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Abstract

Background: The broiler industry has undergone intense genetic selection over the past 50 yr. resulting in improvements
for growth and feed efficiency, however, significant variation remains for performance and growth traits. Production
improvements have been coupled with unfavourable metabolic consequences, including immunological trade-offs for
growth, and excess fat deposition. To determine whether interactions between fatty acid (FA) metabolism and innate
immunity may be associated with performance variations commonly seen within commercial broiler flocks, total carcass
lipid %, carcass and blood FA composition, as well as genes involved with FA metabolism, immunity and cellular stress
were investigated in male birds of a broiler strain, layer strain and F1 layer X broiler cross at d 14 post hatch. Heterophil:
lymphocyte ratios, relative organ weights and bodyweight data were also compared.

Results: Broiler bodyweight (n = 12) was four times that of layers (n = 12) by d 14 and had significantly higher carcass fat
percentage compared to the cross (n = 6; P = 0.002) and layers (P = 0.017) which were not significantly different from each
other (P = 0.523). The carcass and whole blood FA analysis revealed differences in the FA composition between the three
groups indicating altered FA metabolism, despite all being raised on the same diet. Genes associated with FA synthesis and
B-oxidation were upregulated in the broilers compared to the layers indicating a net overall increase in FA metabolism,
which may be driven by the larger relative liver size as a percentage of bodyweight in the broilers. Genes involved in
innate immunity such as TLR2 and TLR4, as well as organelle stress indicators ERNT and XBP1 were found to be non-
significant, with the exception of high expression levels of XBP1 in layers compared to the cross and broilers. Additionally
there was no difference in heterophil: lymphocytes between any of the birds.

Conclusions: The results provide evidence that genetic selection may be associated with altered metabolic processes
between broilers, layers and their F1 cross. Whilst there is no evidence of interactions between FA metabolism, innate
immunity or cellular stress, further investigations at later time points as growth and fat deposition increase would provide
useful information as to the effects of divergent selection on key metabolic and immunological processes.
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Background

Over the past 50 yr the intensification (improved housing,
husbandry and nutrition) of the broiler industry and
concurrent commercial genetic selection for growth, feed
efficiency and yield has resulted broiler growth increases in
excess of 400% [1], with broilers having the capacity to
reach 2 kg of live weight within 35 d post hatch [2, 3]. At
least 85% of production improvements has been attributed
to genetic selection with meat production efficiency
continually increasing by 2—-3% per year through selective
breeding programs alone [1, 4].

Selection for feed efficiency is largely measured as feed
conversion ratio (FCR), the amount of feed intake (FI)
per unit bodyweight gain. In poultry systems, feed ac-
counts for approximately 70% of total production costs
[5]. Selection for efficiency has resulted in an FCR de-
crease of over 50% over the past 5 decades, maintaining
poultry as a cost efficient source of protein [1]. Despite
continued improvements, there still remains significant
(>10%) variation in performance traits, including feed ef-
ficiency, bodyweight and growth rate within broiler
strains [6]. This performance variation can result in an
economic cost to both the producer and industry [7].
For example, variation in live weight is problematic for
modern automated processing plants which reject car-
casses out of a relatively narrow weight range, thus re-
quiring further handling and sorting, and hence can
incur economic loss to the processor [7].

Maintenance of innate immunity and intestinal barrier
function is one parameter thought to be nutritionally
costly to the host, in which exasperated or diminished
immune responses could lead to increased performance
variation [8]. Our previous study (Willson N-L, Nattrass
GS, Hughes R]J, Forder REA, and Hynd PI, unpublished)
compared high and low performing broilers to determine
whether or not innate immune function could be consist-
ently linked to the phenotypic expression of FCR. A candi-
date gene approach was used to determine whether
functional changes in innate immune parameters could be
consistently associated with high or low FCR, the results
of which, there was no association. Variable expression in
the pathogen recognition receptor Toll-like receptor 2
(TLR2) and membrane protein CD36 also known as FAT/
CD36, was however of interest, as both of which have
been linked to each other and various roles in fatty acid
metabolism. Lee and Hwang [9] have reported on links
between fatty acids and TLR activation, with saturated
fatty acids activating TLR2 and TLR#4 signalling pathways
and unsaturated fatty acids having an inhibitory effect on
TLR-mediated signalling pathways and gene expression.
TLR2 is known to form complexes in lipid rafts with
CD36, [10], and CD36 has been described in facilitating
TLR?2 signalling, although the mechanism remains some-
what unclear [11]. Furthermore CD36, is thought to
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promote the synthesis of triglycerides in adipocytes, the
clearance of chylomicrons from plasma, as well as mediate
lipid metabolism and fatty acid transport [12, 13].
Additionally, studies in broilers have found that CD36 has
a novel role in the visceral fat deposition of male broilers,
and indicated that avian fat deposition has spatial and sex
specific differences [14].

