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Glaucoma is an optic neuropathy that leads to characteristic visual field defects. However,

there is no cure for glaucoma, so the diagnosis of its severity is essential for its prevention.

In this paper, we propose a multimodal classification architecture based on deep learning

for the severity diagnosis of glaucoma. In this architecture, a gray scale image of the

visual field is first reconstructed with a higher resolution in the preprocessing stage,

and more subtle feature information is provided for glaucoma diagnosis. We then use

multimodal fusion technology to integrate fundus images and gray scale images of the

visual field as the input of this architecture. Finally, the inherent limitation of convolutional

neural networks (CNNs) is addressed by replacing the original classifier with the proposed

classifier. Our architecture is trained and tested on the datasets provided by the First

Affiliated Hospital of Kunming Medical University, and the results show that the proposed

architecture achieves superior performance for glaucoma diagnosis.

Keywords: glaucoma, computer-aided diagnosis, multimodal fusion, classification, multi-layer perceptron

INTRODUCTIONS

Glaucoma is amajor eye health problem that leads to irreversible visual impairment (Mirzania et al.,
2020). Because glaucoma initially tends to affect marginal vision and may still be asymptomatic
until the middle stage, most patients are not treated in time, and further damage can occur (Yang
et al., 2020). Thus, the detection and especially the severity classification of glaucoma is beneficial
for ophthalmologists to analyze the condition of patients and develop follow-up treatment plans.

Fundus images, optical coherence tomography (OCT), and visual field are used as public data
in the clinic. OCT can accurately evaluate the thickness of the retinal nerve fiber layer (RNFL)
by tomography technology (Bowd et al., 2022). Fundus images reflect the vascular status of the
eyes by contrast agent injection, and Chan et al. (2014) demonstrated that mono fundus images
can provide an equal diagnostic accuracy for glaucomatous optic neuropathy evaluation when
compared to stereoscopic images. The gray scale image of the visual field manifests the defect of the
patient’s visual field by brightness transformation (Wroblewski et al., 2009). Compared with OCT,
fundus images and visual fields are easier to obtain and can be directly used to diagnose glaucoma
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(Wroblewski et al., 2009; Chan et al., 2014). The diagnosis of
pathological images is crucial but time-consuming and laborious;
thus, reliable computer-assisted diagnosis (CAD) of glaucoma
has continued to expand in the recent years (Zheng et al.,
2019). The diagnostic approaches by the above technologies for
glaucoma can be divided into two categories. One is the single-
path method, of which the input is single type data. For example,
Wroblewski et al. (2009) used support vector machines (SVMs)
to provide a valid clinical diagnosis of glaucoma based solely on
visual field data. Escamez et al. (2021) developed a classifier for
predicting glaucoma eyes based on peripapillary retinal nerve
fiber layer (RNFL) thicknesses measured with OCT. The other
is a multimodal fusion image, which is a combination of two or
more types of data. For instance, Bizios et al. (2011) and Chen
et al. (2019) employed multimodal fusion approaches to diagnose
glaucoma by integrating OCT and visual field data and OCT and
fundus images.

Nevertheless, there are at least three problems to be resolved.
First, the inferior resolution of the common gray scale of the
visual field affects the feature extraction of convolutional neural
networks (CNNs) in the task of glaucoma diagnosis. Second, the
majority of studies focused on employing a single type of data to
simply diagnose health and glaucoma, whereas the diagnosis of
glaucomatous severity is more significant for ophthalmologists
(Rajendrababu et al., 2021). Third, some studies using CNNs to
capture features still had difficulty meeting the requirements of
accuracy in practical diagnostic tasks. The main reason is that
each convolution kernel of CNNs focuses only on the feature
information of itself and its boundary while lacking the ability to
model some long-range dependencies in glaucoma images (Yao
et al., 2021).

To address these challenges, we propose a multimodal
classification architecture based on deep learning for the severity
classification of glaucoma. In this architecture, first, the gray
scale image of the visual field is reconstructed with a higher
resolution in the preprocessing stage, which is conducive to
the feature extraction of the proposed architecture. Second, the
fundus image and reconstructed visual field gray scale image are
integrated to obtainmultimodel information for the classification
task and then transferred into CNNmodels for feature extraction.
Third, we construct an efficient classifier to address the limitation
of CNNs. This adopts the multilayer perceptron (MLP) of vision
transformer (Dosovitskiy et al., 2020) (ViT) to further extract
global sequence information and can be directly connected after
CNNs to replace its original classifier. The main contributions of
this paper are as follows:

• A multimodal classification architecture based on deep
learning is constructed for the task of severity classification
of glaucoma. The gray scale image of the visual field is
reconstructed with a higher resolution in the preprocessing
stage, in which a more subtle gray scale division unit is
modeled to provide more detailed feature information in the
glaucoma diagnosis task.

