
fcell-09-768510 October 5, 2021 Time: 17:34 # 1

BRIEF RESEARCH REPORT
published: 11 October 2021

doi: 10.3389/fcell.2021.768510

Edited by:
Souvik Dey,

Jadavpur University, India

Reviewed by:
Ahmed T. Alahmar,

University of Babylon, Iraq
Arlindo A. Moura,

Federal University of Ceara, Brazil

*Correspondence:
Manesh Kumar Panner Selvam

mpannerselvam@tulane.edu
Suresh C. Sikka

ssikka@tulane.edu

Specialty section:
This article was submitted to

Signaling,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 31 August 2021
Accepted: 23 September 2021

Published: 11 October 2021

Citation:
Panner Selvam MK, Baskaran S

and Sikka SC (2021) Telomere
Signaling and Maintenance Pathways

in Spermatozoa of Infertile Men
Treated With Antioxidants: An in silico

Approach Using Bioinformatic
Analysis.

Front. Cell Dev. Biol. 9:768510.
doi: 10.3389/fcell.2021.768510

Telomere Signaling and Maintenance
Pathways in Spermatozoa of Infertile
Men Treated With Antioxidants: An in
silico Approach Using Bioinformatic
Analysis
Manesh Kumar Panner Selvam* , Saradha Baskaran and Suresh C. Sikka*

Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, United States

Telomere shortening is considered as a marker of cellular senescence and it is regulated
by various signaling pathways. Sperm telomere appears to play important role in its
longevity and function. Antioxidant intake has been known to prevent the shortening
of telomere. In the management of male infertility, antioxidants are commonly used
to counterbalance the seminal oxidative stress. It is important to understand how
antioxidants treatment may modulate telomere signaling in sperm. In the current study,
we have identified 377 sperm proteins regulated by antioxidants based on data mining
of published literature. Bioinformatic analysis revealed involvement of 399 upstream
regulators and 806 master regulators associated with differentially expressed sperm
proteins. Furthermore, upstream regulator analysis indicated activation of kinases (EGFR
and MAPK3) and transcription factors (CCNE1, H2AX, MYC, RB1, and TP53). Hence,
it is evident that antioxidant supplementation activates molecules associated with
telomere function in sperm. The outcome of this in silico study suggests that antioxidant
therapy has beneficial effects on certain transcription factors and kinases associated
with sperm telomere maintenance and associated signaling pathways that may play an
important role in the management of male factor infertility.
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INTRODUCTION

Telomere length (structures with non-coding hexanucleotide “TTAGGG” repeats) at the end of
each chromosome determines its stability and genomic integrity. In human somatic (diploid) cells,
telomere length is about 5 to 15 kb (Cross et al., 1989), whereas in germ cells (haploid) it is 10–15 kb
(Samassekou et al., 2010; Ozturk, 2015). Telomere protects the chromosomal DNA from damage
and is considered as a marker of cellular senescence (Bernadotte et al., 2016). Thus, telomere length
maintenance is essential for normal cellular processes. Any abnormality in telomere length has been
linked to age-related diseases as well as cancer (Stanley and Armanios, 2015).

In general, decrease in telomere length or telomere shortening adversely affects the functional
characteristics of chromosomal DNA. Limited number of studies have focused on the role of
sperm telomeres in reproduction and male infertility (Santana et al., 2019; Tahamtan et al., 2019;
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Darmishonnejad et al., 2020), of which few suggest that sperm
telomere length (STL) is associated with sperm quality and DNA
integrity (Ferlin et al., 2013; Cariati et al., 2016; Rocca et al.,
2016; Darmishonnejad et al., 2020). Telomeres are highly rich
in guanine and susceptible to oxidative damage (Coluzzi et al.,
2014). In vitro studies suggest that oxidative stress accelerates
telomere shortening and disrupts telomerase activity (Epel et al.,
2004; Richter and von Zglinicki, 2007).

Increased oxidative stress associated with leukocytospermia is
one of the prominent causes of male infertility and has deleterious
effect on sperm DNA (Agarwal et al., 2019b). Moreover, sperm
with poor chromatin protamination status are vulnerable to
such oxidative attack (De Iuliis et al., 2009). Rocca et al.
(2016) reported that protamination status of sperm chromatin
is linked with STL (Rocca et al., 2016). Hence, defective
chromatin packaging can increase the exposure of DNA to
reactive oxygen species (ROS) resulting in telomere dysregulation
in mature sperm.

