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Abstract

the domestic ones.

The ultrastructural analysis of oocytes and ovarian follicles has been used to evaluate the effects of assisted
reproductive techniques, such as cryopreservation or in vitro oocyte maturation. It also benefits the understanding
of such complex mechanisms that occur during folliculogenesis. From the beginning of primordial follicles growth
until oocyte maturation in preovulatory follicles oocyte cytoplasmic organelles undergo dynamic alterations that
reflect physiological changes and development. This review aims to make a retrospective survey of the relevant
features of follicles and oocytes ultrastructure, highlighting the differences between mammalian species, specially
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Introduction

Female mammals have hundreds of thousands of oocytes
already at the time of birth. The ovarian cortex contains
follicles at different developmental stages [1,2]; these can
be classified according to size, type and number of
granulosa cells, or if they are dependent or not on
gonadotrophic hormones. The follicles are named pre-
antral or antral follicles, according to the absence or
presence of a cavity, respectively. Preantral follicles are
usually classified in three stages: primordial, primary
or secondary follicles [3]. At the antral stage, most
follicles undergo atretic degeneration [4]. However, a
few of them reach the preovulatory stage under gonado-
tropin stimulation. The fate of each follicle is controlled
by endocrine and paracrine factors [5,6]. The complete
development of the follicle culminates in ovulation, which
is when the mature cumulus-oocyte complex is released
and may be fertilized. Although many studies have focused
on the hormonal regulation of the development of large
antral follicles, few studies have focused on follicle devel-
opment at the early stages [7-9].

As follicles and oocytes develop, many changes in their
ultrastructure and physiology occur. In fact, there are
many papers describing these morphologic changes. This
knowledge is important to understand the physiology of
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female germ cells. This review describes the morphological
changes that occur during oocyte and follicular growth and
differentiation in different mammalian species, with special
focus on domestic species.

Origin and establishment of ovarian follicles

Germ cells that originate the pool of primordial oocytes
derive from the inner cell mass of the developing
blastocyst [10]. They arise in the allantois and migrate
into the endoderm and to the genital ridge [11]. During
their migration the germ cells divide mitotically and
increase in number [12]. Proliferation of the coelomic
epithelium and concomitant condensation of the under-
lying mesenchyme lead to the formation of a swelling,
denominated genital ridge or gonadal crest [13]. Initially,
the gonadal crest does not contain any primordial germ
cells, which at that time are still located in the epithelium
of the yolk sac, close to the base of the allantois. A migra-
tory phenotype of the primordial germ cells reaches the
gonadal crests through amoeboid movements [13]. Once
established in the developing ovary, the proliferating prim-
ordial germ cells begin to differentiate into oogonia [12].
The population of oogonia expands through a predeter-
mined species-specific number of mitotic divisions until
the cells enter meiosis and become oocytes [14,15]. The
maximum number of female germ cells is reached at
the time of transition from mitosis to meiosis [16]. The
maximum number of germ cells in some species can be
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seen in Table 1. Although Johnson et al. [17] demon-
strated that primordial germ cells are present on the
surface epithelium of the ovary, there is still controversy
about whether the reserve of oocytes is renewable or
not [18]. Recently, White et al. [19] isolated the so-
called “rare mitotically active germ cells” from adult mouse
and human ovaries and propagated them in vitro, which
after all generated oocytes.

The first oogonia to undergo meiotic division are lo-
cated in the innermost areas of the ovarian cortex and
the developmental wave of meiosis spreads outwards.
By mid- to late-gestation in large animals and humans
many stages of germ cell development are simultaneously
present in the fetus’ ovary [10]. Clusters of germ cells are
formed with a number of oogonia and surrounded by
somatic cells that are considered granulosa cell precursors
[12,25].

