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Regulation of cellular responses to external stimuli such as hormones, neurotransmitters, or cytokines is
achieved through the control of all steps of the complex cascade starting with synthesis, going through
maturation steps, release, distribution, degradation and/or uptake of the signalling molecule interacting with
the target protein. One possible way of regulation, referred to as scavenging or neutralization of the ligand,
has been increasingly studied, especially for small protein ligands. It shows innovative potential in chemical
biology approaches as well as in disease treatment. Neutralization of protein ligands, as for example
cytokines or chemokines can lead to the validation of signalling pathways under physiological or
pathophysiological conditions, and in certain cases, to the development of therapeutic molecules now used
in autoimmune diseases, chronic inflammation and cancer treatment. This review explores the field of ligand
neutralization and tries to determine to what extent small chemical molecules could substitute for
neutralizing antibodies in therapeutic approaches.
, Duffy antigen receptor for
in-coupled receptor; IL, Inter-
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1. Introduction

Deciphering biological signalling pathways makes use of conver-
gent approaches including direct gene manipulation or downstream
information processing intermediates such as messenger RNAs,
proteins or signalling small molecules/hormones or their metabolites.
Gene manipulation, in particular gene deletion/invalidation, is one of
the most widely used approaches to determine the function of a gene
and of its products. It presents the major advantage of selectively
altering one gene structure or expression so that a given phenotype,
when observed, is generally closely associated with the gene of
interest and to its products. On the other hand, gene deletion or
overexpression can be induced, but not yet in a reversible manner, so
that control experiments must be carried out on wild type animals in
which developmental or compensatory effects may not have taken
place in a comparable manner (Chensue et al., 2001; Auwerx et al.,
2004; Brown et al., 2005; Yang et al., 2006). Chemical biology
approaches, i.e. methods that use chemical tools to elucidate the
function of a protein in a given signalling pathway, and are at the
frontier between pharmacology, chemistry and biophysics, are useful
too and show complementarity with genetic approaches. They also
offer the possibility to transpose small molecule tools into drugs when
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pathological issues are coming into play during the assessment of the
protein function. The advantages and drawbacks of the chemical
biology approach are mirror images of the genomic approach.
Reversibility of the effect of a molecule can be studied on the same
living individual upon cessation of molecule administration. On the
other hand, molecules are rarely specific for a given target protein,
and the claimed selectivity of a compound generally follows an
inverse relationship with the extent of side effects (Wermuth, 2006).
Antibodies, and in particular monoclonal antibodies, have arisen as
potential substitutes to both the genetic and the chemical biology
approaches in the sense that they exhibit quasi-exclusive selectivity
for a protein target and that the interruption of treatment leads to
reversal of their effects. Antibodies offer in addition the possibility of
target interactions, especially large protein–protein interactions, that
are difficult to perturb with small molecules. This has led to the
exponential development of antibodies or antibody fragments
(Chames et al., 2009; Nelson & Reichert, 2009; Wesolowski et al.,
2009) for therapeutic purposes. Antibodies are powerful tools in
laboratory research because they can be developed much faster than
small chemical molecules (see below). They have thus been largely
used to validate the involvement of proteins in signal transduction
pathways, and as potential target for drug development. On the other
hand, antibodies have intrinsic limitations that constrain their use for
biological systems exploration. With some exceptions, antibodies and
antibody fragments do not cross biological barriers, such as the
intestinal or blood brain barriers. The consequence is that antibodies
must be injected andmost central nervous system proteins will not be
reached. Also, antibodies cannot reach intracellular target proteins
unless they cycle to the plasma membrane.

For all these reasons, the chemical biology approach using small
molecules as tools or drugs remains a useful and valid strategy. In this
article, we review examples of small chemical molecules that can be
used to neutralize small signalling proteins such as chemokines or
cytokines. The reader should appreciate that only a few examples are
known to date. The reason for this is that all neutralizing molecule
discoveries that are presented here were serendipitous, and specifi-
cally designed experimental approaches are only just entering starting
blocks. Small molecules are being searched to inhibit protein–protein
interactions, with a focus on intracellular compartments and cancer
related interactions, or brain function exploration (Berg, 2003; Arkin &
Wells, 2004; Arkin, 2005; Wells & McClendon, 2007; Blazer & Neubig,
2009). These will not be reviewed here. We will focus mainly on the
family of small signalling proteins, the chemokines, which constitute a
well adapted biological system to develop neutralizing small mole-
cules. Examples from other cytokines will be discussed as well.

1.1. Chemokines and chemokine receptors

Chemokines are small secreted chemotactic cytokines endowed
with multiple activities. Their main function is chemical attraction of
leukocytes, but they also contribute to the regulation of organ
development during ontogeny. In inflammation, the chemotactic
signal given by chemokines leads to egress of leukocytes from the
blood circulation across the walls of small blood vessels. To do this,
chemokines that are produced on the site of inflammation cross the
endothelial cell wall and remain immobilized on the luminal surface
of the endothelium. Circulating leukocytes, depending on their
chemokine receptor expression will then be attracted and directed
towards the inflamed site along the chemotactic gradient. Chemo-
kines, in addition to attracting cells, contribute to the regulation of
gene expression on target cells and help to control cell proliferation
and apoptosis, for instance in angiogenesis.

Chemokines are also subdivided into several functional groups
depending on whether their expression is constitutive or inducible by
inflammatory signals, and also on their capacity to stimulate or inhibit
angiogenesis, especially in tumors (Vandercappellen et al., 2008). The
CXC chemokines in particular exert angiogenic or angiostatic activities
depending on the presence of an ELR (Glu-Leu-Arg) motif in their N-
terminal portion (Addison et al., 2000). As important regulators of cell
migration, therapeutic intervention of the chemokine system(s)
includes infectious diseases, intra-organism alert systems possibly
leading to autoimmune diseases such as multiple sclerosis, rheuma-
toid arthritis, psoriasis or lupus erythematosus, as well as allergic
disorders such as asthma, inflammatory bowel disease, transplant
rejection, neuropathies or dermatitis.

More than 50 chemokines are known (Wells et al., 2006). The
chemokine structure (Figs. 1 and 3) comprises an N-terminal loop
region, three-strand anti-parallel beta-sheets forming the typical core
fold of the chemokines and a C-terminal alpha helix which overlays the
beta-sheet. CC, CXC and CX3C chemokines comprise in addition two
disulfide bridges linking the N-terminal domain with the loop
separating sheet 1 and sheet 2 and the N-terminal domain with the
end of sheet 3. In order to allow gradients to be formed at the vicinity of
the site of release, chemokines bind to extracellularmatrix components,
i.e. the negatively charged glycosaminoglycans (GAGs), by means of
their positively charged amino acids. These positive amino acids form
distinct clusters at the surface of the chemokine depending on whether
the chemokine belongs to the CC, CXC or CX3C group (Laguri et al.,
2008). In the CXC chemokine group, theGAG-binding area is on the side
of the protein that does not interact with the receptor (Amara et al.,
1999; Santiago et al., 2006; Murphy et al., 2007) and, mutation of the
positive amino acids that bind to GAGs does not alter chemokine
binding to the receptor (Amara et al., 1999; Proudfoot et al., 2001), and
interaction with heparan sulfates does not change the equilibrium
binding affinity of the chemokine for its receptor (Valenzuela-
Fernandez et al., 2001). In the CC group of chemokines, in contrast,
there is significant overlap between receptor binding and GAG-binding
areas which, in the case of CCL5 for instance, has influence on receptor
subtype-specific interactions (Proudfoot et al., 2001).

Chemokines signal through G proteins coupled to seven transmem-
brane receptors which are classified according to the chemokines they
bind (CXCR, CCR, CX3CR and XCR) (Murphy, 2002). The chemokine
receptor family groups twenty G-protein-coupled receptors (GPCRs)
and covers extremely diverse physiological responses. As a general rule,
structural promiscuity betweenGPCRs accounts for frequently observed
problems of ligand selectivity among subtypes. Reciprocally, GPCR
ligands, in particular chemokines, are grouped in small chemical
families, so that neutralizing the ligand rather than the receptor may
allow good focus on a subset of targeted signalling pathways.

Alongwith several other signalling proteins (Alcami& Smith, 1992;
Colotta et al., 1993; Pitti et al., 1998; Rahaman et al., 2002; Bezerra
et al., 2005; Bamias et al., 2008; de Moura et al., 2009; Fili et al., 2009;
Funke et al., 2009; Mueller et al., 2009; Scola et al., 2009), chemokines
are subject to naturalmodulationof their concentrations by proteins to
which they bind (Fig. 2) without leading to typical signalling (Murphy,
2000; Alcami, 2003; Graham & McKimmie, 2006; Mantovani et al.,
2006; Murphy et al., 2007; Graham, 2009; Pruenster et al., 2009).
These proteinsmay be endogenously encoded tomodulate chemokine
functions or expressed by exogenous sources like pathogens or
parasites with the aim of escaping the host immune system (see
below). These naturally occurring “scavenger” or “decoy” proteins act
as “interceptors” – i.e. intercepting receptors – that neutralize the
action of the chemokine. We shall briefly review these systems
because they validate the concepts of ligand neutralization, before
considering approaches to unnatural neutralization.

