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Abstract
Farnesylpyrophosphate synthase (FPS) catalyzes the biosynthesis of farnesyl pyrophos-

phate (FPP), which is an important precursor of sesquiterpenoids such as artemisinin and

wilfordine. In the present study, we report the molecular cloning and characterization of two

full-length cDNAs encoding FPSs from Tripterygium wilfordii (TwFPSs). TwFPSsmain-

tained their capability to synthesise FPP in vitro when purified as recombinant proteins from

E. coli. Consistent with the endogenous role of FPS in FPP biosynthesis, TwFPSs were
highly expressed in T. wilfordii roots, and were up-regulated upon methyl jasmonate

(MeJA) treatment. The global gene expression profiles suggested that the TwFPSsmight

play an important regulatory role interpenoid biosynthesis in T. wilfordii, laying the ground-

work for the future study of the synthetic biology of natural terpene products.

Introduction
Tripterygium wilfordii is a traditional Chinese medicinal plant used to treat inflammatory dis-
eases because of its analgesic and anti-microbial properties [1]. This plant has been widely used
in the treatment of immune and tumour diseases [2–4]. Terpenoids are the primary active sub-
stances (Fig 1) of T.wilfordii and include sesquiterpene, diterpenoids andtriterpenoids. Tripto-
lide [5], which has been recognised as one of the primary active constituents of T. wilfordii, is a
class of 3 epoxygroups and an α,β-unsaturated five-membered lactone ringand is also a unique
abietane diterpene. T. wilfordii has attracted much attention due to its architecture and signifi-
cant activities. Tripterine [6], which was the first monomer isolated from T. wilfordii has im-
portant biological activity.

FPS belongs to the family of short-chain prenyltransferases [7]. FPS catalyzes the head-to-
tail condensation reaction of dimethylallyl pyrophosphate (DMAPP) with two molecules of
isopentenyl pyrophosphate (IPP) to form FPP [8–9], which is the precursor of all sesquiter-
penes [10], such as artemisinin and wilfordine.FPS provides substrate FPP to squalene synthase
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and sesquiterpene synthase. Squalene synthase brings the synthesis into steroids and saponins,
which involved in cell membrane systems building; sesquiterpene synthase put the synthesis
on cyclic sesquiterpene compounds [11]. Upon treatment with elicitors, FPP, which is normal-
ly employed in sterol biosynthesis, is diverted from the sterol pathway as large amounts of anti-
biotic sesquiterpenesare produced [12–14]. This diversion is accomplished by the induction of
sesquiterpene cyclases and coeval suppression of squalene synthesis, the initial committed step
of phytosterol production [13–14].

Thus far, FPS has been isolated from sorghum [15], corn [16], sandalwood [17] and 41
other species of plants. Recently, FPS has been isolated from Panax ginseng [18], Salvia miltior-
rhiza, Acanthopanax senticosus, Artemisia annua [19], Ginkgo biloba [20] and other medicinal
plants. International and domestic academics have studied the gene expression patterns of far-
nesyl pyrophosphate synthase in plants and found that this gene has tissue-specific expression
with increased isoprenoid derivative contents. Gene expression studies have demonstrated that
gene expression is related to the isoprene content in plants.

The effective components in T. wilfordii are difficult to obtain by traditional chemical meth-
ods. In addition, the products of bioactive compounds cannot be synthesized through microbi-
al methods. The current information regarding terpenoid biosynthesis genes is limited, and
studies regarding key enzymes in T. wilfordii are few. Based on the above issues, we present
the cloning and characterisation of full-length FPS cDNAs of T. wilfordii (TwFPSs) for the
first time.

Materials and Methods

Plant materials
Fresh leaves and stems of T. wilfordii were sheared, cleaned and disinfected. Then, the leaves
were cut into 1.0 cm×1.0 cm pieces, and the stems were cut into 1.0 cm lengths after rinsing
with sterile water. These tissues were cultivated in MS agar medium containing 2,4-D hormone
at 25°C in dark. After two weeks, calluses began to grow at the explant slits. The calluses which
had a white lustre, were soft and grew well, were cultured in MS agar medium containing 0.5
mg/L of 2,4-D, 0.1 mg/L of KT, and 0.5 mg/L of IBA at 25°C in the dark.

