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Abstract

The inhibition of the hERG potassium channel is closely related to the prolonged QT interval,

and thus assessing this risk could greatly facilitate the development of therapeutic com-

pounds and the withdrawal of hazardous marketed drugs. The recent increase in SAR infor-

mation about hERG inhibitors in public databases has led to many successful applications of

machine learning techniques to predict hERG inhibition. However, most of these reports con-

structed their prediction models based on only one SAR database because the differences in

the data format and ontology hindered the integration of the databases. In this study, we

curated the hERG-related data in ChEMBL, PubChem, GOSTAR, and hERGCentral, and

integrated them into the largest database about hERG inhibition by small molecules. Assess-

ment of structural diversity using Murcko frameworks revealed that the integrated database

contains more than twice as many chemical scaffolds for hERG inhibitors than any of the indi-

vidual databases, and covers 18.2% of the Murcko framework-based chemical space occu-

pied by the compounds in ChEMBL. The database provides the most comprehensive

information about hERG inhibitors and will be useful to design safer compounds for drug dis-

covery. The database is freely available at http://drugdesign.riken.jp/hERGdb/.

Introduction

Blockade of the human ether à-go-go related gene potassium channels is associated with drug-

induced QT interval prolongation, which could cause arrhythmia and more severe heart fail-

ure [1–3]. The inhibition of hERG has become the major reason for drug withdrawals in the

late 1990s, as represented by the withdrawals of terfenadine [4, 5], astemizole [6], and cisapride

[7]. Thus, the assessment of the risk of hERG inhibition in the early stages of drug discovery,

such as the screening and hit to lead stages, could effectively decrease the cost and failure risk

of drug discovery.

Various computational methods to predict hERG inhibition were recently reported [8–23].

These studies included statistical models based on the 2D or 3D structures of small compounds,

and structure-based approaches employing docking simulations using a modeled 3D structure

of hERG. Although the electronic microscopy structure of hERG was recently solved [24], dock-

ing simulations of hERG are still a difficult challenge due to its high flexibility. However, the

rapid growth of bioactivity information about hERG in various databases, and the improvement
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of machine learning techniques have encouraged the use of statistical methods to predict hERG

inhibition as summarized by Wang et al. [8] and Villoutreix et al. [9]. Among recent studies,

some prediction models have been built using more than tens of thousands of compounds (for

example, 306,895 compounds from hERGCentral database [10], 58,963 compounds from pat-

ented data [11]). Despite such studies using so-called big data, most of the previous studies to

predict the hERG inhibitory activity are based on fewer than 5,000 compounds, which are often

derived from a single database as reported by Villoutreix et al. [9]. One major obstacle that lim-

ited the amount of hERG-associated data was the differences in the format and ontologies

between various databases, which hampered the use of multiple data source.

This study pursued the comprehensive and careful integration of the hERG-associated bioac-

tivity information available in various databases. The hERG-associated data entries were derived

from ChEMBL (https://www.ebi.ac.uk/chembl/) [25], GOSTAR (https://www.gostardb.com/

index.jsp) [26], NIH Chemical Genomics Center data set registered in PubChem (https://

pubchem.ncbi.nlm.nih.gov/bioassay/588834) [27], and hERGCentral (www.hergcentral.org

(currently not working)) [28], and then merged by chemical structures after standardization.

The procedure included unifications of the data format, value type, units, assay types, and

chemical structures, based on the text analysis assisted by visual inspections by medicinal chem-

istry experts. Although a dataset built from the results of a single assay protocol can make the

resulting values consistent and provide high quality data for quantitative analysis, it raises the

risk of systematic bias, such as false positive observations in a patch-clamp assay by membrane

damaging compounds. Since the integrated dataset contained heterogeneous data entries, the

deviations of the hERG inhibitory activities due to the differences in the assay protocols were

analyzed, to assess the influence of the deviations on the classification of the tested compounds

into hERG inhibitors and non-inhibitors.

The development of high-throughput automated patch clamp assays has increased the

amount of hERG-associated data available in public databases. Thus, the time-series increase

of the hERG-associated entries was also investigated, using the constructed dataset. The transi-

tions in the number of reported compounds, the number of chemical scaffolds, and the cover-

age of the chemical space compared to all known biologically active compounds in ChEMBL

were assessed. The analysis provides useful insights to interpret the applicability of previously

reported statistical models, using different databases. Ultimately, various physicochemical

properties were calculated for hERG inhibitors and inactive compounds in the dataset. The

results were used to assess the chemical nature of hERG inhibitors, and to determine whether

the differences in the data sources affect the statistical analysis or the prediction models built

from the data.