2. Natural cytokine and chemokine neutralization

Besides metabolic regulation of hormone or peptide production
such as enzymatic degradation, transport (Mortier et al., 2008), a
captivating aspect of response regulation is scavenging of ligands by
molecules that bind to it and modulate its biological function. This



Fig. 1. Folding of chemokines: chemokine adopts a typical structure with 3 anti-parallel
β-strands and one carboxy terminal helix. C–C denotes disulfide bridges.
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has been illustrated in the past 25 years with the identification of
endogenous receptor-like structures that do not lead to conventional
signalling in response to small protein ligands but rather seem to
contribute to their blockade or elimination (Colotta et al., 1993;
Colotta et al., 1995; Bezerra et al., 2005; Mantovani et al., 2006;
Mantovani et al., 2007; Thelen & Thelen, 2008; Mantovani et al.,
2008; Bamias et al., 2008; Bonecchi et al., 2008b; de Moura et al.,
2009; Mueller et al., 2009; Scola et al., 2009). These receptor-like
molecules, which can be soluble (Colotta et al., 1993; de Moura et al.,
2009; Funke et al., 2009) or membrane-bound (Mantovani et al.,
2006; Scola et al., 2009), have been termed “decoy” or “scavenger”
proteins. They however serve physiological as well as pathophysi-
ological functions.
Fig. 2. Examples of different possible routes that can be followed by chemokines/cytokines in
expressing the chemokine/cytokine receptor. Route 2 is used either endogenously or by patho
degradation of the chemokine or to its transcytosis. Route 3 is used by pathogens that expre
selectivity, andprevents them fromnormal signalling to the immune system. InRoute 4, theneu
is a collapse of the chemotactic gradient that abolishes leukocyte attraction in the inflamed tis
Decoy proteins for interleukins IL-1 (Colotta et al., 1993), IL-22 (de
Moura et al., 2009), IL-13 (Caput et al., 1996; Rahaman et al., 2002),
death ligands TRAIL (Bellail et al., 2009) and CD95L (Pitti et al., 1998),
activators of NF-kB-RANK (Simonet et al., 1997; Khosla, 2001) or
complement (Cain & Monk, 2002; Scola et al., 2009) generally exhibit
ligand selectivity and/or specificity. Those for chemokines (Mantovani
et al., 2006; Graham, 2009) display poor ligand selectivity.

2.1. Endogenous chemokine interceptors

There are three, possibly four, endogenous proteins that belong to
the structural family of G-protein-coupled receptors, bind chemo-
kines with limited to low selectivity, do not signal toward G-protein-
dependent pathways but keep the capacity to internalize and
transport the bound chemokine across the plasma membrane. These
proteins, DARC, D6, CCX-CKR and possibly CXCR7, act as uptake or re-
uptake proteins that trap the ligand, internalize it and direct it
towards degradation, possibly also towards transcytosis. These
proteins play important roles in inflammation, development, and
chemokine-associated diseases such as cancer (Graham &McKimmie,
2006; Mantovani et al., 2006).

2.1.1. Duffy antigen receptor for chemokines
Duffy antigen receptor for chemokines, DARC, binds both CC (CCL-2,

-5, -7, -11, and -13) and CXC (CXCL-1, -3, -5, -6, -8, and -11)
inflammatory chemokines as well as the homeostatic chemokine
CCL14. It is a G-protein-coupled receptor-like protein that lacks the
capacity to stimulate G proteins.

DARC is expressed at high levels in the cell membrane of
erythrocytes where it was shown to contribute to clearing circulating
chemokines (Darbonne et al., 1991). Supporting this role in chemokine
clearance, lack of DARC protein is associated with an exaggerated
inflammatory response to lipopolysaccharide LPS (Dawson et al., 2000),
while overexpression of the protein leads to diminished angiogenesis
(Bonecchi et al., 2008a). Further supporting the importance of DARC in
the presence of neutralizing macromolecules. Route 1 leads to signalling in the target cell
gens. Binding of chemokines takes place without signalling. This event may either lead to
ss soluble proteins capable of binding chemokines, generally with moderate affinity and
tralizingmoleculeprevents chemokine binding to glycosaminoglycans. The resulting effect
sue.
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chemokine clearance, circulating CXCL1 is mostly associated with red
blood cells inwild typemice, while it is found in the plasma in DARC−/−

mice. Accordingly, in a mouse model of acute lung injury, LPS-induced
polymorphonuclear leukocyte migration in the alveolar space is
elevated two-fold in knock-out animals (Reutershan et al., 2009). The
chemokine sequestering function of DARC is also clinically validated as
preventing/reducing tumor cell growth, as was demonstrated in breast
cancer (Wang et al., 2006b).

DARC is also expressed on endothelial cells, but under normal
conditions, this expression is restricted to postcapillary venules (Fra
et al., 2003). It may extend to other types of blood vessels (arteries,
capillaries) during infection, inflammation or graft rejection (Segerer
et al., 2000; Gardner et al., 2006). In endothelial cells, DARC protein
serves as a transporter that allows chemokine transcytosis, thus
leading to efficient exposure of tissue-derived inflammatory chemo-
kines to the lumen of vessels and subsequent leukocyte recruitment
and extravasation (Pruenster et al., 2009).

2.1.2. D6 binds and suppresses inflammatory chemokines
Like DARC, D6 exhibits poor selectivity towards chemokines. It

binds 12 different chemokines out of which none belong to the CXC
group and 8 are CC pro-inflammatory molecules, implicating D6 as a
probable regulator of inflammation. Noteworthy also is the fact that
DARC and D6 bind 7 identical chemokines (Bonecchi et al., 2008a). D6
is expressed in lymphatic endothelial cells from non-inflamed skin,
gut and lung. Upon inflammation, D6 is expressed in leukocytes,
especially in those that invade inflamed tissues (Graham & McKim-
mie, 2006). In contrast to DARC, D6 does not promote chemokine
transcytosis, but rather contributes to their degradation by directing
them towards endosomes. D6 is predominantly localized in recycling
endosomes capable of trafficking to and from the cell surface in the
absence of ligand. In the presence of ligand, D6 can rapidly internalize
chemokines; however, D6-internalized chemokines are more effec-
tively retained intracellularly because they more readily dissociate
from the receptor during vesicle acidification. These chemokines are
then degraded while the receptor recycles to the cell surface (Fra
et al., 2003; Galliera et al., 2004; Weber et al., 2004). The most likely
physiological role of D6 thus is to clear tissues from remaining
chemokines in order to prevent an excessive response, and eventually
terminate the inflammatory response (Graham & McKimmie, 2006). In
support of this, the lack of D6 expression, in vivo, results in an amplified
chemokine-mediated inflammatory response (Jamieson et al., 2005;
Martinez de la Torre et al., 2005). D6−/− mice show high levels of
inflammatory chemokines in the lymph nodes. By contrast, over-
expression of D6 reduces leukocyte responses in inflammation models
(Nibbs et al., 2007).

As a result of deregulated expression of chemokine receptors and
chemokines in cancer, a role of D6 in carcinogenesis has been
proposed (Nibbs et al., 2007; Wu et al., 2008). Due to its capacity to
sequester chemokines, D6 protects from tumorigenesis in chemical
treatment-evoked skin tumors (Nibbs et al., 2007). In another study,
D6 has been reported to reduce intratumor levels of CCL2 and CCL5
chemokines, and consequently to inhibit proliferation and invasion of
breast cancer cells in vitro as well as tumorigenesis and metastasis in
vivo (Wu et al., 2008).

2.1.3. CCX-CKR binds and suppresses homeostatic chemokines
CCX-CKR is, like DARC and D6, derived from a G-protein-coupled

structure, and is devoid of signalling capacity towards G proteins. It is
expressed in various organs such as spleen, lymph nodes, heart,
kidney, placenta, trachea and brain (Gosling et al., 2000), and in
various cell types like T cells, immature dendritic cells, stromal cells,
astrocytes (Dorf et al., 2000), ciliated bronchial epithelial cells in
pulmonary sarcoidosis (Kriegova et al., 2006), and endothelial cells
surrounding cancer cells in tumors (Feng et al., 2009).
CCX-CKR binds the homeostatic chemokines CCL19 and CCL21
which control trafficking of naive T cells, CCL25, and CXCL13 which
mediate B cells and helper T cell migration (Gosling et al., 2000;
Townson & Nibbs, 2002; Comerford et al., 2006), and directs them
towards degradation. In vitro, cells expressing CCX-CKR deplete large
quantities of these chemokines (Gosling et al., 2000; Townson &
Nibbs, 2002; Comerford et al., 2006). Inflammation promoting signals,
such as interleukin 1beta, tumor necrosis factor TNFα or interferon
IFN gamma attenuate CCX-CKR mRNA levels, supporting a potential
link of this interceptor with inflammation. In vivo, in particular in
mice harbouring CCX-CKR transfected xenografts, reduced tumor
growth, neovascularization and metastasis are detected (Feng et al.,
2009). Also, a clinical study in breast cancer shows the natural level of
CCX-CKR expression to correlate with longer survival of the patients
(Feng et al., 2009).

