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ABSTRACT

The BiGG Models knowledge base (http://bigg.ucsd.
edu) is a centralized repository for high-quality
genome-scale metabolic models. For the past 12
years, the website has allowed users to browse and
search metabolic models. Within this update, we de-
tail new content and features in the repository, con-
tinuing the original effort to connect each model to
genome annotations and external databases as well
as standardization of reactions and metabolites. We
describe the addition of 31 new models that expand
the portion of the phylogenetic tree covered by BiGG
Models. We also describe new functionality for host-
ing multi-strain models, which have proven to be
insightful in a variety of studies centered on com-
parisons of related strains. Finally, the models in
the knowledge base have been benchmarked using
Memote, a new community-developed validator for
genome-scale models to demonstrate the improving
quality and transparency of model content in BiGG
Models.

INTRODUCTION

BiGG Models (http://bigg.ucsd.edu) was initially released
in 2010 as a knowledge base of biochemically, genetically
and genomically structured genome-scale metabolic net-
work reconstructions, and the first release was followed by
a complete redesign in 2016 (1,2). Since its initial release,
the BiGG Models publications have been cited over 450
times (via Web of Science) and the website maintains a user
base of ∼2000 monthly active users. BiGG Models is built
around a workflow for standardizing models that is meant

to verify and, in some cases, improve model quality. Exter-
nal studies have also indicated the high quality of models
in BiGG. In one instance, the robustness of growth predic-
tions for models in BiGG was demonstrated and used as a
benchmark for a new collection of microbiome metabolic
models (3). Another study on ‘erroneous energy generating
cycles’––a common issue in metabolic models––found that
models in BiGG were less likely to have these undesirable
cycles than models from other databases (4). A number of
projects have used BiGG to automate reconstruction work-
flows and analyses (5–7).

With the BiGG Models 2020 update, we have included
an additional 31 genome-scale metabolic models (GEMs)
across four independent releases (versions 1.3–1.6), intro-
duced the ability to download sets of multi-strain models
that have been generated from a given base reconstruction
page and continuously improved features with suggestions
and contributions from the open source community. New
content has increased the utility of the knowledge base for
the community by expanding the number of organisms and
metabolic processes represented. The BiGG Models archi-
tecture has been designed to enable these advances and con-
tinually improve the knowledge base.

KNOWLEDGE BASE CONTENT

BiGG Models continues to contain high-quality, manually
curated GEMs collected from various publications. Qual-
ity control in BiGG Models begins with our requirement
that all models undergo rigorous peer review before entry.
We begin our import workflow with the exact model that
was reported in a peer-reviewed publication, and the work-
flow is designed to improve the quality of annotations and
standardization in the model, without making any changes
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to the reaction content, parameterization or relationships
(e.g. gene–reaction rules).

To load a model into BiGG, first each model is aligned to
the shared namespace of reactions and metabolites across
all models. When identifiers can be improved automatically
(e.g. by finding a universal reaction based on the reactants),
the workflow does this automatically; in other cases, non-
matching identifiers are left as is to ensure that model con-
tent does not change. Next, genome annotations are loaded
into the database for each model, providing explicit links
between metabolic reactions and genes. When adding con-
tent to the BiGG Models database, manual efforts are made
to ensure that each metabolite identifier follows the spec-
ified naming convention, each reaction contains a unique
identifier and gene–reaction rules are properly represented
in valid Boolean logic. When obvious errors are identified
(typos, duplicate metabolites), these are corrected manu-
ally, with feedback from the model authors. The coalescence
of genome annotation information, with external database
links, and reaction, metabolite, and gene information from
peer-reviewed models drives the quality of the knowledge
base.

To ensure that model content (the reaction connectiv-
ity, gene–reaction rules and parameters that affect model
predictions) has not changed from the peer-reviewed ver-
sion presented in the original publication, an internal test-
ing suite runs 18 tests for each model, for a total of >1900
tests. For example, tests ensure that reaction, metabolite,
and gene counts have not changed, that all reactions that
were mass balanced in the published model are still bal-
anced and that genes have mapped to genome annota-
tions correctly. An additional 36 tests are included to spot-
check bugs and edge cases that have appeared during previ-
ous builds of BiGG Models. The full test suite is available
in the source code (https://github.com/SBRG/bigg models/
blob/master/bigg models/tests).