The calluses were cultured in MS agar medium containing 0.2 mg/L of IAA, 0.5 mg/L of KT,
and 1.5 mg/L of 6-BA at 25°C under 16 h light/8 h dark conditions. The aseptic seedlings were
harvested after subculturing once a month.

After 3 subcultures, we chose the calluses that grew well and that had a loose texture and
clipped these calluses into small pieces with tweezers. These calluses were cultured in MS medi-
um containing 0.5 mg/L of 2,4-D, 0.1 mg/L of KT, 0.5 mg/L of IBA, and cell suspensions of 2.0
g/40 mL in the dark at 25°C with rotary shaking at 120 rpm.

Fig 1. Themain medicinal active substances of Tripterygiumwilfordii.

doi:10.1371/journal.pone.0125415.g001
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Elicitor treatment
T. wilfordii cell suspensions displaying good growth were chosen as the experimental material.
After 12 days, 1 mM [21] methyl jasmonate (MeJA) [22–23] was added to the treatment
groups, and DMSO was added to the control groups. After treatment, the cell suspensions were
harvested in liquid nitrogen at 0, 4, 12, 24 and 48 hand stored at -80°C.

Cloning of TwFPS1 and TwFPS2 from T.wilfordii
Total RNA was extracted from T. wilfordii cell suspensions using the cetyltrimethylammonium
bromide (CTAB) [24] method. Genome or protein contamination was eliminated using DNase
I and an RNA purification kit. A PrimeScript 1st Strand cDNA Synthesis Kit was used to obtain
the cDNA. A SMART RACE cDNA Amplification Kit was used to transcribe the first-strand
cDNA for 30- and 50-RACE. The 30- and 50-RACE products were subcloned into the pMD19-T
plasmid. The cloning vector was amplified in E. coli DH5α cells. After sequencing and align-
ment, the full-length predicted cDNAs for TwFPS1 and TwFPS2 could be obtained. 30-RACE
Primer: 50-TGCCTTGCTCGGATGGGCTTCG-30 (TwFPS1), 50-GGATGATTACCTGGACT
GTTTTGGGG-30 (TwFPS2). 50-RACE primer: 50-TGGTTGACCCCGCCGAGTAACAGAT-30

(TwFPS1), 50-TGAACAATGCGGCGGTGGAGTGAC-30 (TwFPS2). New primers were designed
to confirm the open reading frame (ORF) of T. wilfordii. TwFPS1: 50-ACATGGGGATCGG
CAGCCATAC-30 (forward) and 50-TCAGAAGCTACGGCAGAATCTAATGGAG-30 (reverse).
TwFPS2: 50-TCTCTGTGTCTCCGCAAA-30 (forward) and 50-GAGTAACCATAAGCAGCA
GAC-30 (reverse).

Sequence and phylogenetic analyses
The nucleotide and protein sequences were compared using NCBI (http://www.ncbi.NLM.
NIH.gov). The sequences were translated into amino acidsusing DNAMAN software. The
ORF was searched using ORF Finder (www.ncbi.NLM.NIH.gov/Gorf/Gorf.html). The theoret-
ical isoelectric point (pI) and molecular weight (Mw) were determined using the Compute pI/
Mw tool (http://Web.ExPASy.org/compute_pi/). Multiple sequence alignments were per-
formed using DNAMAN and ClustalW software. Phylogenetic analysis was performed using
MEGA5.1 software to build evolutionary trees.