Materials and methods

Data set

The hERG inhibitory activity information was derived from ChEMBL, GOSTAR, NIH Chemi-

cal Genomics Center (NCGC) dataset in PubChem bioassay, and hERGCentral, and was inte-

grated as briefly summarized in Fig 1. Procedures for data extraction, formatting activity

information, standardization of chemical structures to merge data entries, filtering non-drug-

like compounds, and classification of hERG inhibitors and inactive compounds, considering

the deviation of experimental values are presented in this section. The data set was retrieved

from the respective sources in April 2017.

ChEMBL. ChEMBL is the bioactivity database maintained by the European Bioinformat-

ics Institute, and is frequently used in various cheminformatics researches as the de facto stan-

dard database. The entire ChEMBL database (version 22) was downloaded from the web site,
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and 17,952 activity entries about 2,153 hERG-related bioassays were extracted, according to

the Target ID (CHEMBL240) assigned to biological assays. To ensure the validity of the data,

entries with data validity comments of “Nonstandard unit for type” and “Outside typical

range”, and entries tagged as potential duplicates were excluded. For example, the hERG-

related assays reporting selectivity between inhibitors or raw values of tail currents, were

removed by investigating their value types and assay descriptions. After manually checking

assays reporting more than 20 compounds, several redundant entries that represented the

same assay results were removed.

GOSTAR. GOSTAR is an online scientific database product of Excelra Knowledge Solu-

tions, consisting of published and patented inhibitors against various biological targets and

their associated SAR data. The hERG-associated data entries with activity common name of

“K+CH KV11.1” were derived from the GOSTAR database. Although GOSTAR has four sub-

set databases, Drug Database (DD) was excluded in this study, because it includes some critical

curation errors during the ontology standardization. The subset will be integrated after the

errors are corrected by the vendor. Excluding the 106 entries in the DD subset, GOSTAR con-

tained 14,176 entries about hERG inhibition in the remaining three subsets. Since both

ChEMBL and GOSTAR contained hERG activity entries derived from medicinal chemistry

journals, the redundant entries with ChEMBL were identified by the reference field and omit-

ted from the data set.

NIH Chemical Genomics Center. Quantitative high throughput screening data to deter-

mine in vitro hERG channel blockage by NCGC were derived from PubChem bioassays

Fig 1. Schematic procedure of the database integration.

https://doi.org/10.1371/journal.pone.0199348.g001
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(AID = 588834, v1.1). The data related to hERG, including about 2,688 compounds from the

LOPAC1280 library (Sigma), the NTP collection and the NCGC Pharmaceutical Collection

(NPC), were determined by FluxORTM thallium flux assays. The dataset contains EC50 values

for both hERG inhibitors and activators along with some undefined data. As the EC50 values

contained in the NCGC dataset were calculated from automated sigmoid curve-fitting to the

dose responses of hERG activities by the Hill equation, the values had to be interpreted by the

Hill coefficient (positive value for hERG inhibitor and negative value for activator) and the fit-

ting quality (low correlation for inconclusive entries). In PubChem, the entries in the NCGC

dataset were classified into “Inhibitor”, “Activator”, and “Inactive” in terms of the phenotype.

For compound with low quality curve fitting, an “Inconclusive” description was included in

the outcome comments. Although the EC50 values of the NCGC dataset were also included in

the ChEMBL database, the information about the phenotype and outcome comments to inter-

pret the assay results were omitted in ChEMBL. Thus, the corresponding entries were excluded

from the ChEMBL dataset. Accordingly, the hERG inhibitors were defined as the entries speci-

fied as “Inhibitor” with sufficient inhibitory activity (EC50�10μM in this case) and without

outcome comments of “Inconclusive”. All compounds with EC50 values exceeding 10μM, were

defined as negative compounds in this study.

hERGCentral. hERGCentral [28] is a database containing the hERG activity information

of more than 300,000 compounds. Since the hERGCentral database (www.hergcentral.org) is

currently out of order, the values of the percent inhibitory activities of 318,496 compounds at a

10 μM concentration determined by IonWorks Quattro (MDC, Sunnyvale, CA) in the popula-

tion patch clamp (PPC) mode were retrieved from the supporting information of a manuscript

published by Fang et al. [10], describing a statistical analysis of the hERGCentral dataset.