2.1.4. Chemokine receptors as
temporary interceptors: the debated case of CXCR7

The capacity of G-protein-coupled receptors to endocytose
together with their ligands makes it likely that at least some of
them behave as interceptors. The expression of CCR5, for example, is
up regulated in T cells responding to anti-inflammatory lipids. Such
modification represents a mechanism by which chemokines can be
trapped and inflammation terminated (Ariel et al., 2006).

The second receptor for CXCL12 and for CXCL11, namely CXCR7, is
another example of an atypical receptor. Indeed, although the
receptor sequence contains the canonical DRY sequence required for
coupling receptors to G proteins and, attempts to detect signalling
through G proteins, activation of MAP-kinases or stimulation of PI3-
kinase was unsuccessful to date (Balabanian et al., 2005; Burns et al.,
2006; Dambly-Chaudiere et al., 2007) with the exception of one
report on signalling through Akt (Wang et al., 2008) which may itself
result from beta-arrestin recruitment (Kalatskaya et al., 2009; Luker
et al., 2009a; Zabel et al., 2009). Whichever the way CXCR7 signals, it
appears important during development, and in particular in heart
valve formation (Sierro et al., 2007) and for stabilization of cell
adhesion after migration towards CXCL12 gradients (Dambly-Chau-
diere et al., 2007; Boldajipour et al., 2008). During development of the
zebrafish sensory system, formation of the sensory organ, the lateral
line, requires long distance migration of primordial germ cells.
Dambly-Chaudiere et al. (2007) and Boldajipour et al. (2008) showed
that this migration of germ cells involves a chemokinetic response to
CXCL12, mediated by CXCR4, that leads to the migration of germ cells.
Directionality of the migration is provided by trailing cells that
express the second CXCL12 receptor, CXCR7, which prevents
backward migration by depleting CXCL12, in the rear of the migrating
group of cells. Consistent with this, Mazzinghi et al. reported that
human renal progenitor cells use both CXCR4 and CXCR7 receptors for
transendothelial migration, but that CXCR7 is a major contributor for
cell adhesion to endothelial cells and progenitor cell survival
(Mazzinghi et al., 2008). CXCR7-mediated or -enhanced adhesiveness
is also clearly established in prostate cancer cells, together with
improved cell survival and invasiveness (Wang et al., 2008). In the
cases reported above, the contribution of CXCR7 to the physiological
responses could be chemokine interception and termination of the
subsequent migratory response or at least its modulation. CXCR7
indeed shows significantly higher capacity than CXCR4 to increase
cell-association of CXCL12 (Luker et al., 2009b).

Another probable physiological function of CXCR7 is related to its
capacity to heterodimerize (Sierro et al., 2007; Levoye et al., 2009), as
can be detected by bioluminescence- or fluorescence-energy transfer in
heterologous expression systems. In the more recent work by Levoye
et al. (2009), CXCR7 is shown to exhibit an apparent paradoxical effect
interfering with CXCR4 responses to CXCL12. CXCR7 indeed reduces
responses to low CXCL12 concentrations while leaving responses to
highconcentrationsunchanged, as compared toCXCR4alone. This effect
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is also detected in isolated human T lymphocytes. The presence of
CXCR7 in cells expressing CXCR4 is to render dose–response relation-
ships steeper than expected from the law of mass action. The net result
of that interference is a conversion of CXCR4 responses to CXCL12 into
an almost all or nothing type of response (Sierro et al., 2007; Levoye
et al., 2009) with triggering versus non-triggering CXCL12 doses
differing by only three- to five-fold. This physiological effect supports
the concept open by the structural demonstrations of CXCR7 hetero-
dimerization. Modelling of the behavior of CXCR7 as a chemokine
scavenger could be of interest to discriminate among direct receptor–
receptor interactions and the indirect effects of CXCR7 regulating the
level of chemokine that would be available to CXCR4.

2.2. Avoidance strategies: examples of
neutralizing molecules produced by pathogens

Pathogenic viruses, bacteria or parasites, have set up several
strategies to escape host detection and defence systems. They use
cytokine or chemokine signalling molecules (receptors and ligands)
to infect host cells (Chitnis & Sharma, 2008; Hughes & Nelson, 2009).
They also block cytokine signalling by producing antagonists (Damon
et al., 1998) which allow to escape alert systems or to redirect them to
their own benefit (McFadden et al., 1998; Sozzani et al., 1998; Alcami,
2003; Mantovani et al., 2006; Rosenkilde, 2005; Andreasen &
Carbonetti, 2008). The parasite Leishmania infecting macrophages,
for example, express functional chemokine receptors. These are used
as chemoreceptors to promote chemokinesis toward chemokine-
producing macrophages. This leads to an efficient Leishmania
internalization (Roychoudhury et al., 2006) that takes place before
an efficacious immune response is set up to clear the pathogen. A
second example is taken from the bacterium Bordetella pertussis. The
pathogen is reported to delay neutrophil recruitment, by slowing
down chemokine production by the host (Andreasen & Carbonetti,
2008), through production of pertussis toxin the well known inhibitor
of Gi protein mediated signalling. Also, as a third illustration, human
herpesvirus 6 (HHV-6) produces a chemokine, U83A, that binds to
CCR5 to modify its internalization-recycling fate (Catusse et al., 2007;
Catusse et al., 2009). Indeed, at variance to other CCR5 chemokines,
U83A is a CCR5 agonist that does not drive the receptor towards a
clathrin-mediated endocytosis but to a delayed and long lasting
caveolin-linked pathway. Combined to the fact that U83A is not
recognized by DARC and D6, the viral chemokine thus facilitates
clearance of all other CCR5 chemokines which can no longer activate
the receptor but remain capable of being trapped by interceptors.

Relevant to the present article are the neutralizing molecules
produced by viruses and multicellular pathogens that are used to
neutralize the immune response of the host. Several articles and
reviews describe the production by viruses, of soluble proteins able to
bind chemokines sometimes simultaneously with cytokines such as
interferon gamma, interleukine-1β or tumor necrosis factor α
(McFadden et al., 1998; Murphy, 2000; Alcami, 2003; Rosenkilde,
2005; Mantovani et al., 2006), all of which are implicated in the host
immune response to pathogens. Two major mechanisms of action are
depicted: the inhibition of cytokine–cytokine receptor interaction and
the inhibition of cytokine–extracellular matrix interaction (McFadden
et al., 1998), both of which being associated with improvement of
cytokine clearance by elimination and/or degradation. The biologi-
cally active scavenging molecule can be a soluble protein, often
mimicking the extracellular binding domain of the host cytokine
receptor. It may also be a membrane-bound protein, like the decoy
receptors mimicking the chemokine receptors which do not contain
any soluble portions.

Representatives of soluble proteins that inhibit the interaction
between chemokines and glycosaminoglycans (GAGs) from the
extracellular matrix are M-T1 and M-T7 produced by the rabbit-
infecting myxoma virus. M-T7 binds interferon gamma together with
chemokines from the CC-, CXC- and C-groups (Lalani et al., 1997). The
herpesvirus homodimeric protein M3 and the glycoprotein G also
belong to the group of soluble proteins inhibiting chemokine binding
to GAGs (van Berkel et al., 2000; Martin et al., 2006). All exhibit
original tridimensional structures that do not resemble chemokine
receptors. The mechanisms by which they neutralize the immune
system may be two-fold. On the one hand, GAGs are well known to
contribute to the setting up and maintenance of chemokine gradients
close to their sites of production. The inhibition of chemokines
binding to GAGs might thus result in chemokine gradient collapses.
Altered immune response that could derive from that could be
attenuation of signalling intensity or unsuited, or even absence of,
leukocyte targeting (Wells et al., 2006). On the other hand, the large
size of soluble chemokine binding proteins could hinder the
interaction with the chemokine receptor. Thus, although the targeted
domain of the chemokine is the GAG-binding domain, the remainder
of the large soluble proteinmight simultaneously prevent interactions
with the cognate chemokine receptors. The use of small molecules
mimicking the effects of GAG-binding proteins would help to
determine the mechanism of action likely to take place.