Expression of TwFPS1 andTwFPS2 in E. coli and purification of
recombinant protein
Based on the cloning vector, the primers for recombination were designed; an NcoI site and
a HindIII site were introduced at the start and stop codons, respectively. TwFPS1: 50-GAG
GAGCCATGGCTATGAGCGACACCAAGTCCAAG-30 (forward) and 50-GAGGAGAAGCTTC
TACTTCTCTCGCTTGTATAT-30 (reverse). The primers for recombination were designed; a
KpnI site and an EcoRI site were introduced at the start and stop codons, respectively. TwFPS2:
50-GAGGAGGGTACCATGGCGGATCTCAAGTCAACG-30 (forward) and 50-GAGGAGGAAT
TCCTACTTCTGTCTCTTGTATATC-30 (reverse). The fragments were cloned into the expres-
sion vector pET-32a(+). E. coli BL21 (DE3) cells were used for recombinant plasmid expression
and the induction was performed at 16°C for 20 h with the addition of 1 mM isopropyl thioga-
lactoside (IPTG). After collection, the cells were resuspended in 2 mL lysis buffer A (20 mM
Tris—HCl(pH 8.0), 500 mM NaCl, 1 mM PMSF and bacteria protease inhibitor cocktail),
lysed by sonication (lysed for 5s, paused for 5s) and centrifuged for 30 min at 13000 g. Thus,
the supernatant protein was harvested.
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This supernatant was loaded onto a Ni-NTA column and pre-equilibrated by lysis buffer A.
The column was washed with 10 column volumes of lysis buffer A containing 20 mM imidaz-
ole. The target proteins were eluted by buffer B (20 mM Tris—HCl(pH 8.0) containing 500
mMNaCl and 50 mM imidazole) and buffer C (20 mM Tris—HCl(pH 8.0) containing 150
mMNaCl and 250 mM imidazole). The purified protein was examined by SDS-PAGE gel elec-
trophoresis. The concentration of FPPS protein was determined by the Bradford method [25].

Assay for enzymatic activity
Scale assays (200μL) for the identification of enzymatic reaction were performed with purified
FPPS proteins (200μg) using 100μM IPP and 100μMDMAPP in assay buffer (50 mM Tris—
HCl, pH 7.6) containing 5 mMMgCl2, 25 mM DTT, and 10% [v/v] glycerol. The assays were
incubated at 30°C for 2 hours. To stop the assay and hydrolyse all diphosphate esters, 200μL of
solution containing 2 units of potato apyrase and 2 units of calfintestine alkaline phosphatasein
0.2 M Tris—HCl(pH 9.5)was added to all assays, followed by incubation for 8 h at 30°C. After
enzymatic hydrolysis, the resulting isopropyl alcohols were extracted into 500μL hexane 3
times. The hexane phase was concentrated by passing N2 at the opening of the tube, and then
the products were dissolved in 100μL hexane and used for GC—MSmeasurements.

GC—MS analysis was detected on an Agilent 6890N gas chromatograph (splitless; injector
temperature, 250°C) with a 5975imass spectrometer (GC—MS). One microliter of dissolved
organic phase was injected. The separation was performed on an HP-5MS column (50 m×0.25
mm×0.5μm) with helium as the carrier gas (flow rate of 1 mL/min) on a temperature gradient
from 60°C, at 10°C per min to 90°C (hold 1 min),and then 3°C per min to 220°C (hold 1 min).
Mass spectra, 70eV (in EI mode), ion trap heating, 230°C; scan range, 30–500 amu. The prod-
ucts were identified viamass spectrometry profiles, and farnesol could be identified using stan-
dard chemicals and retention times. The assay was performed with empty vector as a control.

Real-time quantitative PCR analysis of TwFPS1 andTwFPS2 expression
Total RNA from different tissues (roots, stems, and leaves) and different inductive stages was
extracted separately as described above. The primers for real-time quantitative PCR analysis
were designed using Primer Premier 5.0 software. TwFPS1: 50-GGGTGTATTTGCGGAGT-30

(forward) and 50-CGGCAGAATCTAATGGAG-30 (reverse); TwFPS2: 50-CAGACCCTCACC
TTCCATT-30 (forward) and 50-AAGAGTAACCATAAGCAGCAGAC-30 (reverse). The βtactin
gene was used as an endogenous control to normalize expression. The PCR reaction conditions
were as follows: an initial incubation at 95°C for 3 min and then cycling at 95°C for 3 s and
60°C for 30 s for 40 cycles. There were three samples in each group and each sample was re-
peated for three times to insure the credibility of the data. The relative quantification of the
TwFPS transcript levels was achieved by the 2-ΔΔCt [26] method using ABI 7500 Software
v2.0.1 (PE Applied Biosystems).