• The proposed architecture fuses the fundus image and visual
field gray scale image as the input to provide more information
for the feature extraction of the network. This architecture

realizes a 4-classification of glaucoma to present its severity,
which is more convenient for ophthalmologists.

• To offset the limitation of CNNs, we propose a plug-and-play
classifier which adopts the multilayer perceptron (MLP) of
ViT to extract the global dependencies of images. Meanwhile,
the proposed classifier can easily replace the original classifier
of CNNs and significantly improve the accuracy of the
diagnostic task.

BACKGROUND AND RELATED WORKS

In this section, the latest progress of deep learning and its
application in the field of glaucoma diagnosis are reviewed.

Development of Deep Learning
In the recent years, deep learning algorithms, especially CNNs,
have made significant progress. The introduction of ImageNet
(Krizhevsky et al., 2017) provided an initial explanation for
the conception of deep learning. Subsequently, Simonyan and
Zisserman (2014) and Iandola et al. (2017) proposed visual
geometry group (VGG) and SqueezeNet, respectively; they
increased the depth of the network while keeping the perception
field unchanged and improving the performance of the networks.
Meanwhile, He et al. (2016) and Huang et al. (2016) introduced
functional modules such as residual and dense modules to
enhance the performance of CNNs. Due to these improvements,
CNNs are widely applied in the field of CAD. However, CNNs
lack the ability to model the global dependencies of images
because of their inherent limitations. Recently, transformer
(Vaswani et al., 2017), which is capable of modeling long-
range sequence features, attracted tremendous attention in the
computer vision field. Dosovitskiy et al. (2020) introduced a
transformer into the image task and successfully used embedded
2-dimensional (2D) image patches as an input sequence to
achieve comparable representation with CNNs. Therefore, to
obtain better performance in the task of glaucoma diagnosis, it
will be of greater significance to combine transformer to offset
the limitations of the CNN model.

Deep Learning for Glaucoma Diagnosis
Many deep learning algorithms have been employed in the fields
of glaucomatous classification (Gour and Khanna, 2020; Wang
et al., 2020; Singh et al., 2021). Raja et al. (2020) used a CNN
to segment the retinal layer based on OCT data and calculate
the cup-to-disk ratio (CDR). This achieved 94.6% accuracy in
the glaucoma prediction task. Li et al. (2019) employed visual
field data collected from hospitals to identify glaucoma, and the
accuracy reached 87.6%. Kim et al. (2018) and Guo et al. (2020)
diagnosed and localized fundus images by VGG16 and UNet++

networks to classify glaucoma and achieved an accuracy of 91.2%
and an area under the curve (AUC) of 90.1%, respectively.
Bajwa et al. (2020) and Ibrahim et al. (2022) both proposed
a two-stage framework: the former detected and located optic
disks on fundus images and then classified them as healthy
or glaucoma; the latter preprocessed glaucoma disease data by
normalization and the mean absolute deviation method in the
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FIGURE 1 | Diagram of proposed architecture.

TABLE 1 | Distribution of dataset.

Normal

(class 0)

Early

(class 1)

Intermediate

(class 2)

Terminal

(class 3)

Quantity Original 87 171 79 165

augmented 174 171 158 165

first stage and trained a deep learningmodel through the artificial
algae optimization algorithm later. They achieved an AUC of
87.4% and an F1 score of 98.15%.

Different from the above works, Bizios et al. (2011) used a
multimodal fusion approach to diagnose glaucoma by fusing
OCT and standard automated visual field data and improved
the AUC by 3.3% compared with single data. Chen et al. (2019)
employed residual UNet to segment enhanced OCT and fundus
images and then integrated the extracted features, achieving an
accuracy rate of 96.88%. Kang et al. (2020) fused cup-to-disk and
retinal nerve fiber layer features for the diagnosis of glaucoma. In
the work of Liu et al. (2014), the limitation of the performance of
a single modality was overcome by integrating patient personal
data, major ocular image features, and important genome SNP
features. This approach obtained the best AUC compared with a
single modality.