Folliculogenesis concerns to a lengthy developmental
process a follicle goes through, from the time it leaves
the reserve pool and begins to grow by cell proliferation
and antrum formation until ovulation or atresia [26,27].
Folliculogenesis starts before birth in some mammalian
species (cow, sheep and buffalo) [28] or shortly after
birth in others (mouse, rat, hamster) [28-30]. By this
time all germ cells in the ovaries are primary oocytes,
which will remain in this stage until puberty, when at
each cycle selected follicle(s) go on to ovulate [10].

Even before birth, some oocytes will die by a process
named apoptosis. Apoptosis is likely to be a mechanism
for reducing the number of oocytes/ovarian follicles, and
females are born with far fewer oocytes than the max-
imum number reached during fetal life [31] (Table 1).

The supply of preantral follicles per ovary is highly
variable among species [20] and has been estimated at
70,576 in Bos indicus [32] and 89,577 in Bos Taurus [33],
19,819 in buffaloes [34], 75,642 in sheep [35], 37,646 in
goats [36], 402,000 in humans [37], 106,071 in monkeys
(Cebus apella) [38], 37,853 in domestic cats [39], 210,00
in pigs [40] and 47,900 in domestic dogs [41].

Every day, a great number of primordial follicles initiate
growth, granulosa cells proliferate and oocytes start
developing [42]. The initiation of primordial follicles
growth starts a series of morphological changes leading
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to subsequent stages of follicular development - the
primary and secondary follicles (preantral), tertiary and,
finally, the preovulatory follicles (antral) [43]. These
changes can be observed in follicular and oocyte diameter
and the number of granulosa cells (Table 2). Alterations in
follicular and oocyte ultrastructure and physiology will
happen at many levels, and there are some distinct modifi-
cations among mammalian species.

Structure of primordial follicle and initiation of growth
Primordial follicles are characterized by a quiescent oo-
cyte, arrested in prophase I of meiosis surrounded by a
single layer of flattened granulosa cells. These primordial
follicles constitute the ovarian reserve from which follicles
are engaged for development [50].

The quiescent oocytes are ovoid or spherical with a
homogeneous cytoplasm. The nucleus may be located in
a central or eccentric position inside the oocytes in most
species (Figure 1A and B). The nucleus is enclosed by a
smooth envelope [51,52]. Usually, the chromatin is found
uncondensed and one or two nucleoli are observed
(Figure 1C) [44,49,52,53].

In most species, the cytoplasm of oocytes in primordial
follicles exhibits organelles close to the nucleus or uni-
formly distributed throughout the cytoplasm (Figure 1A
and 1B). In humans, groups of organelles are seen close to
the nucleus and are named Balbiani bodies [54]. Balbiani
body is a large distinctive collection of organelles asym-
metrically located near the nucleus in very young oocytes,
consisting of mitochondria and associated endoplasmic
reticulum surrounding Golgi elements. Besides being
well described in human oocytes, they are also found in
oocytes of other species (vertebrates and invertebrates).
Although the function of mammalian Balbiani body is
unknown, this structure may have a possible role in
nucleo-cytoplasmic transfer [55,56].

In any case, the most abundant organelles found in
primordial follicle oocytes are round-shaped mitochondria
(Figure 1B) [44], which are known to be an immature
form of this organelle and develop to an elongated shape
as they become mature [57]. The presence of immature
mitochondria is consistent with primordial follicles con-
taining a quiescent oocyte that does not require a large

Table 1 Maximum number of female germ cells reached in fetal ovaries during gestation in different species and the
number of germ cells in the ovaries at the time of birth or nearly after

Species Maximum number of germ cells (Day of gestation) Number of germ cells close after birth (Day after birth)
Calf [20] 2,700,000 (110) 68,000 (13 days after birth)

Pig [21] 1,100,000 (50) 500,000 (at birth)

Buffalo [22] 23,540 (210) 20,000 (at birth)

Rat [23] 75,000 (18) 27,000 (2 days after birth)