Results

Molecular cloning of the full-length TwFPS1 andTwFPS2 cDNAs
RT-PCR was performed with total RNA from T. wilfordii. TwFPS gene fragments were ob-
tained by 30 rapid amplification of cDNA ends (30-RACE-PCR) and 50-RACE-PCR. The full-
length cDNA encoding the FPS protein was isolated from T. wilfordii. The full-length cDNA of
TwFPS1was 1345bp, with a1029bp ORF, which encodes a 342 amino acid polypeptide, flanked
by an 81bp 50-untranslated region and a 235bp 30-untranslated region including a 28bp poly
(A) tail. The predicted TwFPS1 protein had a calculated molecular mass of 39.54 kDa and
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a theoretical pI of 5.59 (GenBank accession number KM058711). The full-length cDNA of
TwFPS2is1312bp, with a1029bp ORF, which encodes a 342 amino acid polypeptide, flanked by
a 68bp 50-untranslated region and a 215bp 30-untranslated region including a of 26bp poly (A)
tail. The predicted TwFPS2protein had a calculated molecular mass of 39.54 kDa and a theoret-
ical pI of 5.28 (GenBank accession number KM058712).

A BLAST search of the NCBI protein database showed that the deduced amino acid se-
quence of TwFPS1 had 77–85% identity to the FPSs fromMangifera indica, Panax quinquefo-
lius, Panax ginseng, Panax notoginseng, Eucommia ulmoides, Aralia elata, Centella asiatica,
Astragalus membranaceus andMalus domestica. The deduced amino acid sequence of TwFPS2
had 78–88% identity to those FPSs from Glycyrrhiza uralensis, Astragalus membranaceus,
Hevea brasiliensis, Euphorbia pekinensis,Medicago sativa, Pyrus communis, Aquilaria sinensis,
Gossypium hirsutum, and Gentiana lutea. The two proteins are highly conserved; the sequence
identity was 77.26%, and the amino acid identity was 80.12%. Both TwFPS1 and TwFPS2had
five conserved regions, which were numbered I to V [27]. The highly conserved aspartate-rich
motif in region II with the sequence DDXX(XX)D is called FARM (first Asp-rich motif), which
is highly conserved in all known prenyltransferases and which has been designated as the chain
length determination region [28]. Region V with the sequence DDXXD is called SARM (sec-
ond Asp-rich motif). These regions marked with lines are characteristic of prenyltransferases
that can be used to synthesise isoprenoid diphosphates [29] (Fig 2).

A phylogenetic tree of isoprenyl diphosphate synthases including GPPS, FPPS and GGPPS
from different organisms was constructed to investigate the evolutionary relations. All of the
plant isoprenyl diphosphate synthases sequences were separated into three main groups. T. wil-
fordii1 and T. wilfordii2 clustered with 28 FPPS sequences. A. grandis, G. rigescens GPPS and
M. luteus, E. coli FPPS clustered with 11 GGPPS sequences. This tree showed that FPSs evolved
from a common ancestor and that the two TwFPSs belong to the clade of the plants (Fig 3).
T. wilfordii1 and Eucommia ulmoides were classified into one cluster, and T. wilfordii 2 and
Malus domestica were classified into one cluster. These clusters mean that these plants had the
closest evolutionary relations. Moreover, these plants all belong to Angiospermae Dicotyledo-
neae. However, the two genes are not close, which suggests to us that a certain difference exists
between TwFPS1 and TwFPS2.