MATERIALS AND METHODS

The workflow of the proposed multimodal classification
architecture is shown in Figure 1 and has three parts: input, CNN
model, and classifier. First, the fundus image and reconstructed
gray scale image of the visual field are fused into a multimodal
fusion image, which are preprocessed and then sent into the
CNN model. Second, as the feature extraction backbone of our
architecture, the CNNmodel uses four ordinary CNNs to extract
the feature information of the input image. These CNNs are
pretrained by transfer learning technology to adapt to the task

of small-scale datasets. Finally, the global dependencies of the
feature maps are extracted by the proposed classifier to offset the
limitations of the CNNs.

Input
Datasets
The dataset of this paper is provided by the First Affiliated
Hospital of Kunming Medical University. It contains 502 fundus
images and 502 visual field reports from 274 individuals, and both
eyes of each individual were used in the study. Fundus images and
visual field reports were acquired by a Topcon fundus camera
TRC-50DX and Intelligent Video Surveillance (ISV) automatic
computerized perimetry, and each image was labeled by two
professional physicians. The datasets were rated from class 0 to 3
based on the severity of glaucoma, representing normal (n= 87),
early (n= 171), intermediate (n= 79), and terminal glaucoma (n
= 165), respectively. Related information of the dataset is listed
in Table 1. Meanwhile, to overcome the challenges of training on
imbalanced data by CNNs, we augmented normal eyes from 87
to 174 and intermediate glaucoma from 79 to 158 through data
augmentation technology and balanced the ratio of all categories
of data to ∼1:1:1:1. Finally, 1,336 images of the two types of data
were applied to our deep learning architecture. The data sample
is depicted in Figure 2.

Preprocessing
The preprocessing consists of two parts: data augmentation and
normalization, and improving the resolution of the visual field
gray scale image by reconstructing gray scale units.

Augmentation and Normalization
As shown in Table 1, the distribution of each category in the
dataset is severely imbalanced, which may skew the diagnosis
of CNNs toward more data-intensive types. To address this
problem, we use data augmentation technology such as rotation,
flipping, brightness, and contrast adjustment to form a dataset
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with the sample number of each category being almost equal.
Meanwhile, to make the data more suitable for the pretraining of
CNNs based on ImageNet, of which the default input resolution
is 224 × 224, the images are resized to 224 × 224 pixels by
bilinear interpolation.

Reconstruction of Visual Field Gray Scale Images
As depicted in Figure 3A, the gray scale image of the visual field
is constructed based on the numerical value map, and each gray
scale value in the image is represented by a gray scale unit. In the
ordinary gray scale image, due to its low resolution (each gray
scale unit represents a value with a span of 5 dB) (Figure 3B),
much information is lost in the training process of CNNs, thus
affecting the ability of CNNs to extract subtle features. In this
paper, to solve this problem, a more subtle gray scale unit and
corresponding gray scale image are established in which the gray
scale unit is divided into 1 dB to retain the subtle features of the
gray scale image (Figure 3C).

Multimodal Fusion
In this paper, the proposed multimodal classification architecture
fuses fundus images and visual field gray scale images through
an image concatenation approach and then transfers it into the
CNN model to capture sufficient feature information. This is
different from other studies. For instance, Chen et al. (2019) input
images into CNNs for extracting features and then fused the
extracted features to diagnose glaucoma. Such a fusion method
changes the extracted features during the fusion, so the fused
feature information is not reliable. Our proposed architecture
fuses multimodal images before training, avoiding the mutual
interference of features while improving the performance of
glaucoma diagnosis.

CNN Model
Here, four CNNs (VGG 19, SqueezeNet, ResNet 50, and
DenseNet 121) are adopted to extract the primary features of the

fusion image in the proposed architecture. The details are shown
in Figure 4.

VGG
Visual geometry group has a very systematic architecture. With
the deepening of the network, the size of the input image is
gradually compressed, but the number of convolution kernels
is constantly increasing to explain the reduction in image size.
Briefly, abundant 3 × 3 convolutional kernels are accumulated
to replace the macrokernels to enhance the depth and width of
the network. Thus, the higher the number of activation functions,
the richer the extracted features and the stronger the recognition
ability of the classification task.