Another example of soluble proteins produced by parasites is
highlighted by recent research developments. Ticks are bloodsucking
parasites that transmit the spirochete Borrelia burgdorferi responsible
for Lyme disease (Hirschfeld et al., 1999; Hajnicka et al., 2001;
Guerau-de-Arellano & Huber, 2005; Behera et al., 2006; Vancova et al.,
2007; Deruaz et al., 2008). In order to survive, ticks attach and remain
feeding on the host for several days–weeks. A particularity of the
host–parasite interaction is the absence of an inflammatory response
to ticks. This was investigated by several groups who realized that the
parasite produces anti-haemostatic, anti-inflammatory and immuno-
modulatory substances, and secretes them in the host (Waxman et al.,
1990; Valenzuela et al., 2000). Anti-chemokine molecules acting
against CXCL8 (Hajnicka et al., 2001), CCL2, CCL3, CCL5 and CXCL11
(Vancova et al., 2007) were detected although their identity was not
elucidated. Using an expression cloning strategy, the group of
Proudfoot identified a family of small proteins, the evasins, that
similar to soluble viral chemokine binding proteins, recognize and
bind chemokines with various degrees of selectivity, and intercept
their signalling to the host immune and anti-inflammatory systems
(Frauenschuh et al., 2007; Deruaz et al., 2008). Three identified
evasins bind CC (evasins-1 and -4) and CXC (evasin-3) chemokines.
The fourth one, evasin-2, is still without a known ligand. The interest
in these small proteins resides in their extreme efficacy to delude the
immune system, and to their very small size (60–70 amino acids) that
inspires searches for chemokine neutralizingmotifs with the potential
to become drugs.

The second general mode of action of pathogens is reminiscent of
intercepting receptors described above. Human and mouse cytomeg-
alovirus, Kaposi-associated herpesvirus and capripoxvirus produce
seven transmembrane segment proteins (ORF74, US28, M33, and Q2/
3L) which are analogous to G-protein-coupled receptors (Alcami,
2003; Rosenkilde, 2005). These proteins are expressed at the surface of
infected cells and act, similarly to DARC or CCX-CKR, as decoy proteins
that internalize chemokines and drive them towards degradation.

3. Potential therapeutic interest of soluble decoy proteins

Soon after the discovery of 50 different chemokines, the number of
receptors grew to 20members, all belonging to the G-protein-coupled
receptor family for which it should be noted that one given chemokine
may activate several receptor subtypes. The chemokine CXCL8 for
instance activates two receptors (CXCR1 and CXCR2) and the
chemokine CCL5 activates three receptors (CCR1, CCR3, and CCR5).
On the other hand, a large number of chemokinesmay activate a single
receptor subtype. This is the case for CXCR2, which is activated by
CXCL-1, -2, -3, -5, -6, -7 and -8, for CCR5 that is activated by CCL-3, -4,



Table 1

Chemokine/chemokine
receptor

Biological tool Effect Reference

CCL1 (I-309) CCR8 Anti-CCL1 Post-operational peritoneal adhesions Hoshino et al., 2007
CCL2 (MCP-1) CCR2 Anti-CCL2 – Prostate cancer growth inhibition Loberg et al., 2007; Li et al., 2009a

– Infectious keratitis Xue et al., 2007
– Atherosclerosis Lutgens et al., 2005

CCR2 knock out – Atherosclerosis/multiple sclerosis Boring et al., 1998; Izikson et al., 2000
CCL2 knock out – Age-related macular degeneration/neuroinflammation Belmadani et al., 2006; Ross et al., 2008

– Sepsis Lu et al., 1998
– Atherosclerosis Gu et al., 1998

CCL3 (MIP-1a) CCR1/CCR3/
CCR5

Anti-CCL3 – Infectious keratitis Xue et al., 2007
– Fever Soares et al., 2009
– Sepsis Takahashi et al., 2002
– Inflammation in MS Man et al., 2007

CCL3−/− – Sepsis Cook et al., 1995
CCL4 Anti-CCL4 – Lung inflammatory response Bless et al., 2000
CCL5 (RANTES) CCR5/CCR1/
CCR3

Anti-CCL5 – Autocrine proliferation of Hodgkin lymphoma cell lines Boring et al., 1998; Izikson et al., 2000; Aldinucci et al., 2008;
Levina et al., 2008

CCL5−/− – Demyelination in MS
– Glial activation Glass et al., 2004

El-Hage et al., 2008
CCL6 (C10) CCR1 Anti-CCL6 – Lung inflammation and remodeling Ma et al., 2004

– Airway allergy and hyperesponsiveness Hogaboam et al., 1999
– Phagocytic activity of macrophages Steinhauser et al., 2000

CCL7 (MCP-3) CCR2 Anti-CCL7 – Airway allergy and hypereosinophilia Stafford et al., 1997
CCL8 (MCP-2) CCR2/CCR5
CCL9 (MIP-1g) CCR1 Anti-CCL9 – Osteoclast differentiation Yang et al., 2006
CCL11 (Eotaxin) CCR3 Anti-CCL11 – Airway allergy/asthma Ding et al., 2004; Niimi et al., 2007

– Bronchiolitis Matthews et al., 2005
Eotaxin−/− – Acute inflammatory response Rothenberg et al., 1997

CCL12 (MCP-5) CCR2/CCR5
CCL13 (MCP-4) CCR2
CCL14 (HCC-1) CCR1
CCL15 (HCC-2) CCR1/CCR3
CCL16 (HCC-4) CCR1/CCR3
CCL17 (TARC) CCR4 Anti-TARC – Hypereosinophilia/allergic asthma de Lavareille et al., 2001; Schnyder-Candrian et al., 2006

– Pulmonary infections/fibrosis Belperio et al., 2004; Carpenter and Hogaboam, 2005
– Lung cancer (?) Qin et al., 2009
– Hepatic failure Yoneyama et al., 1998
– Skin inflammation Campbell et al., 1999

CCL18 (PARC) CCR3 (?) Anti-CCL18 – Rheumatoid arthritis van der Voort et al., 2005
CCL19 (ELC) CCR7
CCL20 (MIP-3 alpha) CCR6 Anti-CCL20/anti-

CCR6
– Multiple myeloma Giuliani et al., 2008

Anti-CCL20 – HPV infection/Langerhans cells migration Caberg et al., 2009
– Brain inflammation (MS/EAE) Ambrosini et al., 2003

CCL21 (SLC) CCR7 Anti-CCL21 – Kidney fibrosis Sakai et al., 2006; Wada et al., 2007
– Corneal immunity Jin et al., 2007b

CCL21−/− mice – Thymus development Liu et al., 2005
CCL22 (MDC) CCR4 Anti-CCL22 – Leukemia cell survival and proliferation Ghia et al., 2002

– Eosinophil activation in lung inflammation Pinho et al., 2003
– Lung cancer Qin et al., 2009

CCL23 (MPIF-1) CCR3 – Vascular endothelial cell migration Son et al., 2006
CCL24 (Eotaxin-2) CCR3 – HIV pathogenicity Fiorucci et al., 2007
CCL25 (TECK) CCR9 Anti-CCL25 – Intestinal immunity Feng et al., 2006; Hieshima et al., 2008
CCL26 (Eotaxin-3) CCR3 Cuvelier and Patel, 2001
CCL27 (CTACK) CCR10 Anti-CCL27 Dermatitis/skin disease Morales et al., 1999; Reiss et al., 2001; Chen et al., 2006
CCL28 (MEC) CCR10 Anti-CCL28 – Intestine and colon immunity Feng et al., 2006; Hieshima et al., 2008
CXCL1 (Gro alpha) CXCR2 Anti-CXCL1 – Arthritis Grespan et al., 2008; Lemos et al., 2009

– Kidney sepsis Brown et al., 2007
– Airway inflammation Issa et al., 2006

CXCL2 (Gro-beta) CXCR2 Anti-CXCL2 – Kidney sepsis Brown et al., 2007
CXCL3 (Gro gamma) CXCR2
CXCL4 (PF4) CXCR3b
CXCL5 (ENA-78) CXCR2 Anti-CXCL5 – Arthritis Grespan et al., 2008; Smith et al., 2008; Lemos et al., 2009

– Diabetes Chavey et al., 2009
– NSCLC growth/angiogenesis Pold et al., 2004

CXCL6 (GCP-2) Anti-GCP-2 – Growth SCLC Zhu et al., 2006
– Arthritis Kelchtermans et al., 2007

CXCL7 (NAP-2) Anti-NAP-2 – Thrombosis Amiral et al., 1996; Piccardoni et al., 1996
CXCL8 (IL8) CXCR1/CXCR2 Anti-CXCL8 – Inhibition of NSCLC growth/angiogenesis Pold et al., 2004