Fat deposition in broilers has been an unfavourable
consequence of selection for growth, particularly up
until the 1970s, however there has been reductions in
body fat content from 26.9% in the 1970s to 15.3% in
commercial breeds in the past decade (see Tallentire et
al., [15] for review). Fat deposition is negatively linked to
FCR, with observations that heavier chickens usually
have a higher FCR and deposit a higher amount of fat
[16]. The major site for fat deposition in broilers is the
abdominal fat pad, which is highly correlated to total
carcass fat [16, 17]. Fat has been demonstrated to
account for 15-18% of the total broiler bodyweight and
is considered the most variable body component, with a
coefficient of variation for the total body fat content
between 15 and 20%, and higher again for abdominal fat,
varying between 25 and 30% [18-21]. Excess fat accu-
mulation and the variation may be considered the net
balance of dietary absorbed fat, the rate of fat synthesis
(primarily hepatic lipogenesis), and fat catabolism [22].
As obesity is correlated with chronic low grade inflam-
mation in humans [23], and that exasperated or dimin-
ished immune responses can result in inflammation
potentially leading to decreased growth performance of
the host, including chickens [24], it was hypothesised
that interactions between fatty acid metabolism and in-
nate immunity may be associated with performance vari-
ations commonly seen within commercial broiler flocks.

To investigate whether innate immunity and fatty acid
metabolism are contributing to flock performance
variation, we compared broiler and layer chicken strains
that have been intensively selected for different traits; high
carcass yield and growth efficiency for broilers, commer-
cial egg production and egg efficiency for layers [25]. This
selection over the years has seen the two strains diverge
for these traits, with the bodyweight of broilers being five
times that of layers by 6 wk of age [26]. The aim of the
current experiment was to utilise broilers, layers, and a
layer x broiler F1 cross to identify how genetic selection
has influenced carcass lipid composition, key genes in-
volved in fatty acid metabolism and select innate immune
parameters to enable a better understanding of the bio-
logical factors underpinning feed efficiency, growth and
performance variation.

Methods
All animal procedures were approved by the University of
Adelaide Animal Ethics Committee (approval #S-2015-
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171) and the PIRSA Animal Ethics Committee (approval
#24/15).

Birds and management

In total, 150 newly hatched male chicks (50 broiler strain,
50 F1 layer x broiler cross, 50 layer strain) were obtained
from the HiChick Breeding Company Pty Ltd., Bethel,
South Australia. The cross progeny were produced by
HiChick utilising their commercial breeding lines. Briefly,
three Isa Brown roosters and 135 Isa Brown breeder hens
were used to produce layer progeny, three broiler breeder
roosters and 135 broiler breeder hens used to produce the
broiler progeny, and three Isa Brown roosters and 135
broiler breeder hens used to produce the F1 layer x broiler
cross. All progeny were produced via natural mating. The
F1 cross was utilised as an intermediate growth phenotype
against broiler and layer strain progeny. Chicks were sepa-
rated by breed and placed 25 chicks/rearing pen in a
temperature and climate controlled room at the SARDI
PPPI Poultry Research Unit, Roseworthy Campus, The
University of Adelaide.

All birds were fed ad libitum (standard commercially
available broiler starter diet, no in-feed antimicrobials or
coccidiostats added), and had unrestricted access to
water via nipple drinker lines. The three experimental
groups were selected for their growth potential: Fast
growing (broilers; #n = 50) moderate growing (F1 layer x
broiler; n = 50) and slow growing (layer strain; n = 50).
Bodyweight was recorded weekly. On d 0, -7, -14 and
-28 post hatch, 36 birds (n = 12 birds/breed) were ran-
domly selected and euthanised by cervical dislocation
for subsequent sampling.

Total carcass lipid and total blood lipid composition

Eviscerated carcasses (fat pads left intact on carcass)
were weighed and immediately frozen at -20 °C. Whole
carcasses were submerged into liquid nitrogen for 3 min,
shattered with a mallet in zip lock bags to contain all
fragments, and homogenised in a 1700 W blender. Sub
samples of homogenate were aliquoted (10 mL) and
stored at —20 °C for analysis of total carcass lipid % and
lipid composition. Total lipids were extracted at the
Waite Lipid Analysis Service (WLAS), Waite Campus
SA, using the methods of Folch [27]. Fatty acid compos-
ition of tissues was determined and quantified using a
Hewlett-Packard 6890 GC (CA, USA) equipped with
flame ionization detection and a capillary column
(50 m x 0.32 mm internal diameter) coated with 70% cy-
anopropyl polysilphenylene-siloxane with a film thick-
ness of 0.25 um (BPX-70, SGE, Victoria, Australia). Fatty
acid transmethylation for fatty acid methyl ester (FAME)
extraction, and gas chromatography analysis of FAME
were run by the methods of Folch [28]. Fatty acid peaks
were identified by comparing the retention time of each
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peak against the retention times of a fatty acid standard
of known composition. Each peak from a trace was
expressed as the relative percentage of the total FAME
in the sample. The detection limit of each fatty acid was
0.05% of total fatty acids.