SqueezeNet
SqueezeNet replaces the 3 × 3 convolutional kernel with
abundant 1 × 1 kernels to reduce the computational cost and
accelerate the training process of CNNs, with approximate results
of AlexNet on the ImageNet dataset. The network is widely
employed for large-scale datasets due to its light weight and
high efficiency.

ResNet
Different from VGG, ResNet solves the degradation problem of
deep networks by connecting the residuals of feature mapping
from one layer to the subsequent through residual connections
on its basis. Researchers can train deeper networks to improve
task representation by solving ill-posed problems.

DenseNet
DenseNet, based on ResNet’s theory, connects one layer to
all subsequent layers by skipping connections, achieving dense
skip connections. With further architectural transformations,
the internal representation of DenseNet becomes significantly
different from ResNets.

One key aspect is the use of network name suffixes in
Figure 4. Roughly speaking, the number of layers in the network

FIGURE 2 | Samples of different severities.
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FIGURE 3 | (A) Gray scale images of visual field. (B) Ordinary gray scale units. (C) New gray scale units.

is represented as “19,” “50,” and “121.” As you can see, the
layers of the selected networks range from relatively shallow
to extremely deep. This is intentional, as it leads to more
architectural diversity.

Classifier
As the classifiers of CNNs are usually composed of a fully
connected layer or maxpooling functions (Figure 5A), they lack

the ability to model the long-range dependencies of glaucoma
images. Therefore, we propose an effective classifier replacing
the originals to offset their limitation in this paper, which is
constructed by the MLP of ViT. As mentioned above, ViT can
extract the global dependencies, and inspired by (Melas-Kyriazi,
2021), such an ability can be realized by its multilayer perceptron
(MLP) alone, so it is employed in our classifier. Figure 5B shows
an overview of this module.
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FIGURE 4 | Backbone of proposed architecture.

First, the input feature map Xin ∈ R
H×W×C is sent into a 1

× 1 convolutional layer to extract local features and change the
dimension to match the next layer. The output of this layer is

X1 ∈ R
H×W×C′

, where (H, W) is the resolution of the initial
image, C is the number of initial dimensions, and C ′ is the
number of convoluted dimensions.

Second, a patch embedding process including image reshaping
and image patch compression is performed. The feature map
X1 is reshaped into an N sequence of flattened 2D patches
Xi
p (Equation 1):

Xi
p = P× P× C , i ∈ {1, 2, · · · , N} (1)

where (P, P) is the resolution of each image patch, and N =

H×W/P2 is the generating number of image patches. Then, Xi
p is

compressed into aD-dimensional embedding space by a trainable
linear projection for the MLP layer (Equation 2).

X2 =
[

X1
PE;X

2
PE; · · · ;X

N
P E

]

+ Epos (2) (2)

where E ∈ R(P2×C′)×D is the embedding projection of the patch,
Epos ∈ R

N×D is the positional embedding, and X2 is the encoded
image sequence.

Third, the processed data sequence X2 is transferred into the
MLP layer (Equations 3, 4).

X2′ = Dropout(Gelu(FC(X2)) (3)

X3 = Dropout(FC(X2′)) (4)

where Gelu and Dropout are activation functions used to prevent
network overfitting and improve training accuracy. FC is a
fully connected layer which transforms the convolution output
of the two-dimensional feature map into a one-dimensional
vector.

Finally, the output of the MLP layer is subsequently
rearranged to the initial size of the input image Xout ∈

R
H×W×C(Eq. 5), and the glaucoma category is predicted by

a classifier.

Xout = rearrange(X3, (hw)(p1p2 c) → c(hp1)(wp2)) (5)
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FIGURE 5 | Comparison of classifier structures: (A) classifier structure of CNNs; (B) our classifier structure.

TABLE 2 | Comparison of performances before and after reconstructed gray scale image.

Ordinary gray image Reconstructed gray scale image

Accuracy F1 score Kappa Jaccard Recall Accuracy F1 score Kappa Jaccard Recall

SqueezeNet 1_1 0.772 0.753 0.690 0.623 0.772 0.793 0.779 0.724 0.652 0.793

Vgg 19 0.757 0.749 0.674 0.613 0.757 0.882 0.880 0.842 0.788 0.882

ResNet 50 0.797 0.795 0.729 0.665 0.797 0.918 0.918 0.890 0.849 0.918

DenseNet 121 0.790 0.787 0.720 0.659 0.790 0.888 0.889 0.849 0.803 0.888

Average* 0.779 0.771 0.703 0.640 0.779 0.870 0.866 0.826 0.773 0.870

*Average = average value of above four CNNs.