Human [24] 6,300,000 (150) 2,000,000 (at birth)
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Table 2 Differences among species in follicle diameter, oocyte diameter and number of granulosa cells

Species Follicular diameter (um) Oocyte diameter (um) Mean number of granulosa cells

PL PR S PL PR S PL PR S
Cattle [44] 36 49 88 28 32 44 7 15 62
Buffalo [45] 35 42 53 25 27 29 4-8 8-20 -
Sheep [46] 41 75 129 35 52 73 16 128 637
Goat [47] 20 24 44 16 17 25 6 1 31
Cat [39] 28 41 75 23 30 41 7 13 46
Dog [41] 28 43 102 22 28 48 6 15 62
Human [48] 35 42 77 32 32 48 13 52 360
Pig [49] 34 40 85 26 27 39 5 8 50

PL: primordial follicle, PR: primary follicle, S: secondary follicle.

amount of energy to survive [44]. An abundant, scattered
mitochondrial population is evident in primordial follicle
oocytes in pigs and numerous mitochondria are randomly
distributed, with an extensive network of endoplasmic
reticulum permeating the cytoplasm [58]. In cows primor-
dial follicle oocytes, round mitochondria are abundant
and they present few peripheral cristae [44]. In yaks, a few
hooded mitochondria are observed [52].

Besides mitochondria, in most mammals the ooplasm
of the primordial follicle contains lipid droplets, endo-
plasmic reticulum, some Golgi cisternae, polyribosomes
and a variable number of vesicles [57]. In non-domestic
cats, the endoplasmic reticulum is not well developed
and Golgi complexes are rarely seen [59]. In the ooplasm
of buffaloes, a delimited region with a well-developed
smooth endoplasmic reticulum is observed [45]. In yaks

droplet, Mt: mitochondria, *: nucleolus.

Figure 1 Transmission electron micrographs of primordial follicles. A: Pig primordial follicle with central nucleus and a large amount of lipid
droplets at one pole of the oocyte. B: Bitch primordial follicle with peripheral nucleus. Note the abundance of round mitochondria homogeneously
spread throughout the ooplasm. C: A representative nucleolus in the oocyte nucleus from a cattle primordial follicle. D: Detail of the association
among lipid droplets, smooth endoplasmic reticulum (arrows) and mitochondria in pig oocyte. E: Detail of the close contact between granulosa cell
and oocyte in cat primordial follicle showing many coated pits (thin arrows) in the cortical ooplasm. O: oocyte, Nu: nucleus, GC: granulosa cells, L: lipid
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[52] and pigs [49], polyribosomes are seen on the surface
of the rough endoplasmic reticulum and distributed
throughout the ooplasm.

The oocytes of all mammals contain lipids, and the con-
tent varies between species in terms of abundance and
characteristics. Especially in pigs, lipid droplets are abun-
dant in the oocytes from the primordial stage onwards, and
they appear as small dark round structures (Figure 1A)
[49]. Lipid droplets are considered to be an energy source
[60]. In most species, often the endoplasmic reticulum,
mitochondria and lipid droplets are found associated with
each other (Figure 1D) [57]. Some early biochemical
studies showed that the synthesis of lipids (such as the
triacylglycerol stored on lipid droplets) requires enzym-
atic activity associated with both the endoplasmic
reticulum and mitochondria, with lipids being transported
and transferred between the endoplasmic reticulum and
mitochondria (For a review see [61]). As the follicle grows,
the number of these metabolic units in the ooplasm in-
creases, denoting a rise in oocyte metabolism [34]. In
goats, buffaloes and sheep, many vesicles are spread
throughout the cytoplasm and they present different elec-
tron densities [45,47,62], which might mean different con-
tents, like proteins or mucopolysaccharide [63].

In primordial follicles, granulosa cells are small and have
a relatively large nucleus that matches the cell format, and
presents clusters of condensed and uncondensed chroma-
tin [44]. In goats, granulosa cells present low density of
cytoplasmic organelles [47], and in buffaloes scarce myelin
figures are present [45], being the result of the digestion of
old or nonfunctional structures [64].