Total blood fatty acids were measuring using the PUFA-
coat dried blood spot (DBS) card, developed by the Waite
Lipid Analysis Service (WLAS), Waite Campus SA.
Samples were prepared by placing a drop of blood on
PUFAcoat DBS card and dried at room temperature for
5 h. See Liu, Mihlhausler [29] for full methods and valid-
ation of the PUFAcoat DBS card. In brief, lipids were
extracted using a modified Folch method and FAME were
extracted into heptane for gas chromatography. A
Hewlett-Packard 6890 GC (CA, USA) equipped with a
BPX70 capillary column 50 m x 0.32 mm, film thickness
0.25 pm (SGC Pty Ltd., Victoria, Australia), programmed
temperature vaporisation injector and a flame ionisation
detector (FID) was used. The identification and quantifica-
tion of FAME were achieved by comparing the retention
times and peak area values of unknown samples to those
of commercial lipid standards (Nu-Chek Prep Inc.,
Elysian, MN, USA) using the Hewlett-Packard Chemstation
data system.

Heterophil: Lymphocyte ratios

Blood was collected by cardiac puncture immediately
following cervical dislocation. Blood smears were made
by placing 1 drop of whole blood on the end of a Star-
frost frosted slide (ProSci Tech). Slides were air-dried
and fixed in 100% methanol for 1 min, feather side
down. Slides were stained with Geisma-Wright stain on
a Hema-Tek 2000. A total of 100 cells (Cell types; lym-
phocytes, heterophils, eosinophils, basophils and mono-
cytes) were counted at a 40 x magnification. Subsequent
heterophil: lymphocyte ratios were determined.

RNA extraction, library preparation and sequencing

In total, 18 liver samples from d 14 post hatch (broiler
n = 6, cross n = 6, layer n = 6) birds were randomly se-
lected for RNA-sequencing. Total RNA was isolated
using an RNeasy Plus Mini Kit (Qiagen, Hilden,
Germany). Approximately 80 mg of frozen (-80 °C) liver
tissue was homogenised in 2 mL of Trizol reagent (Invi-
trogen, Carlsbad, CA). Aliquots of the Trizol homogen-
ate (1 mL) were combined with chloroform (200 pL)
and centrifuged for 15 mins at 4 °C. The upper aqueous
phase (350 uL) was transferred to a gDNA eliminator
spin column and centrifuged at >8000 x g (14,000 rpm)
for 30 s. The flow through (300 puL) was collected and
combined with 70% ethanol (300 pL) for transfer onto
RNeasy columns. The remaining collection and wash
steps were performed to the manufacturer’s specifica-
tions. RNA was eluted in 200 pL of RNA-free water.
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Purity and concentration was determined using UV
spectrophotometry (Nanodrop 1000; Thermo Scienfic,
Wilmington, DE).

RNA-Seq was carried out by the ACRF Cancer
Genomics Facility, Adelaide, SA. The sample quality was
analysed on an Agilent Bio-analyser (minimum RIN re-
quirement of 7) and sequencing libraries were made
using 2 pL of total RNA. PolyA mRNA isolation was
performed using oligo dT beads. Libraries were prepared
using KAPA Library Quantification Kits for Ilumina
platforms (KAPABiosystems, Massachusetts, USA).
2 x 100 nt sequencing was carried out on an Illumin
HiSeq 2500 Sequencing System to generate a minimum
depth of 25 million reads.

RNA sequence (RNA-seq) analysis

Reads were returned in fastq format. Low-quality base
calls were trimmed from the 3" end of reads with
FastQC and adaptor sequences were trimmed from the
3" end of reads with Cutadapt. Hisat2 [30] was used to
map reads to the reference chicken genome Galgal5.0
(ftp://ftp.ncbinlm.nih.gov/genomes/Gallus_gallus). Du-
plicate reads were then removed. Stringtie [30] was used
to define the transcripts from the read mappings for
each sample, and to merge the transcript definitions for
all samples. Transcripts were cleaned up using in-house
scripts. The number of raw read counts were calculated
for each transcript and sample using the function fea-
tureCounts of the R package Rsubread [31]. Another R
package, edgeR [32] was used to analyse differential gene
expression using normalised counts per million tran-
scripts (CPM) to correct for varying depth of sequence
among samples. Differential expression of genes was
considered significant at P < 0.05, and a false discovery
rate of <0.05, with any fold change considered. Tran-
script data were aggregated by gene. Genes where the
maximum CPM was <1 were removed. Twenty two can-
didate genes primarily involved in fatty acid metabolism
were selected from the RNA-seq analysis for inclusion in
this study (Table 1).

Statistical analysis

Data were analysed by one-way ANOVA in SPSS (IBM
SPSS Statistics 22). Any data not normally distributed
were logged (Log;o) to normalise and analysed by one-way
ANOVA. Statistical significance was accepted at P < 0.05
level after which Post Hoc tests were performed using
Tukeys™P to differentiate between the three groups of
birds at each sampling time point.