Characterisation of TwFPS1 andTwFPS2 recombinant protein
The entire reading frame of TwFPSs was cloned into the pET-32a(+) vector and expressed in
E. coli BL21 (DE3) cells to obtain the TwFPS protein for characterising the farnesylpyropho-
sphate synthase activity. After induction by IPTG, the recombinant protein was expressed. The
molecular mass of TwFPS1 (Fig 4A) fused with a Trx-tag and a His-tag on N-terminal is ap-
proximately 58 kDa, and the TwFPS2 (Fig 4B) fusion protein is approximately 58 kDa, as deter-
mined by SDS-PAGE. The Trx-tag is a fusion tag and advantageous to the soluble protein
expression. His-tag is a purification tag. Highly purified preparation of the protein can be ob-
tained through purification with Ni-column affinity chromatography.

The purified proteins were assayed for farnesylpyrophosphate synthase catalytic activity.
When the purified enzyme was incubated with DMAPP and IPP, the products had the same re-
tention time as the farnesol standards (Fig 5A–5D). The GC retention time (RT) of farnesol was
29.588 min; TwFPS1 samples of the product, 29.590 min; and TwFPS2 samples of the product,
29.584 min. The blank control sample was not detected in the corresponding characteristic
peak. Under GC-MS analysis (Fig 5E–5G), the FPS sample product qualified as farnesol,
which had the characteristic peaks, including m/z = 222.0 (Molecular ion: M+) and m/z = 69.10
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(CH3(CH3) = CHCH2-). Thus, these results indicated that the coding regions of TwFPSs en-
code functional FPP synthase.

Tissue-specific and inducible expression of TwFPS1 andTwFPS2
When total RNAs were isolated from the roots, stems and leaves of T. wilfordii, the lowest level
of FPPS mRNA expression was found in leaves. Its value was set up as 1. The other FPPS ex-
pression tissues were evaluated relative to the leaves level. We found that TwFPSs are preferen-
tially expressed in the roots. Among different tissues of T. wilfordii, the highest transcript levels
of TwFPS1 (Fig 6A) and TwFPS2 (Fig 6B) were observed in the roots, and the lowest levels
of TwFPS1and TwFPS2expression were found in the leaves. The highest levels of TwFPS1

Fig 2. Comparison of the deduced amino acid sequences ofTwFPS1, TwFPS2 and related proteins. The five conserved domains of prenyltransferases
are boxed and numbered. The highly conserved aspartate-rich motif (DDXX(XX)D) was present in domains II and V.

doi:10.1371/journal.pone.0125415.g002
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Fig 3. Phylogenetic tree of the amino acid sequences of isoprenyl diphosphate synthase of different
organisms constructed by the neighbor-joining method on MEGA 5.GenBank accession numbers:
Hevea brasiliensis (AY135188); Euphorbia pekinensis (ACN63187); Lupinus albus (P49351);Malus
domestica (AAM08927);Gossypium arboretum (CAA72793);Helianthus annuus (AAC78557); Parthenium
argentatum (CAA57892);Matricaria chamomilla var. recutita (ABS11699); Artemisia annua (AAD17204);
Centella asiatica (AAV58896); Panax ginseng (AAY87903); Panax notoginseng (AAY53905); Humulus
lupulus (BAB40665); Eucommia ulmoides (AB052681); Capsicum annuum (CAA59170); Chimonanthus
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expression were observed in roots, about 9.5 fold higher than in leaves. The highest levels of
TwFPS2 expression were also observed in roots, about 21.4 fold higher than in leaves. It is indi-
cated that roots are the main source of active contents.