Overall, there are no specialized junctions between
granulosa cells or between them and the oocyte. At this
stage, any substance that needs to gain access to the
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oocyte is incorporated by endocytosis or enters by dif-
fusion through intimate contact between the mem-
branes of granulosa cells and the oocyte. This can be
observed by the presence of a large number of coated
pits in the cortical cytoplasm of primordial follicle
oocytes of bovine (Figure 1E) [44,57,65,66] and other
species [47,52].

Initiation of growth and the transition from primordial
to primary follicle begins with the development of primor-
dial follicles. At this point, follicles become “committed”,
and follicular growth proceeds until the follicle is ovulated
or undergoes atresia [50,67]. Follicular growth takes place
in only a small number of follicles each time [68], and
the complete elucidation of the factors responsible for
triggering follicular development remains one of the
major unsolved problems of ovarian physiology.

The classical changes that characterize this process are
the differentiation and proliferation of granulosa cells and
the enlargement of the oocyte: in the primary follicle,
granulosa cells increase in number and become cuboidal
in shape [2]. Granulosa cells at this stage are situated close
to each other and adherens junctions are common be-
tween granulosa cells and the oocyte and also between ad-
jacent granulosa cells [57]. Their nuclei are irregular with
indentations and there are round mitochondria, endoplas-
mic reticulum, few Golgi cisternae and vesicles in their
cytoplasm [2,47] (Figure 2A). Additionally, in pig primor-
dial follicles many lipid droplets can be seen in the oocyte
and granulosa cells (Figure 2B). The oocyte undergoes
volume expansion, the zona pellucida proteins start to be
secreted between the growing oocyte and the granulosa
cells in cattle [2] and buffaloes [45], and an evident zona
pellucida is observed at the primary follicle stage in some
species, including rats [69], mice [11,70], guinea pigs [71],

Figure 2 Primary follicles. A: Bovine primary follicle showing the oocyte with organelles homogeneally distributed throughout the cytoplasm
surrounded by cuboidal granulosa cells. Round and elongated mitochondria can be observed. B: Pig primary follicle with several lipid droplets in
the oocyte and granulosa cells cytoplasm. O: oocyte, Nu: nucleus, GC: granulosa cells, L: lipid droplet.
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rabbits [72], rhesus monkeys [73], humans [74,75], sheep
[62], domestic cats [39], and non-domestic cats [59].

In general, most ultrastructural features of the ooplasm
and its organelles and inclusions of primary follicles are
similar to those described for the primordial follicles.
Most mitochondria are still round, although elongated
and dividing mitochondria become more common [57]
(Figure 2A).

From primary to secondary follicles

Once the primary follicle starts developing this process
cannot be interrupted, and many morphological changes
will happen in the oocyte and granulosa cells during the
further steps of folliculogenesis [76].

The organelles that were uniformly distributed through-
out the ooplasm in primordial and initial primary stages
migrate to the periphery of ooplasm in secondary follicles,
leaving an organelle-free zone next to the nucleus [49]. In

Page 5 of 12

cats, the organelles are organized in clusters [39], such
organization will only happen later in other species [66,77].

Oocytes of secondary follicles are predominantly spher-
ical and present a cytoplasm with vesicles and round and
elongated mitochondria in cows [44,57,78], sheep [79],
goats [36,47,80], cats [39], buffaloes [34,45], humans
[54,81] and yaks [52].