Anti-CXCR1 – Inhibition of NSCLC proliferation Zhu et al., 2004
Anti-CXCL8 – Clearance of apoptotic cells Iyoda et al., 2005

CXCL9 (Mig) CXCR3 Anti-CXCL9 – Brain immunity and MS Liu et al., 2001a; Salmaggi et al., 2002
– Transplant rejection Belperio et al., 2003; Whiting et al., 2004; Colvin et al., 2005
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Table 1 (continued)

Chemokine/chemokine
receptor

Biological tool Effect Reference

CXCL10 (IP-10) CXCR3 Anti-CXCL10 – Axon sprouting and vasculature remodelling following
injury

Glaser et al., 2004; Glaser et al., 2006

– Inflammatory demyelination in MS Liu et al., 2001; Narumi et al., 2002
– Coronavirus-induced neurological and liver damage Walsh et al., 2007
– Transplant rejection Belperio et al., 2002

CXCL11 (I-TAC) CXCR3 Anti-CXCL11 – Brain immunity Rupprecht et al., 2005
CXCL12 (SDF-1alpha) CXCR4 Anti-CXCL12 – Autoimmune disease/lupus erythematosus Matin et al., 2002; Balabanian et al., 2003; Wang et al., 2009

– Metastases/tumor proliferation Muller et al., 2001; Cardones et al., 2003; Orimo et al., 2005;
Phillips et al., 2003; Pan et al., 2006; Otsuka and Bebb, 2008

– Pulmonary hypertension/airway inflammation Gonzalo et al., 2000; Hachet-Haas et al., 2008; Lukacs
et al., 2002; Young et al., 2009

Anti-CXCR4 – Tumor invasion Bertolini et al., 2002; Hinton et al., 2008; Li et al., 2009b
– NSCLC proliferation
– Airway inflammation Otsuka and Bebb, 2008

CXCL12−/− – Development Nagasawa et al., 1996
CXCL13 (BCA-1) CXCR5 Anti-CXCL13 – Autoimmunity/myasthenia gravis Meraouna et al., 2006

– Arthritis Zheng et al., 2005
– Graft rejection Lee et al., 2006

CXCL14 (BRAK, BMAC)
CXCL15 (Lungkine) CXCL15 knock out – Sepsis Chen et al., 2001
CXCL16 CXCR6 Anti-CXCL16 – Kidney inflammation Yang et al., 2008

– Sepsis Shimaoka et al., 2003; Xu et al., 2005
– Arthritis
– Graft tolerance Nanki et al., 2005

Jiang et al., 2005
CXCL16−/− – Atherosclerosis Aslanian and Charo, 2006

CX3CL1 (fractalkine) CX3CR1 Anti-CX3CL1 – Graft tolerance Ueha et al., 2007
– Autoimmune disease Suzuki et al., 2005
– Atherosclerosis Schulz et al., 2007

XC3CL1 knock out – No phenotype Cook et al., 2001
XCL1 (lymphotactin) XCR1 Overexpression – Cancer immunotherapy Wang et al., 2002

– Anti-infection immunotherapy Yue et al., 2009

NSCLC: non-small cell lung cancer; SCLC: small cell lung cancer; MS: multiple sclerosis; EAE: experimental autoimmune encephalomyelitis.

45J.-L. Galzi et al. / Pharmacology & Therapeutics 126 (2010) 39–55
-5, -6, -8, -12, as well as for many other receptors (CXCR3, CCR1, CCR2,
CCR3….) (reviewed inWells et al., 2006). Thequestion then arose as to
which receptor and which chemokine should be targeted to decipher
physiological signalling pathways and predict therapeutic approaches
for disease treatment. Many research groups could help solve this
problem by showing that despite chemokines and cytokines' cooper-
ation to increase inflammatory responses, knock out or neutralization
of one chemokine or chemokine receptor will induce significant
attenuation of inflammation (see Table 1). Several chemokine gene
disruptions result in a clear effect, as for instance knock out of CCL3
that reduces the inflammatory response to viruses such as influenza A
and cytomegalovirus (Salazar-Mather et al., 1998). Similarly, the
knock-out approach indicates the importance of CCL2 and its receptor
in chemoattraction of neural progenitors to inflamed neural sites
(Belmadani et al., 2006), that of CCL5 in glial cell activation (El-Hage et
al., 2008), of CCL21 in thymus development (Liu et al., 2005) or that of
CXCL12 in haematopoiesis (Nagasawa et al., 1996). Very convincing
results are also obtained by using proteins or antibodies neutralizing
the chemokine ligand. The Lucas andMc Fadden groups have exploited
the neutralizing effect of the myxoma virus M-T7 soluble protein to
reduce post-operative responses inmurinemodels of tissue engrafting
(Liu et al., 2000, 2004; Bedard et al., 2003). They show that intravenous
injection of M-T7 protein, that binds all types of chemokines (see
Section 2.2) in rats after angioplasty-induced injury diminishes
atherosclerosis and restenosis (Liu et al., 2000). This is in good
agreement with the phenotype of CCL2−/−mice (Gosling et al., 1999),
and with the reported prevention of renal allograft rejection (Bedard
et al., 2003) or reduction of aortic allograft vasculopathy through
inhibition of chemokine-mediated responses (Liu et al., 2004).

Finally, the newly identified evasin proteins from ticks also display
potent anti-inflammatory properties in vivo in animalmodels (Deruaz
et al., 2008). Evasin-1, which binds CCL3 and CCL4, significantly
attenuates recruitment of pro-inflammatory cells in phorbol ester-
inflamed skin of D6−/− mice and fibrosis in bleomycin-induced lung
injury. Evasin-3 recognizes CXCL8 and its mouse homolog KC, as well
as CXCL11. It inhibits neutrophil chemotaxis in vitro, as well as
neutrophil recruitment to the peritoneal cavity in mice in a model of
BSA-induced arthritis.

4. Validation of chemokines in signalling pathways
and pathology: importance of anti-chemokine antibodies

Chemokines are directly implicated in many physiological pro-
cesses including surveillance of organism integrity, elimination of
damaged cells and tissues or host defence against pathogens. To this
end, they recruit the most adapted cell types on the site where
intervention is needed, and promote a controlled reaction generally
associatedwith limited inflammation. Under abnormal conditions, the
inflammatory response escapes control, thus leading to pathological
states such as inflammatory bowel disease, multiple sclerosis, and
probably Alzheimer's disease, among others. In this case, abnormally
elevated levels of chemokines, or overexpression of their receptors,
lead to permanent recruitment of immune cells and to tissue damage.
In a comparable manner, abnormal recognition of antigen initiates
autoimmunediseases (myasthenia gravis, lupus erythematosus, Type I
diabetes, rheumatoid arthritis…), where abnormally elevated levels of
chemokines are detected (Matin et al., 2002; Kong et al., 2009; Wang
et al., 2009). The cytokine and chemokine systems are also used by
cancer cells to promote cell proliferation, tumor survival and
neovascularization, or to establish metastases at distant but non-
random places (Vandercappellen et al., 2008). Chemokines also
contribute to tissue development (Nagasawa et al., 1996; Mahaba-
leshwar et al., 2008; Raz & Mahabaleshwar, 2009) by forming
gradients of morphogens for migrating cells.

Table 1 summarizes all efforts made to investigate the role of
the various chemokines, using approaches targeting the chemokine
as directly as possible. The two major approaches, namely gene
disruption and anti-chemokine antibodies, do generally lead to
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convergent observations, although the same phenomenon has only
rarely been studied using the two approaches.

Deletion of one of the CCL3 and CCL5 receptors, the CCR5 receptor
(CCR5 Δ32 allele found in humans) is associated with protection from
HIV infection in humans (Samson et al., 1996; Kindberg et al., 2008; Lim
et al., 2008) while deletion of a second receptor, the CCR1 receptor,
results in protection from an excessive response to systemic inflamma-
tion in mouse models (Gerard et al., 1997). Deletion of the CCR1 and
CCR5 ligand, CCL3 (MIP-1alpha), results in weaker inflammatory
responses to viral pathogens (Cook et al., 1995), and deletion of CCL5
(RANTES) to a reduced glial cell inflammatory response (El-Hage et al.,
2008). Therefore, the absence of perfectmatching between chemokines
and their receptors is a cause of difficulties encounteredwhen signalling
pathways are to be traced, and molecules targeting the function of one
receptor do not systematically match the effects of molecules targeting
the ligand (Horuk, 2009).

Rather than knocking out chemokine or chemokine receptor
genes, neutralizing antibodies, which are rapidly obtained, have been
very useful in particular for chemokines. Chemokines are small
proteins with a highly stable structure (Fig. 3), which renders them
amenable to the development of neutralizing antibodies (Table 1).