Formatting activity information

To integrate the hERG activity information collected from the databases, the derived entries

were formatted as follows. At first, the entries were classified as either constant concentration

values describing inhibitory activity, such as IC50, EC50, ED50, Ki, Kd and percent inhibitory

activity at a certain concentration. For convenience, the former data were categorized as IC50-

type, and the latter were categorized as inhibition-type in this study.

The IC50, Kd, Ki, EC50, and their log-unit values, such as pIC50, were obtained from the

ChEMBL, GOSTAR, and NCGC data sets for IC50-type entries. All values were converted to

nM order from their various units. In terms of inhibition-type entries in ChEMBL, GOSTAR,

and hERGCentral, entries reported as remaining enzyme activity were converted to inhibition

percentage format. For entries in which the assay concentration was not specified, assay

descriptions were scanned to complement the compound concentration if possible. Other val-

ues, such as concentrations using thresholds other than 50% inhibition (IC70, IC30, etc.), raw

values of measured current, prolonged QT interval ratios, etc., were discarded in this study,

because they cannot be directly compared to other entries. Several value types can be used for

both hERG activation and inhibitory activities, and thus the assay descriptions and/or refer-

ence manuscripts were manually checked for “Kd”, “EC50”, “ED50”, and “activity” entries to

remove the assay entries describing hERG activation.

The assay protocols of hERG blocking activities could roughly classified into electrostatic

assays such as automated patch clamp assays that measure the change in the voltage between

the cell-membrane by the presence of small molecules, and binding assays, such as radio-

ligand replacement assays that measure the binding affinity of small molecules by the replace-

ment ratio of radiolabeled inhibitors. The IC50 values and inhibitory percentages generally

depend on the assay protocols, and the differences in the hERG assay protocols mentioned
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above could potentially affect the results, especially in quantitative analyses such as regression

models of binding affinity. Using compounds with IC50 values determined by both binding

assays and electrostatic assays, the correlation between the two methods was investigated. The

deviation of the IC50 values of each compound was investigated for hERG inhibitors for which

more than three IC50 values were reported to assess how the deviation of the heterogeneous

data affected the characterization of the corresponding compound.

Standardization of chemical structures

To merge the databases, the chemical structures were standardized for comparison. The struc-

tures were obtained from sd files provided by ChEMBL and PubChem (NCGC and hERGCen-

tral) or constructed from the SMILES string (GOSTAR). The obtained structures were desalted,

standardized to a neutral ionization state, and then converted to the canonical tautomers using

the Pipeline Pilot program. To exclude non-drug like compounds, metal containing molecules,

molecules with molecular weights less than 150 or more than 700, molecules with fewer than 10

atoms, and molecules with minor isotopes were removed from the data set. After this structural

filtering, the data size of each database was reduced to 14,991 activity entries for 11,993 com-

pounds in ChEMBL, 13,861 activity entries for 8,338 compounds in GOSTAR, 1,894 activity

entries for 1,733 compounds in NCGC, and 305,928 activity entries for 303,351 compounds in

hERGCentral. These activity entries from the 4 databases were finally merged by the standard-

ized structures.

Classification of hERG inhibitors and inactive compounds

Using the integrated database, the distributions of the physicochemical properties and the

structural diversity of the hERG inhibitors (positive compounds) and the inactive chemicals

(negative compounds) were investigated. In this study, positive compounds were defined as

hERG inhibitors showing IC50�10μM or�50% inhibition at 10μM. Since some compounds

had multiple assay results, contradictory results due to experimental errors or differences in

assay methods were found. As the determination of the IC50 value requires measurements of

inhibitory activities at multiple concentrations, the IC50-type information was considered to

be more reliable, and was given higher priority over the inhibition-type entries for positive/

negative classification. When the deviation of the assay results was still significantly large

among the IC50-type entries or inhibition-type entries, the omission of outlier values and

majority vote-based procedures was performed to classify hERG inhibitors and inactive com-

pounds as follows.