Mitochondria are still the most abundant organelle in
secondary follicle oocytes. Although round mitochondria
(Figure 3A) are still present, their elongated form
(Figure 3B) becomes more frequent, which is consistent
with the higher metabolism of the oocytes at this stage. In
buffaloes and pigs, however, round mitochondria are
still more abundant in secondary follicle and elongated
mitochondria are rare [45,49]. Two types of round
mitochondria can be observed in oocytes from cats
[39] and other species, those with low electron-density
and few peripheral cristae (Figure 3C) and those with

-

Figure 3 Types of mitochondria observed in oocytes of mammalian species. A: Round (from pig). B: Elongated (from pig). C: Round with

F e
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peripheral cristae (from pig). D: Round mitochondria with electron-dense granules inside (from cattle). E: Round mitochondria arranged as “string
of pearls” (from bitch). F: Hooded mitochondria (from cattle). G: Pleomorphic mitochondria with cristae arranged parallel and close to the outer
membrane (from goat).




Paulini et al. Journal of Ovarian Research 2014, 7:102
http://www.ovarianresearch.com/content/7/1/102

high electron-density and many cristae. In cows and
buffaloes, mitochondria presenting a membrane dividing
their matrix into two or more compartments are often
seen [44,45], which may denote organelle division [44]. In
goat oocyte mitochondria a few cristae are arranged paral-
lel and close to the outer mitochondria membrane, leaving
a large central area of moderately electron-dense inner
matrix [47]. In pigs and cows, electron-dense granules are
often observed in the mitochondrial matrix (Figures 3B,
3C and 3D) [44,49,57,82]. These electron-dense granules
in the mitochondrial matrix are very common in some cell
types and have been reported to be especially prominent
in tissues transporting large amounts of ions or water, sug-
gesting that these granules are related to the regulation of
the internal ionic environment of the mitochondrion [64].
Silva et al. [49] showed that round mitochondria in pig
secondary follicles were organized as “strings of pearls”
(Figure 3E), which can also be observed in other species
[41]. Hooded mitochondria (Figure 3F) as well as pleo-
morphic forms (Figure 3G) can also be seen in the sec-
ondary follicle oocytes of sheep [83,84], cattle [85] and
yaks [52].

Endoplasmic reticulum (Figure 4A, 4B and 4C) and
Golgi cisternae (Figure 4D and 4E) become aggregated and
well developed, which is also consistent with the higher
metabolism of the oocytes in growing follicles. There are
also a lot of free polyribosomes and a larger amount of
lipid droplets [65]. Myelin figures are commonly ob-
served in the ooplasm [44], suggesting the turnover of
cytoplasmic structures [64]. In pigs, lipid droplets are
abundant and they change in appearance from small
round dark droplets in primordial and primary follicle oo-
cytes to large gray structures in secondary follicle oocytes
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[49]. According to Isachenko et al. [86], these changes in
appearance may be related to lipolysis, but they can also
reflect a change in fatty acids composition as the oocyte de-
velops [49]. This variation may be species-specific or related
to factors such as the physiological status of the animal or
its diet [87,88]. Lipid droplets are also present in cattle [89]
and sheep oocytes [90], though to a lesser extent.

The number of cytoplasmic vesicles increases in active
oocytes in cattle [57] and buffaloes [45], occupying most
of the oocyte cytoplasm. This increment might denote
the stock of different biomolecules, like proteins, poly-
saccharide [63], or even lipids. In pigs, some structures
first classified as vesicles were in fact lipid droplets, as
proved by a specific stain method [49]. In cats, vesicles
are scarce at this stage and in humans they appear espe-
cially at the antral stage [25]. Lucci et al. [36] suggested
that some secretory vesicles may contain material for
the synthesis of zona pellucida. The zona pellucida is
made of glycoproteins, which are detected in the cyto-
plasm of follicular cells [91].

Zona pellucida is usually completely formed around the
oocyte in secondary follicles, although in some species
it has already developed at the primary follicle stage
(Figure 5A). However, in species such as goats [47],
buffaloes [45], yaks [52], pigs [49] and dogs [41] the
zona pellucida is not yet visible in primary follicles
(Figure 5B), or even in secondary follicles, in which
only patches of zona pellucida material can be observed
(Figure 5C). The formation of the zona pellucida is related
to the appearance of short erect microvilli in the oocyte
plasma membrane. Also, projections from granulosa cells
are seen encroaching into the zona pellucida and protrud-
ing towards the oocyte, where gap junctions (Figure 5D)

ZP: zona pellucida.