In the case of CCL5 for instance, neutralizing antibodies allow the
functional role of this chemokine in autocrineproliferation of leukemia
cells (Boring et al., 1998; Izikson et al., 2000; Aldinucci et al., 2008) to
be demonstrated as well as neuroinflammation in models of multiple
sclerosis (Glass et al., 2004). It is interesting to note that although CCL5
binds to the same subset of chemokine receptors as CCL3, the anti-
CCL5 neutralizing effect is specific because CCL3 is expressed in other
cell types.

Anti-CCL1 antibodies have been used to demonstrate the contri-
bution of CCL1/CCR8 autocrine activation of peritoneal macrophages
in the formation of peritoneal adhesion, which constitutes complica-
tions in visceral surgery and inflammation (Hoshino et al., 2007).

Also antibodies to CXCL8, CCL2 or CCL5 block the antiapoptotic and
proliferative effects of the corresponding tumor-derived cell lines
obtained from lung, melanoma, breast ovarian or leukemia cancers
(Levina et al., 2008).

Besides their functions in the immune system, the role of
chemokines in cancer initiation and progression as well as in tumor
Fig. 3. Superimposition of peptide backbones from CC, CXC and CX3C chemokine groups
shows that they have a canonical three dimensional structure.
survival has been confirmed with neutralizing antibody strategies.
Hence, antibodies against chemokines or chemokine receptors block
tumor growth and/or migration as well as invasiveness. Various
examples may be given, like i) anti-CXCL12/CXCR4 antibodies in
ovarian and breast cancer (Muller et al., 2001; Scotton et al., 2002;
Kwong et al., 2009), ii) anti-CXCL1 and anti-CXCL2/CXCR2 in lung
cancer (Wang et al., 2006a), iii) anti-CXCL13/CXCR5 in cell lines from
pancreatic or colon cancers (Meijer et al., 2006), iv) anti-CCL2/CCR2
and -CCL5/CCR5 (Vaday et al., 2006), and -CCL11/CCR2 in ovarian
cancer (Levina et al., 2009), and v) anti-CCL21/CCR7 in thyroid tumor
cells (Sancho et al., 2006).

5. Neutralizing cytokines and
chemokines with small chemical compounds

The study of protein–protein interactions is important to understand
major regulatory pathways, especially in the intracellular compartment,
which isnot reachedbyneutralizingantibodies. Thedifficulty associated
with the study of protein–protein interactions is not only that most of
the time, interacting partners are both intracellular, and thus not easily
accessible for biophysical or pharmacological manipulations, but also
that protein–protein interactions generally involve contact areas that
are much larger than small molecules. These contact areas, in addition,
are quite featureless in terms of the number of attachment points that
can be exploited bymedicinal chemists to develop smallmoleculeswith
high affinity. It follows that small molecules at most bind with modest
affinities and frequently hardly compete efficiently to inhibit the
interaction between two proteins. Still, favourable cases exist in which
neutralization of a protein function can be obtained with a small
molecule (Arkin & Wells, 2004; Arkin, 2005; Arkin & Moasser, 2008;
Blazer & Neubig, 2009).When the approach works, questions related to
themode of action of the small molecule must be addressed, in order to
generalize the principles and extend the approach to other specific
cases. The different mechanisms of ligand neutralization are numerous
and diverse. In terms of chemical biology, the aim thus being to develop
small chemicalmolecules blocking the function of theprotein ligand,we
shall not discuss molecules that inhibit synthesis, maturation or release
of the protein ligand, nor molecules that modulate its catabolism,
already reviewed elsewhere (Foxwell et al., 2003; Vergote et al., 2006;
Mortier et al., 2008). Rather we will focus on small organic molecules
that bind to the protein ligand and prevent its signalling.

Four main modes of action are encountered (Fig. 4):

i) The small molecule competitively binds to the same site as the
receptor;

ii) The small molecule alters the quaternary structure of the
protein ligand;

iii) The protein ligand undergoes structural changes that regulate
its activity: the small molecule alters tertiary structure of the
protein ligand;

iv) The small molecule interferes with ligand bioavailability.

These different modes of chemokine/cytokine neutralization will
now be illustrated, and the methods to identify them discussed. These
mechanisms of action have been validated, (Berg, 2003; Arkin &
Wells, 2004; Arkin, 2005; Blazer & Neubig, 2009) and may be
extended to chemokine neutralization.

5.1. The small molecule competitively binds to the same site as the receptor

Based upon structure–function relationship studies, many exam-
ples of peptides mimicking receptor domains and acting as inhibitors
are available. In the family of chemokines and their receptors, the
importance of the extracellular parts of the chemokine receptor
(Zoffmann et al., 2002; Duma et al., 2007), and in particular of its
amino-terminal domain, for ligand–receptor interactions has been
extensively documented (Blanpain et al., 1999; Gayle et al., 1993;



Fig. 4. Illustration of the different modes of action of neutralizing molecules. a) The small molecule competitively binds to the same site as the receptor. b) The small chemical
molecule alters the quaternary structure of the protein ligand. c) The protein ligand undergoes structural changes that regulate its activity: the small molecule alters tertiary
structure of the protein ligand.
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Monteclaro & Charo, 1996, 1997; Pease et al., 1998; Ye et al., 2000;
Bannert et al., 2001; Fong et al., 2002; Rajagopalan & Rajarathnam,
2004; Prado et al., 2007; Veldkamp et al., 2008). This has led to the
identification of peptide fragments capable of binding to the
chemokine in a manner thought to mimic the mode of interaction of
the chemokine with the receptor. Peptide fragments corresponding to
the 1–35 N-terminal residues from CCR3 (Mayer & Stone, 2000; Ye
et al., 2000), 1–40 from CXCR1 (Clubb et al., 1994) or 2–19 from
CX3CR1 (Mizoue et al., 1999; Kokkoli et al., 2005) interact with CCL24,
CXCL8 and CX3CL1, respectively, with millimolar to micromolar
affinities. In all three examples, the interaction area of the chemokine
is located in the helical turn of the N-loop and the β1–β2 and β2–β3
hairpin domains, in regions of greatest flexibility and structural
variability of the chemokine (Mizoue et al., 1999). These peptides
have not been further used to investigate the in vitro or in vivo
functions of chemokines. Their discovery however suggested that
neutralizing antibodies-based approaches (Table 1) are not the only
possible tools with which to inhibit chemokine functions, and paved
the way to find high affinity peptides capable of neutralizing
chemokines. One approach starts from natural peptides targeting
chemokines as illustrated by the work on evasins (Deruaz et al., 2008)
described above. Although peptidic in nature, evasins are not
immunogenic, at least when secreted by feeding ticks. They are thus
expected to represent valuable scaffolds to study, tomake analogs and
to use as non-peptidic drugs. Another approach consists in identifying
new chemokine binding molecules from collections of peptides and
peptidomimetics (Burger & Peled, 2009). Such peptides or peptido-
mimeticsmay either exhibit selectivity towards a single chemokine or,
in contrast, poorly discriminate among chemokines such as CXCL9,
CCL2, CXCL8, CXCL12 or CCL11 (Peled, A., Eizenberg, O. Vaizel-Ohayon,
D. US patent 7488717). The anti-CXCL12 peptide, BKT 140, identified
by surface plasmon resonance and ELISA, is currently in clinical phase I
for neutropenia and anemia.

Chemokine neutralizing ligands may also not be peptidic at all. A
screening campaign of an academic library of small molecules (Boeglin
et al., 2007; Hibert, 2009) was designed, using a fluorescence resonance
energy transfer assay (Vollmer et al., 1999; Valenzuela-Fernandez et al.,
2001) in order to identify inhibitors of CXCL12–CXCR4 interactions. A
chalcone molecule (4′-phenyl, 3-methoxy, 4-hydroxy chalcone) was
found to be very effective (Ki=50 nM) at inhibiting CXCL12 binding to
CXCR4 and CXCR7, and signalling through CXCR4, including chemotaxis
in vitro and in vivo (Hachet-Haas et al., 2008). The molecule however
was unable to block cell fusion in an in vitro model (Chanel et al., 2002)
of HIV entry. The proposedmodel of chalcone binding to the chemokine
rather than to its receptor could be demonstrated using tryptophan
fluorescence and microcalorimetry. This was reminiscent of earlier
studies describing a natural derivative of chalcones, the flavone baicalin,
isolated from Scutellaria baicalensis, which binds to the chemokines
CXCL8, CXCL12, CCL4 and CCL8, although affinities were about four
orders ofmagnitude lower (Li et al., 2000). The compound 4′-phenyl, 3-
methoxy, 4-hydroxy chalcone, modestly inhibits signalling through
CXCL8, a chemokine from the same structural subgroup as CXCL12, but
is not active onCCL5, at least not in themicromolar concentration range.
Finally, the chalcone compound shows efficacy, in vivo, in a mouse
model of allergic hypereosinophilic airway inflammation where it is as
powerful as neutralizing antibodies to either CXCL12 or CXCR4 (Hachet-
Haas et al., 2008). Although the structure of the chemokine–chalcone
has not been solved, molecular modeling and preliminary NMR data (C.
Veldkamp, Milwaukee University, personal communication) support
the idea that the chalcone binds to the same chemokine area as do
chemokine receptor-derived peptides, i.e. in the groove delineated by
the N-loop hairpin and β-strands 2 and 3 of the chemokine (Fig. 5). Yet,
whether chalcone perturbs the state of chemokine oligomerization
remains an open question. Other chalconemolecules are reported to act
as inhibitors of allergic inflammatory diseases (Meng et al., 2007). The
question as to whether the chalcone backbone acts as a chemical
platform for biologically activemolecules is open, and themechanismof
action of the molecules in vivo might rely onmultiple interactions with
different target proteins.