TABLE 3 | Results of fundus images.

Accuracy F1 score Kappa Jaccard Recall

SqueezeNet 1_1 0.696 0.662 0.595 0.528 0.696

Vgg 19 0.704 0.692 0.604 0.559 0.704

ResNet 50 0.687 0.682 0.581 0.534 0.687

DenseNet 121 0.716 0.707 0.622 0.559 0.716

Average 0.701 0.686 0.600 0.545 0.701

Evaluation Criteria
To evaluate the effectiveness of the proposedmethods, we employ
the accuracy, Jaccard score, Kappa score, recall, and F1 score.
Accuracy indicates the proportion of the correct sample number
in the total sample number. Recall represents the number of
samples predicted to be positive out of the total number of
true positive samples. The F1 score is the ratio of accuracy to
recall. The Jaccard score evaluates the similarity and diversity of

samples. The Kappa score assesses the consistency between the
predicted classification results and actual results, and we employ
it to evaluate the efficiency of multiclassification architectures.

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

Jaccard score =
TP

TP+ FP+ FN

F1 Score =
2 • precision • recall

precision+ recall

Accuracy =
TP+ TN

TP+ TN+ FP+ FN

Pe =
(TP+FN)(TP+ FP)+(TN+ FN) (TN+ FP)

(TP+ TN+ FP+ FN)2

Kappa score =
Accuracy− Pe

1− Pe
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TABLE 4 | Results of multimodal fusion.

CNN model Class no. Acc AUC Spec Sen F1 Kappa Avg.Acc Avg.F1 Avg.AUC

SqueezeNet1_1 Class 0 0.948 0.965 1.0 0.930 0.909 0.873 0.896 0.895 0.931

Class 1 0.926 0.866 0.743 0.990 0.839 0.792

Class 2 0.948 0.955 0.969 0.942 0.896 0.816

Class 3 0.970 0.939 0.879 1.0 0.935 0.916

VGG 19 Class 0 0.956 0.970 1.0 0.940 0.921 0.890 0.911 0.910 0.956

Class 1 0.948 0.900 0.800 1.0 0.889 0.856

Class 2 0.956 0.971 0.942 1.0 0.914 0.885

Class 3 0.963 0.924 0.848 1.0 0.918 0.894

ResNet 50 Class 0 0.971 0.980 0.900 1.0 0.947 0.927 0.918 0.919 0.953

Class 1 0.934 0.887 0.923 0.936 0.842 0.801

Class 2 0.934 0.963 0.848 0.978 0.897 0.848

Class 3 0.971 0.929 1.0 0.964 0.923 0.857

DenseNet 121 Class 0 0.971 0.980 0.900 1.0 0.947 0.928 0.918 0.920 0.939

Class 1 0.929 0.871 0.920 0.930 0.821 0.777

Class 2 0.907 0.963 0.848 0.936 0.857 0.788

Class 3 0.950 0.946 0.862 0.973 0.877 0.846

where TP is true positive, indicating the number of images
correctly classified by the classification algorithm; FN is false
negative, indicating the number of images incorrectly classified
into other categories by the classification algorithm; TN is true
negative, indicating that the classification algorithm correctly
classifies non-category images into other categories; and FP
is false-positive, indicating that the classification algorithm
incorrectly classifies non-category images into such categories.

EXPERIMENT AND DISCUSSION

In this section, the experimental setup of our study is introduced.
Then, four experiments are conducted to present the effectiveness
of our architecture. Finally, the results are shown and discussed
in detail.

Experimental Setup
The experiments are conducted on a server equipped with an
NVIDIA GeForce RTX 2060Ti graphic processing unit (GPU)
and 16 GB of random-access memory. The compiler is PyCharm,
the programming language is Python, and the experimental
framework is PyTorch.

In this paper, the adaptive momentum estimation (Adam)
optimizer is chosen to update the parameters of the proposed
architecture, CrossEntropy Loss is set as the Loss function, and
the learning rate is 0.0001. The epochs are set as 60, and the
batch size is set as 8. Based on our newly constructed dataset, the
proportion of the training set and testing set is set as 8:2; that is,
1,068 fundus and gray scale images are used as the training set,
and 268 fundus and gray scale images are used as the testing set.