Figure 4 Well-developed rough (A and B) and smooth (C) endoplasmic reticulum and Golgi complex (D and E) in secondary
follicle oocytes. RER: rough endoplasmic reticulum, SER: smooth endoplasmic reticulum, Mt: mitochondria, GC: Golgi complex, Nu: nucleus,
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Mv: Microvilli.

Figure 5 Development of the zona pellucida (ZP) and cortical granules during follicular growth. A: Cat primary follicle with a completely
formed ZP. B: Pig primary follicle without ZP. C: Bitch small secondary follicle in which patches of ZP material start to be deposited around the
oocyte (arrows). D: Detail of a granulosa cell projection through the ZP into the oocyte where gap junctions (arrows) can be seen in a pig
secondary follicle. E: Cow large secondary follicle with cortical granules organized in clusters. Observe the organelle-free zone around the oocyte
nucleus. F: Cat secondary follicle with cortical granules (arrows) aligned close to the oocyte plasma membrane. Note the microvilli on the oocyte
plasma membrane protruding into the ZP. O: oocyte, Nu: nucleus, GC: granulosa cells, ZP: zona pellucida, *: nucleolus, Mt: mitochondria,

are found between oocyte and granulosa cell membranes
[44,57]. Gap junctions are responsible for intercommuni-
cation between oocytes and granulosa cells during the
development of female gametes [92]. Evidence indicates
that somatic cell-oocyte interactions via gap junctions are
essential for oocyte growth and metabolism. So at this
stage of follicle development coated pits are found in fairly
small amounts [57].

Cortical granules are seen for the first time in secondary
follicles. They are small organelles like vesicles containing
enzymes that undergo exocytosis upon fertilization. At
this time, cortical granules are aligned near the oocyte
plasmatic membrane and the release of their contents
aims to harden the zona pellucida to prevent polyspermy
(for details see [93]). In secondary follicle oocytes, cortical
granules usually appear in clusters (Figure 5E), either
distributed all over the ooplasm or confined to the deep
cortical area near the Golgi complex [57]. Exceptionally
in the domestic cat these granules appear already aligned
at the cortical region of the oocyte (Figure 5F) at the sec-
ondary follicle stage [39]. This feature, together with the
early organization of organelles in clusters, suggests that
in domestic cats the process of oocyte maturation occurs
earlier than in other species [39], which may be related to
their peculiarity of being a copulation-induced ovulation

species. In non-domestic cats, the peripheral region of the
ooplasm presents immature to mature cortical granules
[59], and in cows small clusters of cortical granules were
initially observed in large secondary follicle oocytes [44].

In general, the morphology of granulosa cells in sec-
ondary follicles resembles those in primary follicles.
There are many electron-lucent vesicles in their cytoplasm
in buffaloes and goats [45,47]. Lucci et al. [47] suggest that
granulosa cells are engaged in steroidogenesis, based on
the great number of smooth endoplasmic reticulum and
mitochondria present in their cytoplasm. Wolgemuth
et al. [91] suggest that they are also involved in the synthe-
sis of zona pellucida, because glycoproteins were identified
in their cytoplasm.