In the 2016 release of BiGG Models, there were 77
GEMs; with this update, we detail 31 additional mod-
els, covering release versions 1.3–1.6 (http://bigg.ucsd.edu/
updates), and bringing the total to 108 GEMs (8–13).
Genome annotations for each model (where possible) are
downloaded from the National Center for Biotechnology
reference sequence database (14) and linked to the cor-
responding GEM. Notable additions are the Recon3D,
iCHOv1 and iML1515 (15–17) for the human metabolic
network, Chinese hamster ovary cell and Escherichia coli K-
12 MG1655, respectively. BiGG Models continues to host
gold-standard models within a shared knowledge base of
biological reactions and metabolites. We also demonstrate
that the new GEMs valuably expand the portion of the re-
actome encapsulated by the knowledge base. The number
of unique reactions represented in the database more than
doubled from 11,459 in the 2016 version to 28,302. Like-
wise, the number of unique metabolites has more than dou-
bled from 4,040 to 9,088. In addition to expanding the num-
ber of metabolic processes within the database, we sought
to evaluate the diversity of reaction presence among GEMs
within the database. Reaction presence or absence of the
shared namespace was identified for every representative
GEM, and this matrix was subject to multiple correspon-
dence analysis (Figure 1). Notably, this analysis shows that

new models within the update exist at the edge of each
cluster demonstrating that the new content is increasing
the level of dissimilarity among GEM reaction content.
This separation among models conveys that the metabolic
space within BiGG Models is moving past representations
of shared common pathways and incorporating an increas-
ing amount of organism-specific biochemical capabilities.

This update also includes multi-strain models, a recent
development within the metabolic modeling community.
We define multi-strain models as those generated via the
ability to extend the content contained within a gold-
standard reconstruction to related strains of interest. This
technique has proven insightful in a number of studies for
comparative analysis of strains (18–24). Thus, we have in-
cluded a means for the hosting of the draft strain-specific
models generated within these studies on BiGG Models.
Each strain-specific model is available to download within a
zip folder from the page of the base reconstruction used to
generate the strain-specific models. The GEMs of iCN718,
iYL1228 and STM v1 0 (18,25,26) each contain datasets of
multi-strain models linked from their reconstruction pages
within BiGG Models. Identifiers in multi-strain reconstruc-
tions are inherently BiGG Models compliant as they have
been generated through the use of a hosted model. These
multi-strain models have demonstrated value in compara-
tive simulation to identify key differences among the strains
of a species and they all represent starting points toward
manually curated reconstructions for each strain should the
proper steps be undertaken (27).

VALIDATION OF MODELS WITH MEMOTE

BiGG Models now links to the model validation tool,
Memote, which evaluates and scores GEMs with a set of
community-maintained tests (28). Consistent with the ef-
forts in BiGG Models to maximize the value of metabolic
models, evaluation with Memote provides a means to quan-
tify model quality. Quality, in this case, indicates that GEMs
adhere to established standards such as consistent identi-
fication of model components and biologically feasible re-
sults under varied growth conditions. This standardized ap-
proach to model validation ensures the quality of BiGG
Models content and provides a benchmark for continued
improvement.