Results

Bodyweight data

Bodyweights were recorded for a 28-day grow out period
(Table 2). Starting bodyweights (mean + SEM) at hatch
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Table 1 Candidate genes involved with fatty acid metabolism
and select parameters of innate immunity

Gene name RNA target Accession no.?
ACACA Acetyl-CoA Carboxylase NM_205505.1
ACADL Acyl-CoA dehydrogenase NM_001006511.2
ACLY ATP-Citrate-lyase NM_001030540.1
ACSL1 Acyl-CoA synthetase NM_001012578.1
APOAT Apolipoprotein Al NM_2055254
APOC3 Apolipoprotein clll NM_001302127.1
CD36 FATCD36 NM_001030731.1
CPTIA Carnitine palmitoyltransferase 1 NM_001012898.1
CPT2 Carnitine palmitoyltransferase 12 NM_001031287.2
FABP1 fatty acid binding protein 1 NM_204192.3
FADS6 A6 desaturase XM_426241.5
FASN Fatty Acid Synthase NM_205155.2
LPL Lipoprotein Lipase NM_205282.1
MDH1 Malate dehydrogenase NM_001006395.2
MET Malic Enzyme 1 NM_204303.1
PPARA peroxisome proliferator-activated NM_001001464.1
receptor alpha
RXRA Retinoic X receptor-a XM_003642291.3
SCD Stearoyl-CoA desaturase NM_204890.1
TLR2A Toll-Like Receptor 2 NM_001161650
TLR4 Toll-Like Receptor-4 NM_001030693
XBP1 X-box binding protein NM_001006192
ERNT Inositol-requiring kinase 1 NM_001285501.1

®NCBI accession number

(d 0) were significantly different between broiler n= 56
(444 £ 0.4 g); cross n = 57 (42.5 + .04 g; P = 0.008) and
layer line n = 54 (385 + 04 g P < 0.001) males.
Bodyweights remained significantly different between all
three groups of birds for the remainder of the grow-out
period (P < 0.001).

Organ weights

Organ weights were expressed as a percentage of total
bodyweight to account for growth differences between
broilers, layers and the F1 cross (Fig. 1). At d 0 and d 7
the layers had significantly lower relative liver weight
percentages than the broiler and cross males (P = 0.006
and P < 0.001 respectively). Liver weight as a percentage

Table 2 Weekly bodyweights (grams) for broiler, cross, and
layer line males for d 7, =14, =21 and —28 post hatch

do d7 d 14 d21 d2s
Broiler 444 + 04> 195+2° 560+8° 1153 +22° 2102 + 35°
Cross  425+04° 137+3° 311+8° 603+12° 1037 +31°
Layer 385404 84+1° 159+2° 261+382° 403 +6°

#“Means (+ SEM) within the same column with different superscripts are
significantly different (P < 0.05)
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of bodyweight peaked at d 14 in the broilers, which were
significantly different from both the cross and layer birds
(P < 0.001; Fig. 1la), whereas the cross and layer birds
reached peak relative liver weights at d 7 post hatch. By
d 28 post hatch there were no differences in relative liver
weight (~2.9% of total bodyweight) between the three
groups of birds (P = 0.852).

The heart accounted for 0.85-1.08% of total body-
weight at both d 0 and d 7 with no significant differ-
ences (P = 0.202 and P = 0.611) between broiler, cross
and layers birds at each time point respectively (Fig.1b).
The relative weight of the layer’s hearts remained con-
stant for the 28 d growth period, representing ~1% of
total bodyweight. The broilers had significantly lower
relative heart weights than the layer and cross birds at d
14 and d 28 post hatch (P < 0.001).

Relative spleen weights were not different between any
of the three groups at d 0 (P = 0.233; Fig 1c). Layers had
significantly heavier relative spleen weights than broilers
from d 7 post hatch onwards (P = 0.004). The cross and
layer spleen weights continued to increase in relative
weight over the 28 d period, whereas the broilers
reached their maximum relative spleen weight by d 14
post hatch. By d 28 post hatch broiler spleens accounted
for 0.07% of total body weight whereas layer spleens
accounted for 0.17% of total bodyweight (P < 0.001).

No significant differences were found in relative bursa
weight between broilers, layers and cross birds at d 0
(P = 0.997; Fig. 1d). Relative bursa weights peaked in
broilers at d 14 post hatch, exhibiting a 0.04% increase

from d 0-d 14 (0.12%—-0.16%) then reducing slightly by d
28 to 0.14% of total bodyweight. Relative weights of the
bursa increased in layer and cross birds at all sample
time points. The increases were most pronounced in the
layer birds with the bursa significantly different from
both the crossed and layer birds at both d 14 (P < 0.001)
and d 28 (P < 0.001). At d 28 post hatch the bursa
weights were 0.14% and 0.67% of total bodyweight for
broilers and layers respectively.

Total carcass and total blood lipids

Total carcass fat (%) and subsequent fatty acid compos-
ition was evaluated on eviscerated homogenised car-
casses and blood samples at d 14 post hatch only.
Broilers (n = 12) had significantly higher total carcass fat
percentage (11.3%) than the cross (n = 6, 8.9%;
P = 0.017) and layer line males (n = 12, 7.7%; P = 0.002;
Fig. 2). The cross and layer total body fat percentages
were not significantly different (P = 0.523).