The beginning of theca formation can be recognized
by presence of elongated cells attached to the basement
membrane, but the theca interna layer is still poorly de-
fined in small secondary follicles [50]. On large secondary
follicles, a clear theca interna layer is formed [50]. At this
stage, spaces between adjacent granulosa cells filled with
follicular fluid are also observed [47]. Progressive accumu-
lation of fluid causes distension of these cavities and the
initial formation of the antrum, leading the follicles to
the antral stage [73] (Figure 6). The transition from
preantral to early antral follicle is a critical stage of
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Figure 6 Early antral follicle from pig showing spaces between
adjacent granulosa cells filled with follicular fluid. O: oocyte, ZP:
zona pellucida, GC: granulosa cells, FF: folicular fluid.

follicular development in terms of follicle destiny (growth
versus atresia). During this period, the interaction between
oocyte and somatic cells (granulosa and theca) is espe-
cially important, and many growth factors are involved
(for a review see [94]).

Antral formation and oocyte maturation

Antral formation occurs later in pig follicles (at 400 pm
in diameter) [95] than in cattle (120-160 um - [96]) and
sheep follicles (220 pm - [97]; 300 pum - [98]). The differ-
ences in the timing of antrum formation may be import-
ant in the overall course of folliculogenesis, since there is
a substantial increase in the growth rate of follicles after
antrum formation. The fluid-filled antrum separates the
cumulus oophorus cells surrounding the oocyte from the
granulosa cells lining the wall of the follicle (for review,
see [99]).

Mural granulosa cells of antral follicles are rich in Golgi
complex, rough and smooth endoplasmic reticulum and
small vesicles, as well as round and elongated mitochon-
dria and lipid droplets [80]. Mural and cumulus granulosa
cells of antral follicles are similar in ultrastructural
organization, however they are different from pre-
antral granulosa cells, having more smooth endoplasmic
reticullum and lipid droplets, which suggest that they
present different metabolic functions [80], developing
mechanisms for producing steroid [100]. The granu-
losa membrane is separated from theca cells by colla-
gen microfibrils. Cytoplasmic contact between theca
and granulosa cells was never seen. Theca interna cells
have an elongated nucleus. The number of mitochondria,
rough endoplasmic reticulum and free ribosomes vary
among individual theca cells, and seems to increase as
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they became more differentiated. Golgi complexes associ-
ated with many small vesicles are always present [101,102].
Capillaries are often seen in the theca interna, specially
concentrated close to the basal lamina [101,102]. A larger
number of capillaries of different sizes are frequently ob-
served in the theca externa [102].

In general, in tertiary follicles, all the oocytes are com-
pletely surrounded by the zona pellucida, which is crossed
by projections of the granulosa cells that form indenta-
tions in the oolemma [57]. At this time, the organelles
have achieved a more even distribution throughout the
ooplasm, and elongated mitochondria, lipid droplets and
vesicles increase in numbers [66] (Figure 7A). That is only
reasonable, since oocytes that grow to a bigger size may
require larger amounts of the machinery needed to move
and store cytoplasmic constituents [56].

Large amounts of lipids in oocytes are observed iso-
lated or organized in groups in mouse [103]. In buffaloes
these lipid droplets have been confirmed by the addition
of the component thiol in the culture medium of in vitro
maturation [104]. In oocytes derived from buffalo follicles
(6 mm in diameter) organelles are located in the peri-
nuclear region, mitochondria in the cortical area and lipid
droplets in the medullary area [34]. The authors suggested
that this organization indicates a high metabolic rate of
these oocytes, which tends to increase with its develop-
ment and growth.

Several ultrastructural changes can be observed in
cytoplasmic organelles during oocyte maturation. Mito-
chondria move from a peripheral position (Figure 7A)
before the luteinizing hormone (LH) surge to a scatter
distribution throughout the cytoplasm (not shown) and
have a clustered cortical formation in the final stages of
nuclear maturation (Figure 7B), and a dispersed distri-
bution after the extrusion of the polar body [77]. At that
time oocyte microvilli loosen from the zona pellucida
(Figure 7B). Upon reaching metaphase II the mitochon-
dria and lipid droplets occupy a central position in the
cell [66].

