutoff value (7 ng/mL), HCC patients 
were divided into an AFP(+) group and an AFP(−) group. The 
model was used to diagnose AFP(+) patients and AFP(−) patients 
(Figure 5E,F and Table 2). In the AFP(+) group, the AUC value was 
0.822, which was slightly higher than that of the AFP(−) group. 
However, there was no statistical difference between the two 
groups (z = 0.923, P = .356).

In early- HCC patients, the sensitivity of AFP was only 53.2% 
(41/77). Interestingly, 80.5% (29/36) of AFP(−) HCC sera were anti- 
TAAs positive. If the panel and AFP were combined to diagnose 

HCC, 90.9% (70/77) of early- HCC patients were correctly diag-
nosed (Table 4). The change in sensitivity was statistically significant 
(χ2 = 27.03, P < .001).

In late- HCC patients, the AFP- positive rate was 87.7% (50/57). 
All AFP- negative patients were diagnosed as HCC cases by the 
panel. When AFP was used in combination with the panel, all late 
patients were correctly identified (Table 4). The change in positive 
rate was statistically significant (χ2 = 5.14, P = .023).

3.7  |  Identification of LC using the optimal model

To explore the progression pattern of HCC, the diagnostic ability of 
the model in the course of the disease was analyzed. First, the mod-
el's ability to differentiate HCC from LC was examined. The results 
showed that the AUC was 0.652 (95% CI: 0.604- 0.699). Sensitivity, 
specificity, and accuracy rates were 58.2%, 64.7%, and 61.4%, re-
spectively (Figure 5G, Table 2). The model's ability to discriminate 
early HCC from LC was also examined, and a slightly higher AUC was 
acquired (Figure 5H, Table 3). The AUC of differentiating LC from NC 
was 0.656 (95% CI: 0.608- 0.705). Sensitivity, specificity, and accuracy 
rates were 55.8%, 74.9%, and 65.4%, respectively (Figure 5G, Table 3).

F I G U R E  4  The diagnostic capabilities of six autoantibodies in the validation phase. CI, confidence interval; AUC, area under the curve
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4  |  DISCUSSION

At present, HCC is still one of the lethal cancers threatening human 
health in the world.2 Diagnosis of HCC has always been a research 
focus. This article mainly used bioinformatics and the autoantibody- 
antigen system to screen TAAs related to HCC. Then, ELISA was 

used to detect the titer of the corresponding autoantibodies in the 
sera, and SVM was used to build a diagnostic model. In the end, we 
successfully constructed a panel with a good diagnostic perfor-
mance for detecting HCC.

In this study, bioinformatics and the autoantibody- antigen sys-
tem were combined to screen the candidate TAAs. Among them, 

F I G U R E  5  Receiver operating characteristic (ROC) curves for the panel by (A) tian, (B) test, (C) early HCC and normal control, (D) late 
HCC and normal control, (E) AFP(−) HCC and normal control, (F) AFP(+) HCC and normal control, (G) HCC and liver cirrhosis, (H) early HCC 
and liver cirrhosis, (I) liver cirrhosis and normal control. AFP, alpha- fetoprotein; AFP(−), AFP- negative group; AFP(+), AFP- positive group; 
AUC, area under the curve; BCLC, Barcelona Clinic Liver Cancer; CI, confidence interval; early HCC, BCLC, stage 0- B; HCC, hepatocellular 
carcinoma; late HCC, BCLC stage C- D; LC, liver cirrhosis; NC, normal control
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WGCNA is an excellent algorithm in screening the biological mark-
ers, and it has been used in many studies.26 The human proteom-
ics chip contains 21 000 human recombinant proteins in this study, 
which can comprehensively screen TAAs.53- 56 In summary, bioinfor-
matics can screen for genes that play important roles in the occur-
rence and development of HCC. Hence, those two methods were 
used together to screen valuable TAAs as much as possible.

Next, the concentration of autoantibodies against selected TAAs 
was validated using ELISA. Through the verification and the valida-
tion phase, six TAAbs (PCNA, AAGAB, CDC37L1, TAF7L, DUSP6, 
and ZIC2) had a significant difference in any of the pairwise com-
parisons between the three groups. Interestingly, we also found the 
titer of the six autoantibodies had an increasing tendency with the 
disease stage, which may provide early warning of the onset of HCC.

In recent years, many studies have shown that exploration of a 
panel is helpful for the diagnosis of cancer. Furthermore, machine 
learning can provide promising tools; it has been applied in pancre-
atic cancer57 and prostate cancer.58 According to the research of 
Zhang et al, the diagnostic ability of a single antigen- antibody sys-
tem was limited, but combining multiple TAAbs can improve the di-
agnostic performance for cancer detection.24 Hence, the six TAAbs 
were used to construct a diagnostic model using SVM. The panel 

showed good diagnostic performance for detecting HCC. In addi-
tion, an interesting phenomenon that caught our attention was that 
the panel was more valuable in diagnosing early HCC than late HCC. 
There are similar results in other cancers.10,59 This decrease may be 
the result of the loss of antigens to help the tumor escape immune 
surveillance.60 In other words, the panel constructed by six auto-
antibodies may be used for the diagnosis of early HCC. Compared 
with previous studies,61- 63 our research focuses on systematically 
and comprehensively screening HCC- related autoantibodies and 
verifying them in phases. Moreover, we constructed a robust HCC 
diagnostic panel with large samples, which had not been achieved 
before either. Review of previous studies showed that our research 
was consistent with the findings of related studies. For example, 
Wang et al developed a 22- autoantibody detector to diagnose pros-
tate cancer, with 81.6% sensitivity and 88.2% specificity.64 These 
strongly demonstrated that a customized autoantibodies panel is a 
promising and powerful immunodiagnostic tool for certain types of 
cancer, such as HCC and prostate cancer.