The example of the IL-2 neutralizing small molecules, SP4206 and
SP4160, illustrates that flexible regions of small protein ligands can be
targeted by high affinity molecules binding at protein–protein
interfaces that are poorly druggable, but can adjust their structure to
accommodate the ligand (Arkin & Wells, 2004; Thanos et al., 2006).
The IL-2 receptor mediates T-helper cell maturation and is a drug
target for transplant rejection (Waldmann & O'Shea, 1998; Berard et
al., 1999) and autoimmune diseases (Schippling & Martin, 2008). Its
ligand, interleukin-2 is a 15 kDa four helix bundle protein that
promotes T cell growth. In a drug design program aiming atmimicking
the IL-2 part that binds to the IL-2R, a peptidomimeticmolecule, Ro26-
4550, was discovered (Tilley et al., 1997). The molecule could inhibit
IL-2 binding to its receptor with micromolar affinity, and careful



Fig. 5. Proposed model for the interaction between CXCL12 and neutralizing chalcone
molecule 4. Redrawn from Hachet-Haas et al. (2008).
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characterization of the mode of action led to the identification of the
interleukin-2 itself being the receptor for Ro26-4550, not the IL-2R
receptor protein (Emerson et al., 2003). Detailed structural analysis of
Ro26-4550 interaction with IL-2, in particular using X-ray crystallog-
raphy andNMR(Arkin et al., 2003) described in detail the binding area.
The small chemical compoundbinds to a pocket that does not pre-exist
as such in its absence. In other words, the binding area is the complex
result of the adaptation of the local protein folds around the chemical.
This particular case illustrates the difficulty to use the structure of the
“empty” binding site, a priori, to predict Ro26-4550 structure or
binding. However, optimization of the compounds, using X-ray
crystallography of complexes, fragment-based approaches and teth-
ering techniques, allowed the affinity of the IL-2 binding molecules to
be lower to a few tens of nanomolar (Raimundo et al., 2004; Thanos
et al., 2006).

Chemokines are present in the brain in glial cells as well as in
neurons (Rostene et al., 2007). Concordantwith their known role in the
periphery, chemokines are up regulated during inflammation, and
contribute to brain immunity and neuroprotection (Cartier et al., 2005;
Glass et al., 2005;Madrigal et al., 2009; Omari et al., 2009). They are also
involved in progenitor cell migration towards brain tumors (Magge
et al., 2009), and participate in brain development and neuronal cell
differentiation (Zou et al., 1998; Park et al., 2009). They are even
distributed in neurons as neuromodulators are, and modify release of
neurotransmitters or neuropeptides (Rostene et al., 2007). These
findings, together with the development of pharmacological tools
for chemokine receptors offers the possibility to better study
chemokine signalling in the brain. Not only agonists or antagonists
of the receptors, but also small neutralizing molecules directed
against chemokines could be extremely valuable, in particular if they
cross the blood brain barrier (BBB) to reach their target cytokines.
One example is the conversion of the chemokine CXCL12, an agonist
of CXCR4 and ligand of CXCR7, into an antagonist of CXCR3 (Vergote
et al., 2006). The chalcone molecule mentioned above is probably a
good pharmacological agent to study neuronal toxicity associated
with CXCL12 catabolism.
Another application for potential neutralizing ligands is exempli-
fied by the effect of anti-CCL5 antibodies. They are administered to
fight the leukocyte infiltration that takes place in the brain as a result
of virus-driven CCL5 production in mice. This infiltration is followed
by destruction of myelin and appearance of neurological impairment
(Glass et al., 2004). Antibodies to CCL5 significantly decrease
macrophage accumulation in the brain and demyelinization. CCL5
neutraligands should thus prove useful to investigate the incidence of
CCL5 in multiple sclerosis.

5.2. The small molecule alters quaternary structure of the protein ligand

Chemokines show a natural propensity to form dimers or oligomers
depending on medium composition (Veldkamp et al., 2005), biochem-
ical environment in particular glycosaminoglycans (Crown et al., 2006),
or interaction with chemokine receptors (Veldkamp et al., 2008).
Homodimerization/oligomerization is well established for CC chemo-
kines such as CCL2, CCL4, CCL5 and CCL14 (Blain et al., 2007; Jin et al.,
2007a; Proudfoot et al., 2003), and heterodimerization is also
experimentally supported for instance in CCL2–CCL13, CCL2–CCL11 or
CCL8–CCL13 heterodimers (Crown et al., 2006). Up to now, the
functional consequences of these homologous or heterologous interac-
tions have not been well understood, but the oligomerization process
may be interesting to interfere with when attempting to neutralize
chemokine actions (Fig. 4). Indeed, CC chemokine dimers do not
correspond to the quaternary structure that interacts with the receptor,
because residues critical for receptor binding are buried in thedimer (Jin
et al., 2007a), and mutations can be made to abolish dimerization
(Proudfoot et al., 2003; Jin et al., 2007a). In the case of CCL2, it could be
demonstrated that certain responses, in particular leukocyte attraction
in vivo, were abolished. This selective suppression of certain responses
which leaves other responses unaffected is reminiscent of previously
described multiple active states of G-protein-coupled receptors
(Palanche et al., 2001) that can be differentially activated by distinct
agonists, or modulated by allosteric effectors (Maillet et al., 2007). If
prevention of dimer formation is per se sufficient to block chemoattrac-
tion in vivo, then the mechanism of action of the interceptor M3 (from
herpesvirus) is probably exquisitely optimized. Decoy receptor M3
(vCKBP3) binds twomonomers of CCL2 perM3 homodimer (Alexander
et al., 2002). Thus, even though M3 recognizes and binds the GAG-
bindingdomain of CCL2, its aptitude to “dissolve” dimers is thus likely to
represent a mechanism of inhibition of CCL2 signalling in vivo (Handel
et al., 2008).

In the case of CXC chemokines, dimerization also takes place
spontaneously, but the dimer structure differs from that of CC
chemokine dimers in that residues important for receptor interaction
are not buried in the dimer. CXC chemokines can thus interact with
their receptors either as monomers or as dimers/oligomers. At
variance with what happens when CC chemokines interact with
their receptors, it was demonstrated that a CXC chemokine receptor
may itself be responsible for chemokine dimerization (Veldkampet al.,
2008). Tyrosine sulfation of the N-terminal domain of CXCR4 on
tyrosines 7 and 12 is indeed a key determinant of receptor-mediated
dimer formation since sulfated tyrosine 7 interacts with a CXCL12
monomer, while sulfated tyrosine 12 interacts with the second
monomer. Two lines of evidence support the importance of CXCL12
dimerization in signalling: i) amino acids from CXCL12 are involved
both in the interactionwith heparan sulfates andwith CXCR4; heparan
sulfates can thus negatively affect CXCL12-evoked chemotaxis in vitro
(Murphy et al., 2007), and ii) tethering CXCL12 monomers to obtain
permanent CXCL12 dimers results in a partial loss of function of
CXCL12. The permanent dimer indeed shows unaltered capacity to
promote intracellular calcium elevation in CXCR4 expressing cells, but
is no longer capable of triggering in vitro chemotaxis (Veldkamp et al.,
2008). Although these results are not yet totally interpreted in terms of
structure–function relationships, modulation of chemokine
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oligomerization represents a promising way to change cellular
responses with possible important consequences in vivo. The
unsaturated heparin disaccharide used to perturb CXCL12 dimer
structure (Murphy et al., 2007) is a plausible starting chemical
platform to exploit. Virtual and experimental screening of collections
of molecules on chemokine dimers could lead to the discovery of
neutralizing molecules, the mechanism of action of which would be
prevention of dimer formation. The critical step in this kind of project
would be the definition of primary and secondary assays allowing
qualitative and quantitative description of the new compound effects.