The fatty acid composition of the carcasses varied indi-
cating differential fatty acid metabolism (Table 3). The
layers had higher levels of total saturated fatty acids
(SFAs), followed by broilers, and then the cross, all signifi-
cantly different (P = 0.001). The broilers had higher levels
of palmitic acid (C16), whereas the layers had higher levels
of stearic acid (C18), indicating increased elongation of
SFAs in the layers. The same SFA pattern was seen in the
blood (Table 4). Total carcass monounsaturated fatty acids
(MUFAs) were higher in the broilers and cross relative to
the layers (P < 0.001), indicating increased elongation of
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Total Carcass Fat, %

=

Broiler Cross Layer

Fig. 2 Mean + SEM Total carcass fat % for eviscerated homogenised
carcasses for broilers (n = 12), cross (n = 6) and layer line (n = 12)
males at d 14 post hatch. a-b Differing scripts are statistically
different (P < 0 .05)

MUFAs in the broilers and cross, this pattern also
reflected in the blood. The cross and layers had signifi-
cantly higher carcass percentages of polyunsaturated fatty
acids (PUFAs), both omega-3 and omega-6. This was re-
flective both the n-6: n-3 ratio as well as the PUFA: SFA
ratios between the three groups of birds. The composition
of the serum and the composition of the carcass was gen-
erally the same for broilers, layers and the F1 crosses.
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Heterophil: lymphocyte ratios

The cross birds appeared to have a lower number of het-
erophils and a higher number of lymphocytes than the
broiler and layer birds, however no statistical differences
were detected in the heterophil; lymphocyte ratios be-
tween broilers, layers or the F1 cross (Fig. 3; P = 0.203).
The differences were likely reflective of the high individual
variation in cell frequencies, which is reflected by the large
standard error. In addition to the heterophils and lympho-
cytes, basophils (P = 0.094), monocytes (P = 0.773) and
eosinophils (P = 0.561) were also assessed however no sig-
nificant differences were detected in the cell frequencies
between any of the groups.

Gene expression

The 22 candidate genes selected (Table 5) revealed that
broilers (n = 6) in comparison to layers (1 = 6) had signifi-
cant hepatic upregulation of genes involved in lipid trans-
port; APOAI (P = 0.019), APOC3 (P = 0.003), lipogenesis;
ACACA (P = 0.001), MEI (P = 0.022), FASN (P < 0.001),
GPAM (P = 0.001), MDH1I (P < 0.001), SCD (P < 0.001),
fatty acid transport; FABP1 (P = 0.001), ACLY (P < 0.001),
and fatty acid oxidation; ACADL (P = 0.003), CPT-2
(P < 0.001), (Fig. 4). An exception was the down-
regulation of FADS6 (P = 0.054) in broilers, a rate-limiting

Table 3 Fatty acid composition (% of total identified fatty acids) in homogenised carcass samples for broiler (n = 12), cross (n = 6)
and layer line males (n = 12) fed the same commercial broiler diet formulation at d 14 post hatch

Fatty acid Broiler (n = 12) Cross (n = 6) Layer (n=12) P-value
Eviscerated carcass

Total Carcass Fat % 11.3° 8.90° 7.56° <0.001
Total SFA 377 +03° 368 + 0.2° 386 +02° 0001
Palmitic acid Cy¢ 277 £024° 259 +019° 253 + 25° <0001
Stearic acid Cyg 78 +012° 84 +0.15° 100 + 0.18° <0001
TFA 08 +003° 09 + 005% 1.0 + 006° 0038
Total MUFA 495 + 027° 487 + 034° 440+ 041° <0001
Palmitoleic acid (Cy¢1n-7) 78+017° 62 +027° 48+ 0.19° <0001
Oleic acid (Cy51n-9) 386 + 27° 389 + 027° 358 +0.19° <0001
Vaccenic acid (Cy51n-7) 27 +007° 31 +009° 3.0 + .006° 0.003
Total PUFAN-3 15+001° 16+ 002° 1.9 + 005° <0001
a-Linolenic acid (C;g3n-3) 1.1+ 001 1.1 £ 0.00 1.1+ 001 0.684
Eicosapentanoic acid (C5,5n-3) 0.1 +00 0.1 +00 0.1 +00 -
Docosahexanoic acid (C,,6n-3) 02+ 001° 03 +002° 06 + 002° <0001
Total PUFAN-6 104 +0.12° 120 + 017° 145+ 032° <0001
Linoleic acid (C,52n-6) 98 £0.12° 110+ 0.13° 12.8 + 0.24° <0001
Arachidonic acid (C,o4n-6) 03+ 002° 06 +003° 1.1 + 007° <0001
n-6: n-3 ratio 6.88° 7.42° 7.68° <0001
(MUFA + PUFA): SFA 161°° 168° 157° 0.004
PUFA: SFA 031° 040° 043° <0001

'Data are expressed as the percentage of identified fatty acids + Standard error of means (SEM)
“Means within the same row for each parameter with different superscripts are significantly different (P < 0.05)
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Table 4 Fatty acid composition (% of total identified fatty acids) in PUFAcoat DBS blood spot samples for broiler, cross and layer
line males fed the same commercial broiler diet formulation at d 14 post hatch