Moreover, real-time PCR analysis with cell suspensions at different developmental stages
was also performed to examine the changes in the expression of TwFPS genes upon MeJA
treatment. Specifically, MeJA caused a significant increase in TwFPS levels in T. wilfordii cell
suspensions. Interestingly, the dynamic range of the induction varied. The levels of TwFPS1
(Fig 7A) and TwFPS2 (Fig 7B) expression both increased at first, peaked at 12 h, then decreased
gradually, and the expression levels reached almost the same levels that of the control group
after 48 h. The value of 0h was set up as 1 and the TwFPSsmRNA expression in other stage
was evaluated relative to the 0h. The TwFPS1 expression of MeJA group at 12h was 2.4-hold
higher than control group. The TwFPS2 expression of MeJA group at 12h was 4-hold higher
than control group. These results indicated that the expression of TwFPS2relative to 0 h was
higher than that of TwFPS1.

Discussion
FPS plays a key role [30–32] in the catalytic reaction in isoprenoid biosynthesis; this step is
considered rate-limiting. In the present study, we reported the molecular characterisation of
two FPS genes from T. wilfordii for the first time. Knowledge regarding the regulation of

praecox (ACJ38671);Michelia chapensis (GQ214406);Musa acuminate (AAL82595); Taxus media
(AAS19931);Ginkgo biloba (AY389818); Picea abies (ACA21460);Oryza sativa (O04882); Zea mays
(P49353.1); Sorghum bicolor (XP_002441458); Saccharomyces cerevisiae (p08524); Fusarium fujikuroi
(CAA65641);Musmusculus (AAL09445); Caenorhabditis elegans (CAB03221);Quercus robur (CAC20852);
Citrus sinensis (CAC16851); Catharanthus roseus (AHA82035); Vitis vinifera (AAR08151); Salvia miltiorrhiza
(AEZ55677); Arabidopsis thaliana (NP_001031483);Micrococcus luteus (BAA25265); Escherichia coli
(BAA00599); Jatropha curcas (ADD82422); Pinus massoniana (AGU43761); Abies grandis (AAL17614.2);
Abies grandis (AAN01133);Ginkgo biloba (AAQ72786); Taxus x media (AAS67008); Salvia miltiorrhiza
(ACJ66778); Nicotiana attenuate (ABQ53935);Gentiana rigescens (AHK06853); Jasminum sambac
(AIY24421); Corylus avellana (ABW06960); Elaeagnus umbellate (ACO59905);Medicago sativa
(ADG01841).

doi:10.1371/journal.pone.0125415.g003

Fig 4. SDS-PAGE analysis of recombinant TwFPS1and TwFPS2 protein expressed in E. coli. A Lane M, protein molecular weight marker(low); Lane 1,
the supernatant of the empty vector without the induction; Lane2, the sediment of the empty vector without the induction; Lane 3, the supernatant of the
empty vector with the induction; Lane 4, the sediment of the empty vector with the induction; Lane 5, the supernatant of theTwFPS1 protein without the
induction; Lane 6, the sediment of the TwFPS1 protein without the induction; Lane7, the supernatant of theTwFPS1 protein with the induction; Lane 8, the
sediment of TwFPS1 protein with the induction; B Lane M, protein molecular weight marker (low); Lane 1, the supernatant of theTwFPS2protein with the
induction; Lane 2,the supernatant of the empty vector bacteria with the induction; Lane 3,the supernatant of theTwFPS2 bacteria with the induction; Lane 4,
the sediment of the empty vector with the induction; Lane 5, the supernatant of the empty vector with the induction; Lane 6, the sediment of TwFPS2 protein
with the induction.

doi:10.1371/journal.pone.0125415.g004
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Fig 5. GC—MS analysis of reaction products catalyzed by purified recombinant TwFPS incubated with IPP and DMAPP. A Control (the empty
vector).B The reaction products catalyzed by purified recombinant TwFPS1 (IPP and DMAPP were added to the reaction mixture). C The reaction products
catalyzed by purified recombinant TwFPS2 (IPP and DMAPP were added to the reaction mixture).DGC—MS analysis of dephosphorylated FPP (farnesol)
as standards. E The mass spectrogram of the reaction products catalyzed by purified recombinant TwFPS1.F The mass spectrogram of the reaction
products catalyzed by purified recombinant TwFPS2.G The mass spectrogram of the dephosphorylated FPP(farnesol).