Antioxidants that counterbalance the increased levels of
seminal ROS are widely used in the management of oxidative
stress-mediated male infertility (Agarwal et al., 2021a,b). Use
of antioxidants in treatment of male infertility have shown to
improve semen parameters (Keskes-Ammar et al., 2003; Smits
et al., 2019; Arafa et al., 2020). Furthermore, antioxidant
supplementation activates the molecular mechanism(s)
associated with free radical scavenging in idiopathic infertile
men and has positive beneficial effect on fertility associated
sperm proteins (Agarwal et al., 2019a). In a cross-sectional
study of children and adolescents, dietary antioxidants have
been reported to reduce shortening of leukocyte telomere length
(García-Calzón et al., 2015). However, the role of antioxidants
in modulating sperm telomere signaling and maintenance is
unknown. Therefore, the aim of this study is to review and
conduct in silico analysis of omics data of sperm in patients
subjected to antioxidant treatment to understand the effect
of antioxidants on pathways involved in regulating STL
in infertile men.

METHODS

A comprehensive literature search was performed according to
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines. The articles were retrieved
(Figure 1) from PubMed database on July 4, 2021 using
the following string of keywords “(antioxidant∗ and sperm∗

and male infertility) and (proteomic∗ OR genomic∗ OR
transcriptomic∗)”. Preliminary screening was carried out based
on the following inclusion criteria: (a) studies conducted in
humans, (b) involved antioxidant supplementation/treatment,
and (c) reported laboratory evaluation of male infertility.
Reviews, meta-analysis and studies not reporting clinical data
were excluded. After preliminary screening, all the original
studies were evaluated based on PICO (Population, Intervention,
Control, and Outcome) guidelines (Supplementary Table 1).

Extensive data mining was carried out based on computational
and manual approaches. The article (n = 1) in compliance

FIGURE 1 | Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) workflow reporting the literature search strategy.

with PICO guidelines was thoroughly searched for differentially
expressed biomolecules reported in spermatozoa of infertile
men. These annotated and curated biomolecules list containing
gene/protein symbols with their respective expression values
were saved as Microsoft Excel file. For further downstream
analysis, this list was uploaded to ingenuity pathway analysis
(IPA) software. Initially core analysis was conducted, and then
casual network analysis was carried out to identify antioxidant
activated kinases and transcription factors in sperm (Krämer
et al., 2014). In-depth analysis was performed to identify those
activated kinases and transcription factors that were either
directly involved or linked with the molecules regulating telomere
signaling pathway. Molecular Interaction Search Tool (MIST)
was used to display interaction between the transcription factors
and kinases associated with telomere signaling and maintenance
pathway (Hu et al., 2018).

RESULTS AND DISCUSSION

Antioxidants are widely used in the treatment of male infertility.
A recent global survey reported that 85.6% of physicians involved
in the management of male infertility prescribe antioxidants as a
part of their treatment regime (Agarwal et al., 2021a). Apart from
improving the semen parameters, antioxidant intake increases
the sperm DNA integrity without any side effects/complications
(Zini et al., 2009; Majzoub et al., 2017; Arafa et al., 2020). Besides
these benefits, antioxidants can delay the reduction of telomere
length of somatic cells (Prasad et al., 2017). At subcellular
level, antioxidants modulate proteins associated with CREM
(cAMP responsive element modulator) signaling, mitochondrial
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FIGURE 2 | Distribution of (A) upstream regulators (n = 399) and (B) master regulators (n = 806) identified in the sperm post-antioxidant therapy.

TABLE 1 | Transcription regulators activated in sperm after antioxidant therapy.

SN Molecule Category Activation z-score Telomere associated function(s)

1. MYC Transcription regulator 4.67 Telomere signaling, maintenance of telomere length

2. CCNE1 Transcription regulator 3.04 Clustering of telomere

3. MAPK3 Kinase 2.75 Modification of telomere length

4. TP53 Transcription regulator 2.53 Telomere signaling, maintenance of telomere length

5. RB1 Transcription regulator 2.35 Telomere signaling, maintenance of telomere length

6. H2AX Transcription regulator 2.09 Modification of telomere length

7. EGFR Kinase 2.06 Telomere signaling

function and protein oxidation (Agarwal et al., 2019a). They
are also reported to activate antioxidant defense mechanism in
sperm (Agarwal et al., 2019a). It is essential to understand the
effect of antioxidant supplementation on mechanisms/pathways
associated with sperm telomere. In the current study, we have
used data mining and manual curation techniques to identify the
molecules (sperm proteins) altered post-antioxidant treatment.
For the first time, using an in silico approach this study sheds
light on the beneficial role of antioxidants in regulating telomere
signaling and maintenance pathways of sperm.