Experimental Results and Discussion
Comparison of Reconstructed Visual Field Gray

Scale Images
In this section, to prove the superiority of the visual field gray
scale image being reconstructed at higher resolution proposed

TABLE 5 | Ablation experiment of data augmentation.

Augmentation Accuracy F1 score Kappa Jaccard Recall

SqueezeNet 1_1 No 0.814 0.811 0.740 0.689 0.814

Yes 0.896 0.895 0.862 0.812 0.896

Vgg 19 No 0.735 0.720 0.620 0.590 0.735

Yes 0.911 0.910 0.881 0.836 0.911

ResNet 50 No 0.762 0.762 0.663 0.644 0.762

Yes 0.918 0.919 0.889 0.852 0.918

DenseNet 121 No 0.812 0.812 0.736 0.699 0.812

Yes 0.918 0.920 0.889 0.854 0.918

in this paper, we conduct experiments on ordinary gray images
and newly reconstructed gray scale images based on the proposed
architecture. Meanwhile, evaluation criteria are employed to
present the whole performance of the proposed multimodal
classification architecture. The results are listed in Table 2.

Table 2 indicates that the results of using the reconstructed
gray scale image are more effective than the common gray scale
image. The results of the proposed architecture are enhanced
by 9.1, 9.6, 12.3, 13.3, and 9.1% in terms of average accuracy,
F1 score, Kappa score, Jaccard score, and recall, respectively,
compared with the results of common gray scale images. In
particular, the accuracy of this task is enhanced by 12.1% by
ResNet50. With these satisfying results, we draw the conclusion
that the diagnostic architecture benefits from the reconstruction
of the visual field gray scale image at higher resolution.

Comparison of Multimodal Fusion
In this section, two experiments are designed to present the
effectiveness of multimodal fusion. The fundus image is first
individually inputted to the proposed architecture, and then,
the fundus image and the reconstructed gray scale image of the
visual field are integrated into the multimodal fusion image and
sent into the diagnostic architecture. The results are shown in
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FIGURE 6 | Results of four classes on confusion matrix (left) and receiver operating characteristic (ROC) curves (right) for SqueezeNet1_1, VGG 19, ResNet 50, and

DenseNet 121.

Frontiers in Neuroscience | www.frontiersin.org 9 June 2022 | Volume 16 | Article 939472

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Yi et al. A Multimodal Classification Architecture of Glaucoma

FIGURE 7 | Comparison of multimodal fusion and single path.

Tables 3, 4. Finally, we compare Tables 2–4 to verify the ability
of multimodal fusion in the severity diagnosis of glaucoma.

By comparing Tables 2–4, the results of multimodal fusion
data are better than single-path data: the accuracy of the above
four CNNs achieves 89.6, 91.1, 91.8, and 91.8% in Table 5,
and the average accuracy with 91.1% is higher than in Table 2

(reconstructed gray scale image) with 87.0% and Table 3 (fundus
image) with 70.1%. The proposed architecture is enhanced by
4.5% in terms of the average F1 score compared with the results of
the reconstructed gray scale image and 22.5% of the fundus image
and improves by 5.4 and 28% in terms of the average kappa score.
These results suggest that the proposed multimodal classification
architecture is capable of superior diagnosis for glaucoma severity
than a single type of data.

To further present the improvements of the proposed
architecture, the classification results of each class are detailed
in Table 4. We calculate the confusion matrix, AUC (Figure 6),
and values for all the evaluation criteria including accuracy
(Acc), sensitivity (Sen), specificity (Spec), Kappa score, and
F1-score. Every CNN represents unique performance in the
testing of glaucoma data. For instance, using DenseNet 121 led

TABLE 6 | Ablation experiment of proposed classifier.

Accuracy F1 score Kappa Jaccard Recall

SqueezeNet 1_1 0.889 0.890 0.853 0.811 0.889

SqueezeNet 1_1+Classifier 0.901 0.900 0.868 0.820 0.901

Vgg 19 0.864 0.863 0.818 0.765 0.864

Vgg 19+Classifier 0.911 0.911 0.881 0.837 0.911

ResNet 50 0.882 0.883 0.851 0.847 0.882

ResNet 50+Classifier 0.924 0.924 0.897 0.862 0.924

DenseNet 121 0.913 0.911 0.886 0.844 0.913

DenseNet 121+Classifier 0.939 0.939 0.917 0.889 0.939

to the highest level of ordered pairs of (i) average accuracy
and (ii) average F1-score of 91.8 and 91.2%, respectively,
but its average AUC was lower than those of VGG 19
and ResNet 50.