Fatty acid Broiler (n = 12) Cross (n = 6) Layer (n = 10) P-value
Total SFA 437 £ 0.7 430503 460+ 12 0.107
Palmitic acid Cy¢ 24. £ 0.52 225 £0.18 239+ 178 0424
Stearic acid Cyg 149 + 039° 16.16 + 021°° 1707 £ 051° 0.004
TFA 085 + 003" 093 + 005" 1.1+ 006° 0.004
Total MUFA 33.55 + 0.33° 2855 + 0.65° 2363 + 0.60° <0.001
Palmitoleic acid (Cy1n-7) 419 £017° 255+ 007° 169 + 0.13¢ <0.001
Oleic acid (Cyg1n-9) 26.53 + 25° 23.08 + 0.65° 19.36 + 0.50° <0.001
Vaccenic acid (C;g1n-7) 1.96 + 0.05% 211 + 006° 178 +0.10° 0.036
Total PUFAN-3 284+ 013° 358 +0.18° 366 + 0257 0.007
a-Linolenic (Cygn-3) 0.69 £ 0.02 0.71 £0.03 0.63 = 0.03 0.189
Eicosapentanoic (C5,5n-3) 0.133 £ 0.01 0.35 + 0.04 031 +0.03 0.628
Docosahexanoic (C,,6n-3) 1.59 + 0.09° 22 +0.14° 24+ 018 0.001
Total PUFAN-6 19.06 + 043" 23.86 + 059° 2562 +1.1° <0.001
Linoleic (Cg2n-6) 1638 + 0.36° 1945 + 0.33° 1972 + 0.72° <0.001
Arachidonic (Cyp4n-6) 1.26 + 0.05° 26 +023° 4.06 + 0.35° <0.001
n-6: n-3 ratio 6.82 6.68 714 0418
(MUFA + PUFA): SFA 1.27 1.30 1.18 0.071
PUFA: SFA 051° 064° 065" 0.002

'Data are expressed as the percentage of identified fatty acids + Standard error of means (SEM)
#“Means within the same row for each parameter with different superscripts are significantly different (P < 0.05)

enzyme involved in the elongation of PUFAs. Broilers
when compared to the cross (n = 6) birds exhibited gener-
alised upregulation of fatty acid metabolism, although not
as pronounced as seen between broilers and layers. Sig-
nificant hepatic upregulation for lipid transport; APOC3
(P = 0.029), lipogenesis; GPAM (P = 0.035), MDHI
(P < 0.001), fatty acid transport; FABP1 (P = 0.008), ACLY
(P < 0.001), and fatty acid oxidation; ACADL (P = 0.015),
CPT-2 (P = 0.019) were observed for broilers. Layers and
cross comparisons indicated no real differential expression
in fatty acid metabolism between the groups, with the ex-
ception of down regulation of lipogenic gene SCDI
(P = 0.003) and fatty acid oxidation CPT-2 (P < 0.001) and
ACAAI (P < 0.001) genes. Layers in comparison to the

05
0.45
04
0.35
03
0.25
02
0.15

H:L Ratio

0.05

Broiler Cross Layer

Fig. 3 Heterophil: Lymphocyte (H:L) ratios (+SD) for broilers (n = 6),
Cross (n = 6) and layer line males (n = 6)

cross also had upregulated expression of the transcription
factor PPARA (P = 0.047), a difference not seen elsewhere.

Endoplasmic reticulum (ER) stress-related gene ERNI
was not differentially expressed between any of the three
groups (P = 0.67). XBP1 was found to be significantly
upregulated in layers in comparison to both broilers
(P = 0.002) and crossed birds (P = 0.007). Toll-like re-
ceptors TLR2 and TLR4 were not found to be differen-
tially expressed between any of the three groups
(P =0.951).

Pearson’s two-tailed correlations with individual bird
bodyweights (Table 5), revealed 15 of the 22 genes were
highly correlated with bodyweight at P < 0.01, 2 genes cor-
related at P < 0.05 and 6 of the genes non-significant with
bodyweight. The highest correlation was between malate
dehydrogenase (MDHI) and bodyweight (r = 0.902;
P <0.001).

Discussion

The aim of this experiment was to elucidate how genetic
selection has influenced carcass composition, fatty acid
metabolism and select innate immune parameters. The
objective was to further develop the understanding of
factors which may be underpinning performance vari-
ation in modern broilers. Our previous experimental
work did not provide sufficient phenotypic variation in
feed conversion ratio within flock, thus it was decided to
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Table 5 Pearson correlation coefficient (r) of target gene against individual bodyweight (BW), and mean expression levels (CPM) of

genes between broilers (n = 6), cross (n = 6) and layers (n = 6)

Gene name r (Gene vs. BW)' Broiler (n = 6) Cross (n = 6) Layer (n = 6) Regulation2
ACACA 0695 31354 + 1186° 29185 + 1014° 2367.5 + 1354° 1
ACADL 0734" 7513 + 27.8° 6481 + 153° 6209 + 234° 1
ACLY 0855 3605.7 + 2016 23869 + 117.4° 1956.9 + 163.3° 1
ACSL1 0336 6935 + 619 5530 + 216 612.8 + 27.1

APOA1 0639 15190 + 107.2° 13485 + 42.2°° 1194.1 + 57.3° 1
APOC3 0736 1859.5 + 13122 1472.7 + 632° 1307.6 + 77.4° 1
(D36 0593" 517.8 + 246° 5804 + 15.1 °° 5965 + 15.8° !
CPTIA 0.044 2445 + 37.1 2476 £ 155 2335 + 100

cP12 0.853" 2047 +84° 1954 + 67° 151.8 + 43¢ 1
FABPT 0722" 99838 + 96.5° 6875 + 303° 606.7 + 384° 1
FADS6 0547 1096 + 83 1304 + 117 1451 + 9.1 !
FASN 0.769" 10,794 + 755.5° 84759 + 480.1° 64869 + 559.1° 1
LPL 0.600" 482 +223° 90.1 +9.1 % 1179 + 96° !
MDH1 0902" 667.0 + 280° 4626 + 18.8° 386.7 + 12.3° 1
MET 0601" 10450 + 127.5° 963.7 + 7507 6006 + 92.9° 1
PPARA 0376 4471 +173°%° 4346 +17.1° 4968 + 153°