Cortical granules that were arranged in clusters in the
deep cortex of secondary follicle oocytes [53] progressively
migrate towards the subplasmalemmal areas in antral
follicle oocytes (Figure 7C) [105,106]. Cortical granules
are derived from the Golgi complex and continuously
produced until ovulation [107], and their migration to
the periphery of the oocyte is an important step in oocyte
cytoplasmic maturation [108]. At the end of the matur-
ation period, when these oocytes reach metaphase II,
cortical granules are aligned to the inner surface of the
oocyte plasma membrane (Figure 7D) [109,110], ready to
released their contents as soon as the oocyte is fertilized
to prevent polyspermy [93].

Furthermore, the cytoplasm of the oocyte from tertiary
follicles is characterized by the presence of hooded and
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Figure 7 Ultrastructural events during oocyte maturation in bovine. A: Oocyte from tertiary follicle with intact germinal vesicle (GV),
showing mitochondria (arrows) in peripheral position. Note the great amount at vesicles throughout the ooplasm. B: Oocyte after 12 hours of

in vitro maturation (IVM) presenting mitochondria clustered (arrows) mostly at cortical areas. Microvilli loosen from the zona pellucida. Observe
the general organization of organelles in small groups. C: Oocyte after 12 hours of IVM. Cortical granules clusters are located at periphery of the
ooplasma, close to the plasma membrane. Note a group of hooded/pleomorphic mitochondria. D: Oocyte after 18 hours of IVM showing cortical
granules (arrows) aligned to the plasma membrane. E: oocyte after 18 hours of VM. Observe the peculiar arrangement of organelles, with
endoplasmic reticulum in close association with mitochondria and vesicles (arrows). F: mature oocyte after 24 hours of IVM that have extruded
the first polar body (PB). Note the expanded cumulus cells. GV: germinal vesicle, PS: perivitelline space, ZP: zona pelucida, Mv: microvilli, Mt:
mitochondria, CG: cortical granules, ER: endoplasmic reticulum, CC: cumulus cells, PB: polar body.
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pleomorphic mitochondria, and well developed Golgi
cisternae, mainly in the periphery of the ooplasm [111].
The dynamics of the Golgi membranes during maturation
and fertilization in mammals requires more study. Associ-
ations between endoplasmic reticulum, mitochondria and
lipid droplets become common (Figures 4C and 7E)
[66,77]. This organelles association is both related to lipid
metabolism and ER-mitochondria calcium signaling [61].
It allows efficient transmission of signals from cytosolic
calcium to the mitochondria, enabling activation of the
mitochondrial metabolism and an increase in ATP supply
for the calcium pump in the endoplasmic reticulum
[112,113]. It is likely that in oocytes at this stage of devel-
opment, this structure is involved in the regulation of
sperm-triggered Ca>* oscillation [112]. The membranes of
the endoplasmic reticulum are physiologically active and
interact with the cytoskeleton [114]. The endoplasmic
reticulum reorganization in oocyte maturation is a com-
plex multistep process involving distinct microtubule and
microfilament-dependent phases [115].

The mature oocyte is finally ovulated usually at the
metaphase II stage, having extruded the first polar body
(Figure 7F). Of course, all those morphological changes
happen concomitantly with biochemical and molecular
modifications (for details see [114,116]), which lead the
oocytes to nuclear and cytoplasmic maturation and
guarantee their competence to be fertilized.

Conclusions

In recent decades, the understanding of reproductive
physiology in mammals has shown great advances, espe-
cially in respect to preantral follicles. Many morphological
and ultrastructural aspects of oocytes have been identified,
allowing a better understanding of their physiology.

The knowledge of ultrastructural changes oocytes must
undergo to develop normally and become competent may
aid in the development of female gamete manipulation
techniques, such as in vitro maturation of oocytes and
in vitro culture of preantral follicles. Nowadays, these
techniques work better in some species than others, and
any new information or elucidation of species-specific dif-
ferences may be important for further improvements,
helping in the understanding of damage and in surpassing
limitations.
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