To describe this comparison more clearly, the histograms
of Tables 2–4 are shown in Figure 7, in which each evaluation
metric of different CNNs (SqueezeNet1_1, VGG 19, ResNet 50,
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FIGURE 8 | Receiver operating characteristic curves of each subcategory for 4-category classification deep CNN.
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TABLE 7 | Comparison of analogous approaches.

Accuracy AUC Kappa spec Sen

Bizios et al. (2011) 0.9539 0.978 – – –

Chen et al. (2019) 0.9688 0.99 – 1.000 0.9167

Liu et al. (2014) – 0.869 – – –

Ours 0.975 0.992 0.942 0.992 0.957

and DenseNet 121) is compared. Based on Figure 7, the same
conclusion as above can be drawn.

Ablation Study

Ablation Study of Data Augmentation
In this section, we conduct an ablation experiment to prove the
effectiveness of data augmentation technology. The results are
shown in Table 5.

Table 5 compares the performance with or without data
augmentation, and apparent improvements are obtained in
all evaluation criteria. These results demonstrate that data
augmentation technology has strong ability in the task of
glaucoma classification.

Ablation Study of Proposed Classifier
In this section, we conduct an ablation experiment to prove the
effectiveness of the proposed classifier, and the results are shown
in Table 6.

In this section, 5-fold cross-validation is used to evaluate
the performance of the proposed classifier in the above CNNs.
Table 6 lists the average results of the conducted experiments,
which demonstrates that various evaluation metrics of these
CNNs are improved to different degrees with the proposed
classifier. Furthermore, our classifier can be flexibly plugged
into common CNNs to integrate global features of images to
enhance the performance in the diagnosis of glaucoma. The same
conclusion can be drawn on the combination of multimodal
classification architecture and the classifier.

To present the efficiency of the proposed classifier more
clearly, we use the ROC curve to describe the results of each
class in Figure 8. The AUC value can effectively measure the
performance of the algorithm, which is defined as the area
under the ROC curve. According to Figure 8, the AUC values
of normal, early glaucoma, intermediate, and terminal glaucoma
are improved to different degrees by each algorithm with the
proposed classifier.

Comparison of Analogous Approaches
To prove the superiority of the proposed multimodal
classification architecture over analogous approaches (Bizios
et al., 2011; Chen et al., 2019), we compare the results for the
same diagnosis task.

Table 7 shows that the proposed architecture
achieves the best results with 0.975 in terms of average
accuracy in the classification task of normal and
glaucoma. This further demonstrates the advantage of
the proposed multimodal classification architecture in
glaucoma diagnosis.

CONCLUSION AND OUTLOOK

In this paper, we proposed a multimodal classification
architecture based on deep learning for glaucoma severity
diagnosis. The advantages of the framework are as follows: (1)
More subtle gray scale units and corresponding gray scale images
are reconstructed to address the limitation that the inferior
resolution of common visual field gray scale images affects
feature extraction in the task of glaucoma diagnosis. (2) Fundus
images and reconstructed gray scale images of the visual field are
fused as multimodal fusion images for the severity classification
of glaucoma. Through experiments, we precisely distinguished
the severity of glaucoma as normal, early, intermediate,
and terminal by the proposed architecture, which yielded a
significant contribution in clinical diagnosis. Meanwhile, we
can see that the architecture based on the multimodal fusion
image performs much better than the single-path architecture,
which means that the multimodal fusion input improves the
classification ability of the architecture. (3) We proposed a plug-
and-play classifier to offset the CNNs’ limitation of extracting
global sequence information. This significantly improved the
architecture’s function of feature extraction. Experimental results
demonstrated that with our classifier, regardless of what network
is chosen as the architecture’s backbone, the performance of the
architecture is enhanced significantly.

There are many glaucoma patients worldwide, and the
detection of the severity is very difficult, which results in a heavy
burden and consumes considerable time for ophthalmologists.
The proposed diagnosis architecture designed for the severity
classification of glaucoma can be very convenient. In the future,
we will collect more valid data such as OCT and try to integrate
the retinal nerve fiber layer into our architecture to better classify
the severity of glaucoma.
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