Both the original 77 GEMs included in the 2016 release of
BiGG and the 31 GEMs included in this update were evalu-
ated with Memote (Figure 2). Largely due to improved gene,
metabolite, and reaction annotations, the average Mem-
ote score of JSON-formatted models increased from 40%
to 58%, while that of the SBML-formatted (29–31) mod-
els advanced from 66% to 73% (Supplementary Table S1).
While these scores represent significant improvements, on-
going database annotation efforts will be necessary to maxi-
mize Memote scores for models in BiGG. Memote does not
currently support testing of MATLAB-formatted models;
however, BiGG generates MATLAB-formatted models us-
ing the same data sources as the JSON-formatted files, so
equivalent model content is present. These results highlight
the value of BiGG Models as a knowledge base of GEMs,
and scoring its content with Memote reinforces its effort to
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Figure 1. Multiple correspondence analysis of the reaction presence or absence within each model clusters models according to eukaryotic (yellow ellipse),
prokaryotic (green ellipse and inset) and photosynthetic eukaryotes (blue ellipse) within metabolic reaction space. Dimension 1 (x-axis) explained 14.5%
of the variance; dimension 2 (y-axis) explained 14.2%. Further, a number of the models newly introduced within this update (red circles) are found at edges
of the MCA plot, indicating that within these two dimensions, they contribute to additional diversity in reaction content compared to the previous release.
For this analysis, iML1515 was used as a representative E. coli model and iIS312 as representative for Trypanosoma cruzi.

Figure 2. The latest update has resulted in improved Memote annotation scores for both JSON and SBML model formats. See Supplementary Table S1
for detailed score information for each model.
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provide access to GEMs with thorough and consistent stan-
dards.

ADDITIONAL FEATURES AND IMPROVEMENTS

Regular improvements are made to BiGG Models that have
made the knowledge base faster, easier to use and better
for analysis. Filters are now provided during search to fil-
ter out multi-strain reconstructions in the search results (see
the toggle titled ‘Exclude multi-strain models from search’).
Gene and protein sequences are now included directly in the
database and available by API. A new advanced search fea-
ture allows users to identify all gene and protein sequences
for any universal BiGG reaction (see ‘Find sequences for
BiGG Models reaction’ on the advanced search page).

A new ‘universal’ model was added for download on
the Data Access page; this model provides all reactions
and metabolites from BiGG in a single COBRA-compatible
JSON file, so users can rapidly add BiGG content to
their own computational workflows using COBRA tools.
Namespace downloads on the Data Access page have also
been extended to include old and deprecated identifiers. Ex-
ternal database links are regularly updated with the lat-
est information from MetaNetX (32). Many manual im-
provements have been made to annotations, including bet-
ter gene mapping for yeast models. SBML downloads have
improved through regular updates to the ModelPolisher
project (https://github.com/draeger-lab/ModelPolisher).

Since the 2016 release of BiGG Models, the website
has been deployed on a new server to dramatically im-
prove speed when searching and browsing. Finally, bugs and
suggestions are collected on GitHub (https://github.com/
SBRG/bigg models), and this has led to continuous and
transparent improvements to the site by the BiGG Models
team.

CONCLUSION

BiGG Models continues to be a widely used and well-
maintained platform for integrating, sharing and standard-
izing GEMs. The updated knowledge base integrates the
metabolic knowledge for 108 GEMs, as well as includ-
ing the content for 515 draft strain-specific models across
three organisms, all available within the knowledge base.
BiGG Models is free for academic use and continues to
extend the content within the knowledge base. Further, all
source code continues to be available on GitHub to enable
submission of potential bugs. The development of BiGG
Models continues to evolve with the needs of the research
community, introducing multi-strain models and validation
through Memote testing. Future BiGG Models releases will
continue to be shaped by the feedback from users.

DATA AVAILABILITY AND REQUIREMENTS

BiGG Models is freely available online for academic and
non-profit use at http://bigg.ucsd.edu, under the BiGG Li-
cense described at http://bigg.ucsd.edu/license. While the
content of BiGG is restricted to academic and non-profit
use to protect intellectual property claims, the source code
is open source and available to all users under the MIT

license at https://github.com/SBRG/bigg models. Installa-
tion of an independent system requires Python 3.5 and Post-
greSQL 9.4 or later.

We encourage community members to submit their
model content to BiGG Models, and the website includes a
section that describes the minimum requirements for inclu-
sion in BiGG and the process for submitting a new model:
http://bigg.ucsd.edu/about These requirements reflect the
quality standards set by BiGG Models: identifier standard-
ization for reactions and metabolites, links to genome anno-
tations and peer-reviewed publication as the primary means
of verifying model quality.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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