Availability of different data mining strategies and accessibility
to omics data made the researchers to reinvestigate the curated
data with bioinformatic tools (Zhang and Chen, 2011; Alanis-
Lobato, 2015). Such analysis led to the discovery of several
existing and missing pathways linked to human diseases (Fechete
et al., 2011; Narasimhan et al., 2014; Kharrat et al., 2019).
Kothandaraman et al. (2016) used the data mining technique to
identify genes associated with pathogenesis of idiopathic male
infertility (Kothandaraman et al., 2016). In the current study,
data mining and manual curation resulted in identification of 377
differentially expressed proteins in sperm following antioxidant
therapy (Supplementary Table 2). Upstream regulator analysis
(URA) revealed a total of 399 and 806 upstream regulators
and master regulators, respectively. Upstream regulator analysis
is an unique feature available in IPA to identify upstream
regulators associated with differentially expressed genes/proteins
(Li et al., 2015). Sperm proteomic studies have employed URA
to identify regulatory molecules associated with reproductive
function (Agarwal et al., 2019a; Panner Selvam et al., 2019).
Figure 2 shows the distribution of 73 upstream regulators and

338 master regulators either activated (Z-score ≥ 2) or inhibited
(Z-score ≤ –2) in our dataset. It is important to emphasize that
none of the inhibited regulators were found to be involved in
telomere function. Therefore, it clearly indicates that antioxidant
supplementation has no negative effect on STL.

In-depth analysis revealed activation of kinases (EGFR:
epidermal growth factor receptor and MAPK3: mitogen-
activated protein kinase 3) associated with telomere function
(Table 1). Epidermal growth factor receptor signaling pathway

FIGURE 3 | Interaction between transcription regulators and kinases involved
in telomere signaling and maintenance pathway in sperm after antioxidant
treatment. Graphical representation of network developed using MIST. PPI:
protein-protein interaction, TPM: transcripts per million, MYC: MYC
proto-oncogene, CCNE1: cyclin E1, MAPK3: mitogen-activated protein
kinase 3, TP53: tumor protein p53, RB1: RB transcriptional corepressor 1,
H2AX/H2AFX: H2A.X variant histone, EGFR: epidermal growth factor receptor.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 October 2021 | Volume 9 | Article 768510

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-768510 October 5, 2021 Time: 17:34 # 4

Panner Selvam et al. Antioxidants and Sperm Telomere Function

plays a pivotal role in regulation of telomere length via inhibiting
telomerase activity (Maida et al., 2002; Tian et al., 2002; Augustine
et al., 2017), whereas MAPK3/ERK2 pathway regulates telomeric
repeat-binding factor 2 (TRF-2) to maintain telomere stability
in a cell (Picco et al., 2016). In addition to kinases, using
computational analysis we have also identified transcription
factors (CCNE1: cyclin E1, H2AX: H2A.X variant histone, MYC:
MYC proto-oncogene, RB1: RB transcriptional corepressor 1
and TP53: tumor protein p53) linked to the maintenance of
telomere in sperm (Table 1). CCNE1 is mainly responsible
for telomere stability (Martinerie et al., 2014), while absence
of H2AX is linked to genomic instability (Celeste et al., 2002;
Fernandez-Capetillo et al., 2003). Similarly, MYC regulates
telomerase (Wang et al., 1998), particularly c-MYC interacts
with TRF1/PIN2 (proteinase Inhibitor 2) leading to extension of
telomere repeats (Kim and Chen, 2007).

Expression of RB1 proteins controls telomere length
(García-Cao et al., 2002), while TP53 directly binds with
chromosomal DNA and increases the stability of telomere
(Tutton and Lieberman, 2017). Altered expression of these
kinases and transcription factors may contribute toward telomere
dysfunction in sperm of infertile men. Furthermore, MIST
analysis displayed the interaction type (protein-protein or
genetic) between the molecules (EGFR, MAPK3, CCNE1,
H2AX, MYC, RB1, and TP53) and their abundance in the
testis (Figure 3). New findings of this study clearly show
that antioxidant supplementation activates the transcription
regulators and kinases involved in sperm telomere signaling
and maintenance pathway that may improve their longevity
and function. Future clinical trials evaluating the STL post-
antioxidant supplementation are warranted in infertile men
to confirm its role in maintaining telomere integrity and
sperm function. Such studies may provide more insight
on the use of STL as a new prognostic or therapeutic
marker of antioxidant effectiveness in the management of
male infertility.

CONCLUSION

For the first time, using bioinformatic approach, our results
demonstrate that antioxidant therapy has positive effect on
transcription factors and kinases associated with telomere
function in sperm. Altered expression of EGFR, MAPK3,
CCNE1, H2AX, MYC, RB1, and TP53 can serve as biomarkers for
telomere dysfunction in sperm of infertile men, and opens new
approaches to target improved therapies.
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