RXRA 0012 659 + 2.9 634 + 28 646 + 30

SCD 0817" 27852 + 130.0° 23226 + 819° 14136 + 233.1° 1
TLR2A 0.041 211413 209+ 19 204+ 17

TLR4 0360 102+ 09 93+ 04 126+ 12

XBP1 0620 2256 +9.1° 2314 +99° 2818 + 124° !
ERNT 0578 289 + 25 239+12 232+ 11 1

'Pearson’s correlation coefficient of target gene against individual bodyweight of all three groups of birds (BW); "Sig at P < 0.05, “'Sig at P < 0.01

2Relative direction of regulation: 1 Broiler upregulated (broiler > cross > layer); | Broiler downregulated (broiler < cross < layer)

Means (+ SEM) within the same row for each parameter with different superscripts are significantly different (P < 0.05). Means values are counts per million
(CPM) transcripts, to correct for varying sequence depth between individual samples

investigate birds with grossly different growth potentials;
namely, broilers, layers and a layer x broiler F1 cross.
Although samples were taken at multiple time points, d
14 was selected as the primary sampling date due to the
rapid growth acceleration seen in broilers from 2 to 3
wk of age. By sampling at this time point it was hoped
to capture physiological changes at the beginning of the
growth acceleration to further understand broiler growth
rates.

As expected the growth rates of the broiler progeny
well exceeded those of the layer strain progeny. By d 14
the broilers were four times the weight of the layer strain
males and twice the weight of the F1 cross. The total
lipid carcass percentage of the broilers was higher than
both the layers and the cross, which weren't significantly
different from each other, despite the cross being twice
the weight of the layers. Interestingly multiple studies
have shown that the dietary fatty acid composition is
reflected in the fatty acid composition of the tissues and
serum of broilers [33, 34]. Despite being raised in the
same environmental conditions and fed the same diet,

the fatty acid composition of the carcasses and blood
spots differed between the three groups in this study,
suggesting difference existed in fatty acid metabolism.
The broilers had increased overall MUFA percentages,
which would correlate with the significant upregulation
of SCDI which encodes the rate-limiting enzyme con-
verting SFAs into MUFAs [35]. Comparisons of the total
SFA, MUFA and PUFAs revealed layers had higher n-6
and n-3 levels, indicating two possibilities, layer strains
either have a higher physiological requirement for long
chain PUFAs, or, layers are more efficient at converting
available dietary linoleic and alpha-linolenic fatty acids
to their long chain derivatives. The gene encoding the
enzyme FADS6, which is rate limiting in the elongation
of PUFAs, was found to be upregulated in the layers in
comparison to the broilers which may support this
concept.

Whilst it may be anticipated that the increased fat de-
position is due to either increased lipogenesis and/or a de-
crease in fatty acid S-oxidation, we saw a net overall
increase in both lipogenesis and fatty acid S-oxidation
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genes in the broilers compared to layers or the F1 cross.
Although this could be controlled by transcription factors
regulating FA metabolism, such as the nuclear receptor
PPARA, we found no evidence to support this. The higher
metabolic activity may therefore be reflective of the weight
of the liver at d 14 which was relatively larger than that of
the layers expressed as a percentage of bodyweight. An
early increase in liver mass has also been observed in mul-
tiple studies, including comparisons of modern broilers
and heritage lines [2]. In the current study the layer and
crossed birds had reached their peak relative liver mass by
d 7, however the broilers had higher relative weights at d
7 and reached their relative maximum weights at d 14
post hatch. By d 28 there were no differences in relative
liver mass between the broilers, layers and their F1 cross.
Schmidt et al., [2] propose this early increase in liver mass
could correspond to increased liver capacity required in
early post hatch, and that a possible effect of selection
may have shifted earlier maturation of the liver in modern
broiler lines. The relative heart weights followed a similar
pattern to the liver in that they were at their maximums
in the first 2 wks post hatch. From d 14 onwards the
broiler relative heart weights had significantly reduced
when compared to the cross and layers. These findings
are not surprising as the reduction in cardiac relative size
and capacity has been well documented in broilers due to
genetic selection for increased growth [2, 18, 36].
Additional to differential fatty acid metabolism, it was
hypothesised that innate immune parameters may also be

interacting with fatty acid metabolism ultimately influen-
cing performance variation. Modern broilers are now con-
sidered obese relative to layer strains, so obesity-related
pathologies such as inflammation and cellular stress may
be anticipated to be increased in broilers. To test this
hypothesis immune organ weights (spleen and bursa), het-
erophil: lymphocyte ratios, as well as Toll-like Receptors
(TLR2a, TLR4), fatty acid translocase (CD36) and endoplas-
mic reticulum stress indicator genes (ERNI, XBPI) were
included in the current study.