doi:10.1371/journal.pone.0125415.g005

Fig 6. Expression patterns of TwFPS1and TwFPS2 in different T.wilfordii tissues. Total RNA isolated from roots, stems and leaves.A TwFPS1
expression in leaves was set as1; B TwFPS2 expression in leaves was set as 1. Data are presented as mean±SE from three experimental replicates.

doi:10.1371/journal.pone.0125415.g006
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sesquiterpene biosynthesis in medicinal plants is important. The results indicated that T. wil-
fordii contains a small FPS gene family that consists of at least two genes (TwFPS1 and
TwFPS2). These two genes shared a high level of sequence similarity in the coding region but
not in noncoding regions. The root of T. wilfordii is the medicinal portion used in Chinese
medicine. Pharmacological experiments confirmed that the primary active terpenoids of T. wil-
fordii showed strong pharmacological activities. The tissue expression analysis showed high
TwFPS expression in the roots of T. wilfordii. This indicated that the biosynthesis of sesquiter-
pene compounds, such as wilfordine, occurs at roots. Moreover, the relative expression level
ofTwFPS2 was higher than that ofTwFPS1, suggesting thatTwFPS2plays a leading role in ter-
pene synthase biosynthesis in T. wilfordii. The analysis of FPS gene expression patterns in vari-
ous plants demonstrated not only that the gene expression is tissue-specific [33–34] but also
that the isoprenoid derivative contents increase [20, 30, 35–38]. The gene expression analysis
showed that FPS genes could increase the isoprenoid substance contents in the plants [39–42].
In Poria cocos, there is a significant difference in total triterpenoids production between the
control and experimental groups demonstrating that MeJA can potently stimulate triterpe-
noids biosynthesis [43]. The specific synthetic mechanism of terpene synthase biosynthesis re-
quires further research.

In Arabidopsis thaliana, for example, FPS exists in the form of a small gene family. The FPS
gene family encodes three isomers of FPS (FPS1S, FPS1L and FPS2). The primary difference
between FPS1S and FPS1L is the N-terminus. FPS1S and FPS2 are found in plastids, and
FPS1L is found in mitochondria [32]. The different metabolic channels determine their differ-
ent functions and expression patterns. Thus, the secondary metabolism that FPS is involved in
is complex, with great diversity and specificity. A study of rice shows that FPS exists in chloro-
plasts and in plastids [44]. FPS1 is expressed in different parts of the plants and participated in
all life processes. FPS2 is primarily expressed in the flowers, as well as in the root tips of the lat-
eral root and in the juncture with the primary root or secondary root [45]. The subcellular loca-
lisation prediction showed that the major localisation of TwFPS1 is the cytoplasm; however,
the localisation of TwFPS2 is the cytoplasm or mitochondria. Therefore, a tentative inference
of this result is that TwFPS1 and TwFPS2 participate in different metabolic channels.

These findings suggest that the expression of the native FPS genes in T. wilfordii result in
the accumulation of the active components. The cloning and identification of key genes in-
volved in the biosynthesis of active compounds from medicinal plants is important for the
analysis of synthesis pathways. A recently established strategy in synthetic biology [46–49] is to

Fig 7. Expression profile of TwFPS1 and TwFPS2when treated with 1mMmethyl jasmonate (MeJA) over 48h. RT-PCR analysis was performed using
total RNA isolated from suspension cells of T.wilfordii. A TwFPS1 expression at 0h was set as 1; B TwFPS2 expression at 0h was set as 1. Data are
presented as mean±SE from three experimental replicates.

doi:10.1371/journal.pone.0125415.g007
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use microorganisms such as E. coli to synthesize active ingredients found in medicinal plants,
which will provide a new effective strategy and research approach for the sustainable utilisation
of medicinal plant resources.

Accession Number
The encoded nucleotide sequence can be found in the GenBank/NCBI data libraries. The num-
ber of TwFPS1 is KM058711 and the number of TwFPS2 is KM058712.
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