This study also analyzed the association between AFP and 
TAAbs in HCC diagnosis. The result showed that there was no sta-
tistical difference between the AUCs of the two groups (AFP[+] 
group and AFP[−] group). It can be concluded that TAAbs had no 
relationship with AFP. Namely, TAAbs are independent diagnostic 
markers that can be used to diagnose AFP(−) HCC patients. Some 
research studies revealed the AFP value was in the normal range in 
approximately 40% of diagnosed HCC cases.65,66 The positive rate 
of AFP in HCC patients is consistent with several studies (Table 3). 
The positive rate of our model was 78%, which is significantly 
higher than that of AFP (Table 3). It is gratifying that the posi-
tive rate reached 90.3% when the two methods were connected 
in parallel. In order to further explore the supplementary ability 
of this panel for AFP to diagnose HCC, we divided patients with 
AFP information into an early- HCC and a late- HCC group. To our 
surprise, the positive rate of "panel+AFP" for diagnosis of early 
HCC was significantly improved, with a sensitivity of 90.9%, while 

TA B L E  2  Evaluation of the diagnostic value of the SVM model in different datasets

AUC (95% CI) Se (%) Sp (%)
Youden's 
index PLR NLR

PPV 
(%) NPV (%)

Accuracy 
(%)

Train 0.826 (0.779- 0.873) 78.0 76.0 0.536 3.250 0.289 76.5 77.6 77.0

Test 0.773 (0.708- 0.837) 73.0 75.0 0.480 2.920 0.360 74.5 73.5 74.0

Early HCC vs NC 0.889 (0.836- 0.943) 81.0 87.0 0.684 6.231 0.218 86.2 82.1 84.0

Later HCC vs NC 0.811 (0.736- 0.886) 78.0 73.0 0.508 2.889 0.301 74.3 76.8 75.5

AFP(+) vs NC 0.822 (0.772- 0.872) 65.6 88.5 0.542 5.739 0.384 85.2 72.2 77.3

AFP(−) vs NC 0.781 (0.710- 0.851) 75.6 76.7 0.523 3.304 0.312 76.8 76.2 76.5

HCC vs LC 0.652 (0.604- 0.699) 58.2 64.5 0.227 1.639 0.648 62.1 60.7 61.4

early HCC vs LC 0.710 (0.628- 0.788) 56.0 79.0 0.342 2.667 0.557 72.7 64.2 67.5

LC vs NC 0.656 (0.608- 0.705) 55.8 74.9 0.307 2.223 0.590 69.0 62.9 65.4

Abbreviations: AFP(−), AFP negative group; AFP(+), AFP positive group; AUC, area under the receiver operating characteristic curve; CI, confidence 
interval; early HCC, Barcelona Clinic Liver Cancer 0- B; HCC, hepatocellular carcinoma; later HCC: Barcelona Clinic Liver Cancer C- D; NC, normal 
control; NLR, negative likelihood ratio; NPV, negative predictive value; PLR, positive likelihood ratio; PPV, positive predictive value; Se, sensitivity; Sp, 
specificity; SVM, support vector machines.

TA B L E  3  Comparison of single and parallel detection of AFP and 
model

Panel AFP Panel + AFP χ2/P

Number of 
positive

169a 130b 196c 55.69/<.001

Number of 
negative

48 87 21

Note: Each subscript letter denotes a subset of work categories whose 
column proportions do not differ significantly from each other at the 
0.05 level.
Abbreviation: AFP, alpha- fetoprotein.
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AFP was only 53%. Those results were consistent with the conclu-
sions of previous researches.7,67 The above research results indi-
cated the immunodiagnostic panel can be used as a marker for the 
diagnosis of AFP(−) HCC patients, and the panel combined with 
AFP may improve the sensitivity of diagnosing HCC, especially for 
early- HCC cases.

The current research has several advantages. First, the method 
was used to screen HCC- related TAAs should be mentioned. The 
method of combining bioinformatics and autoantibody- antigen sys-
tem could be more accurate for screening out TAAs that may play 
an important role in the development of HCC. Second, multistage 
verification in large samples was applied, which makes the results 
more credible. Third, compared with AFP in parallel, the sensitivity 
of the panel in diagnosing HCC was higher, and the results indicated 
that the novel immunodiagnosis panel combined with AFP may be 
a new approach for the diagnosis of HCC, especially for early- HCC 
cases. However, there are some limitations to our research. First, 
the human proteomics chip does not include proteins with post- 
translational modifications and structural changes. Therefore, those 
related TAAbs cannot be detected. However, the purpose of com-
bining with bioinformatics was to screen out important indicators 
as accurately as possible. Second, the function of the screened in-
dicators in the occurrence and development of HCC needs further 
verification.

In summary, our research data showed that the customized au-
toantibodies panel provides a supplementary method for the di-
agnosis of HCC, especially for early- HCC and AFP(−) patients. The 
study also proves that autoantibodies are a promising direction for 
cancer biomarker research. The ability of this method to diagnose 
cancer depends on the careful choice of the autoantibodies panel. 
Our findings may encourage future clinical studies to explore the 
function of related proteins in the occurrence and progression of 
HCC.
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