The relative weight of both the spleen and bursa contin-
ued to increase in the cross and layer birds from d 0 until d
28 post hatch. The broilers reached maximum relative
spleen and bursa weights at d 14 and then decreased from
there on in. There has been conflicting interpretation as to
whether relative increased immune organ size equates to a
better immune defence system. Once such study found that
the size of the spleen for example was correlated with
changes in body condition, and that size was elevated in in-
dividual birds in prime body condition [37]. It could be ar-
gued that all of our birds were in good body condition, as
there was no disease, parasite infection or mortality. Body
condition as measure of fatness v leanness however, as used
by Moller et al., [37], would assume the layers and the F1
cross were in better relative condition than the broilers,
and potentially reflective of the smaller immune organs.
Additionally broilers have repeatedly been shown to be less
responsive to immune challenges experimentally, and this
has been attributed to a negative consequence of genetic
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selection [24]. Although relative decreased lymphoid organ
weights (% of bodyweight) were observed in the broilers
compared to the cross and layers, there was no evidence to
suggest that the broilers were compromised immunologically
due to increases in fat deposition in an unchallenged experi-
mental setting. Heterophil: lymphocyte ratios were not
significantly different between any of the birds although there
was a high level of variation between the individuals. The
cross did appear to have a lower ratio, however this is more
likely attributed to a lower number of samples and the high
variation in individual birds than a significant trend.

Whilst short-term stress is of minimal consequence to
broilers, long-term stress results in increased serum cor-
ticosterone, increased heterophil: lymphocyte ratios and
altered protein, carbohydrate and lipid metabolism, and
increased deposition of abdominal fat [38]. This poses a
question, could a broiler be chronically stressed at a cel-
lular level, particularly with the reduction of organ
weights relative to overall bodyweight as growth in-
creases? To investigate whether there was any evidence
of organelle stress occurring, two key ER stress indica-
tors which initiate the unfolded protein response (UPR)
were assessed, inositol-requiring kinase 1 (ERNI) and x-
box binding protein (XBPI). Saturated fatty acids have
been shown to trigger the UPR response in hepatocytes
and the UPR has been linked to lipid synthesis and
breakdown [39]. Despite the broiler, layer and F1 cross
birds having differing SFA levels, no differences were
found in the expression levels of ERN1, XBP1 however
was found to be upregulated in the layers in comparison
to both the broiler and cross. Given that ERN1 levels are
showing no indication of ER stress, the differential ex-
pression of XBPI may align with the suggestion that
XBP1I functions as a mediator of hepatic lipogenesis, dis-
tinct from its function in ER stress and the UPR [40]. It
is thought to regulate the transcription of genes involved
with fatty acid synthesis, including SCDI and ACACA,
with deletion of XBP1I resulting in decreased triglyceride,
cholesterol and free fatty acids [40]. It is difficult to con-
clude whether XBP1 is exhibiting a regulatory effect on
lipogenesis in the layers however the aforementioned
genes are not seen to be increased in the layers com-
pared to the broilers or the cross.

Additional to organelle stress, Toll-Like receptors, in-
cluding TLR2 and TLR4 have received attention for their
roles in the development of obesity and insulin resist-
ance, although the mechanisms by which they contribute
still remain unclear. Mice lacking TLR2 and TLR4 genes
do show however that TLRs are involved in the develop-
ment of obesity [41]. In macrophage cell cultures, satu-
rated fatty acids, such as stearic acid and palmitic acid,
have been shown to activate TLR2 and TLR4 signalling
pathways, which consequently activates down steam pro-
inflammatory pathways, Conversely, PUFAs, particularly
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n-3 s, have been shown to inhibit TLR2/4 expression, acti-
vation and downstream signalling [42]. In our current
study we found no differential expression of TLR2a in the
avian liver in any of the three types of birds. Additionally
we found no evidence in the expression levels of TLR4 to
suggest that the differing fatty acid profiles of the birds
was having an effect or interaction with the expression of
TLR4 at d 14 post hatch. This was also the case for CD36,
with the exception of a down regulation in the broilers in
comparison to the layers. Given the biological diversity for
the role of CD36, this likely does not translate into down
regulated facilitation of fatty acid transport given the over-
all upregulation of fatty acid metabolism seen in the
broilers.

Conclusion

The results indicate a total upregulation of fatty acid me-
tabolism in broiler chickens when compared to an F1 cross
and commercial layer strain. This increase is most likely as
a result of genetic selection for growth, with the overall in-
crease resulting in increased FA synthesis as well as -oxi-
dation in the liver. There was no evidence to suggest that at
d 14 post hatch that the broilers are in a state of cellular
hepatic stress or demonstrating changes in innate immunity
parameters such as TLR2 and TLR4 expression. This is des-
pite the broilers growing at four times the rate of the layers
and with significant increases in fat %. Day 14 post hatch
was selected to capture the physiological changes as the
broiler growth acceleration begins. It is possible that the d
14 sample time point was too early in relation to fatty acid
metabolism and innate immunity/cellular stress interac-
tions to capture changes that may ultimately be driving per-
formance. Analysis at additional time points in the grow
out phase could better revel indicators of chronic stress as
the organ weights continue to decrease by relative weight,
contributing to metabolic stress and altering metabolism.
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