TNFα is produced in response to pathogens through toll-like
receptor activation, and promotes expression of many immune
system effectors, including cytokines and chemokines (Balkwill,
2009) that will recruit leukocytes to the site of inflammation. If
production of TNFα is excessive, chronic inflammation can develop as
in rheumatoid arthritis, Crohn's disease, severe asthma or psoriasis, all
diseases in which a prominent role of TNFα has been demonstrated.
Anti-inflammatory therapies have been developed, based on inhibi-
tion of either the production of TNFα or the neutralization of TNFα
itself (Foxwell et al., 2003). The neutralizing monoclonal antibodies,
etanercept, infliximab and adalimumab have led to successful treat-
ment in rheumatoid arthritis, and show that neutralizing antibodies
can prove valuable not only in acute, but also in chronic human
diseases. Yet, two problems remain after several runs of antibody
optimization for human use: the mode of administration associated
with dosing difficulties, and the elevated cost of treatment have
motivated the search for alternative therapeutic tools. In the search
for small molecules from collections of combinatorial fragments
capable of inhibiting TNFα binding to its TNF-R1 receptor, He et al.
(2005) discovered a small molecule inhibitor exhibiting a micromolar
affinity constant. When trying to identify by X-ray crystallography the
binding site of the small molecule on the large trimeric structure of
TNFα, the authors realized that soaking TNFα crystals led to their
destruction. Crystallization of the complex was then obtained. It
revealed that the mode of action of the small molecule antagonist of
TNFα is to dissociate its trimeric quaternary structure into inactive
inhibitor-bound dimers with a stoichiometry of one molecule per
dimer (He et al., 2005; Berg, 2006). This illustrates one of themodes of
action of small molecule inhibitors that, following description of CCL2
monomer failure to signal (Handel et al., 2008), could be applied to
the family of chemokine proteins, using detection of quaternary
structure as a primary screen.

5.3. The protein ligand undergoes tertiary structural changes that
regulate its activity and the small molecule prevents the active conformer

Soluble proteins may undergo three dimensional structural
changes, either spontaneously, in a regulated manner (Monod et al.,
1965) or as a mechanism of pathogenesis (Dobson, 1999). Lympho-
tactin is a chemokinewith unusual properties. First, in contrast tomost
chemokines its structure is stabilized by a single disulfide bridge.
Second, it has the singular property of existing as two unrelated
protein folds (Kuloglu et al., 2002; Tuinstra et al., 2008). One of the two
protein folds resembles the canonical chemokine structurewith 3 anti-
parallel β-strands and one carboxy terminal helix. This conformation
binds to and activates its receptor XCR1 but does not interact with
glycosaminoglycans. The secondprotein fold exhibits 4 anti-parallelβ-
strands but has no helix (Tuinstra et al., 2008). This second structure
binds glycosaminoglycans with high affinity but is unable to activate
the XCR1 receptor. As this example is unique to date in the field of
proteins and protein ligands, its generality is questionable. It is an
extreme case of the general field of change in protein conformational
equilibrium, which has been tackled bymany different laboratories on
many different regulatory proteins to select new pharmacological
tools and active drugs. Ligands that would stabilize the glycosamino-
glycan binding state could reveal neutralizing molecules capable
of modulating acute allograft rejection response (Wang et al., 1998)
or attenuate inflammatory bowel disease (Boismenu et al., 1996;
Middel et al., 2001), as two examples of mucosal immunity in which
lymphotactin is involved.

5.4. The small molecule interferes with ligand bioavailability

Chemokines activate G-protein-coupled receptors to recruit
leukocytes during organogenesis, immunosurveillance, and inflam-
mation. An important component of this process is the formation of a
chemotactic gradient by immobilization of chemokines on the
extracellular matrix of cells, in particular on glycosaminoglycans.
Analysis of the role played by glycosaminoglycans has been carried
out using mutants of CC (Proudfoot et al., 2003) or CXC/XCL (Peterson
et al., 2004; Sadir et al., 2004; Johnson et al., 2004; Ali et al., 2005; Jin
et al., 2007a) chemokines devoid of key residues known to bind to
negatively charged sugar moieties. Suppression of GAG interactions
for CCL2, CCL4, CCL5, CCL7 or XCL1 chemokines was found to abolish
leukocyte recruitment in vivo, when injected intraperitoneally,
although in vitro chemotaxis was not altered.

The importance of these interactions has been further highlighted
by showing that GAG-binding mutants of chemokines can block the
action of wild type chemokines in normal animals as well as inmurine
models of diseases (Johnson et al., 2004; Ali et al., 2005; Brauners-
reuther et al., 2008). Pathogens also target GAG-binding domains of
chemokines to prevent their effects. As mentioned above (Section 2.1,
avoidance strategies), the poorly selective M-T1 and M-T7 proteins
frommyxoma virus, theM3 protein from herpesvirus or glycoprotein
E163 from ectromelia virus neutralizes chemokines upon binding to
their GAG-binding domain. The likely consequence of this is that high
local concentrations of chemokines giving rise to a “Velcro effect” are
reduced, and gradients are disrupted. Therefore, leukocyte attraction
no longer takes place. Although no small chemicalmolecule targeting
the GAG-binding domain of chemokines has been described up to
now, this portion of the protein is validated for chemical biology
approaches. Noteworthy are the disaccharides that were used to
solve the structure of CCL5 forming complexes with heparin-derived
sugars (Shaw et al., 2004) that could be used as starting blocks for
drug design. Interestingly too is the small molecule surfen, that was
first used as an excipient in drug formulas before being also identified
as a heparin neutralizing molecule (Hunter & Hill, 1961) with
antibacterial and trypanocidal activity, which could be used to lower
excessive heparan sulfate-involving interactions (Schuksz et al., 2008).

6. Concluding remarks and perspectives

Many articles now report that either genetic manipulations of
receptors and chemokines, or development of pharmacological agents
leads to selective alterations of a subset of responses out of a series of
possible responses. One consequence is that, depending on the desired
properties of the molecule to be developed for research or disease
treatment, preference for a ligand of receptor or a ligand of ligand will
need to be validated experimentally. Indeed, chemokines activate
members of the family of G-protein-coupled receptors (GPCRs) known
to exhibit a significant level (around 10%) of spontaneous isomerization
towards active conformations (Lefkowitz et al., 1993a,b; Leurs et al.,
2000; Palanche et al., 2001; Alewijnse et al., 2000; Claeysen et al., 2000;
Lecat et al., 2002). Spontaneous activity of GPCRs has well established
physiological roles (Adan, 2006; Arrang et al., 2007) like control of
neurotransmitter (Threlfell et al., 2008) and hormone (Ben-Shlomo
et al., 2009) release in relation with higher order behaviors (Fioravanti
et al., 2008), or regulation of apoptosis (Lau et al., 2009). Spontaneous
activity of chemokine receptors also exists. For herpesvirus-encoded
receptors this activity is linked to transforming effects (Burger et al.,
1999; Holst et al., 2001). Ligands of GPCRs almost never behave as
neutralmolecules, andmost antagonists are eitherweakpartial agonists
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(that increase the level of receptor activity) or are so called “inverse
agonists” capable of diminishing the level of spontaneous activity of the
receptor. Small molecules neutralizing ligands may complement the
tool palette of pharmacologists since they are expected to leave the
spontaneous activity of the receptors unchanged.

There are four preferred ways to identify small molecules modulat-
ing protein–protein interactions, ELISA assays, fluorescence resonance
energy transfer (FRET) assays,fluorescence anisotropy (Berg, 2003) and
surface plasmon resonance. We have designed a general strategy in
order to find fluorescent probes that bind to a soluble protein. This
fluorescence anisotropy strategy involves four steps:

1) Synthesis of a library of fluorescent compounds using known
chemical scaffolds that exhibit low specificity. The molecules are
organized around generic GPCR-preferring chemical scaffolds, are
derivatized with charged, hydrophilic and hydrophobic moieties
and bear a lissamine fluorophore at the end of a spacing arm,

2) Screening of the library of fluorescent molecules by fluorescence
anisotropy measurements in order to successfully fish one
fluorescent probe at least. This technique allows to set up a “mix
and read” assay that readily pinpoints the probe that interacts with
the protein,

3) Characterization of the binding properties of the probe in order to
fulfil the desired requirements, i.e. neutralize binding of the ligand
to its receptor, or inhibit oligomerization, or inhibit binding to
GAGs, and select the desired and optimized screening assay,

4) Screening of libraries of unlabelled and drug-like molecules to
identify high affinitymolecules to use for chemical biology purposes.

The generalization of such kinds of drug discovery approaches in
particular in university laboratories, is highly desirable. The increasing
amount of screening data will then lead to large scale chemoinfor-
matics and bioinformatics including data from transcriptional analyses
and proteomics (Schadt et al., 2009; Weill & Rognan, 2009),
development of complex network modelling as is the case in systems
biology in order to establish training sets for interaction network
prediction, and to use these models to predict molecule toxicity and
metabolism, bioavailability and patterns of biological activity.
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