At first, the compounds for which all assay results unanimously indicated either the existence

or absence of sufficient inhibitory activities were assigned to hERG inhibitors or inactive com-

pounds. When contradictory assay values were found, the assay entries that were at least 10-fold

higher or lower than the mean value of the compound were defined as outliers, and were

removed. Subsequently, a compound was classified as either a positive (hERG inhibitor) or neg-

ative (inactive compound), when more than 2/3 of the assay entries of the compound agreed in

either category. Qualitative assay results, such as comments describing “no activity” were also

included in the voting. Compounds for which comparable numbers of entries indicated oppo-

site results were discarded as inconclusive compounds from the comparison between hERG

inhibitors and inactive compounds. The classification procedure was first performed using

IC50-type entries, and then inhibition-type entries were considered for the remaining unclassi-

fied compounds. An investigation of the distribution of the percent inhibition data in hERG-

Central revealed that the single concentration results from high-throughput screening (HTS)

assays left the low confidence region around the threshold value (50% inhibition at 10μM in this
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study), as compared to the assay values published in peer-reviewed journals, resulting in some

contrary results to IC50 values reported in other databases (data not shown). Thus, a more strict

threshold (>70% inhibition at 10μM for hERG inhibitors and<30% inhibition at 10μM for

inactive compounds) was applied to the inhibition type results from the HTS results in which

more than 200 compounds were assayed in a single data source.

Assessment of structural diversity

To evaluate the usefulness of the integrated database, we assessed the structural diversity of the

hERG inhibitors and inactive compounds registered in the database. As the metrics for the

structural diversity of the compounds, the number of Murcko framework [29] was counted as

reported by Langdon et al. [30] and Karawajczy et al. [31]. The Murcko framework of a com-

pound was defined as the union of rings and linker atoms connecting them. After the decom-

position of all compounds in the dataset as Murcko frameworks, the unique numbers of the

derived frameworks were counted for both the hERG inhibitors and inactive compounds. The

number of Murcko frameworks was then compared to those generated from the whole

ChEMBL database. Since ChEMBL is a bioactivity database for various target proteins, their

structural diversity could approximate the chemical space covered by all currently available

bioactive compounds.

Physicochemical properties

Twelve physicochemical properties were computed using Pipeline Pilot, including molecular

weight (MW), Ghose-Crippen-Viswanadhan neutral form’s octanol-water partition coefficient

(AlogP), octanol-water distribution coefficient with all forms (logD), number of hydrogen

bond acceptors (HBA), number of hydrogen bond donors (HBD), number of positively

charged atoms when ionized at pH7.4 (N_Cations), number of negatively charged atoms when

ionized at pH7.4(N_Anions), molecular surface area (MSA), molecular polar surface area

(MPSA), number of rotatable bonds (N_Rot), pKa value of most basic atom (pKa_base), and

pKa value of most acidic atom (pKa_acid). This descriptor set based on physicochemical prop-

erties is widely used to compare compound data sets in drug discovery [32, 33] and some

descriptors that seemed to affect hERG binding, such as pKa, were added according to advice

from medicinal chemistry experts. The distributions of the physicochemical properties for

both hERG inhibitors and inactive compounds were calculated and compared to assess the

characteristic features of hERG inhibitors.

Results and discussion

The number of assay records for each compound

Literature-based bioactivity databases, such as ChEMBL, often contain multiple assay entries

for a compound. In the integrated dataset, 329,243 assay records for 319,631 compounds were

registered. Using the dataset, the assay records that specified certain values (not using NULL

value, ‘>‘, or ‘<‘) for each compound were counted. The distribution of the number of assay

records for each compound is shown in Fig 2. The most frequently reported compounds were

cisapride (61 assay records), terfenadine (60), dofetilide (54), E-4031 (52), and astemizole (42).

While 81 compounds had more than 10 assay records, only one assay record was found for

310,180 compounds mainly reported in the HTS results in the hERGCentral database, result-

ing in the low average frequency of 1.02 for a compound.
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Comparison between binding assays and electro static assays

To assess the difference between binding assays such as radio ligand replacement assay and

electrostatic assays such as automated patch-clamp assays, the IC50 values determined by both

methods were investigated using the integrated dataset. In the dataset, 15,932 IC50 values were

reported for 11,956 compounds. To ensure the validity of the IC50 values, 6,594 data entries

using inequality signs, NULL values, and improper value range (IC50>1mM) were excluded.

The remaining dataset contained 4,173 IC50 values for 3,449 compounds measured by binding

assays, and 3,082 IC50 values for 2,246 compounds measured by electrostatic assays. To com-

pare the two methods, 209 compounds for which the IC50 values were measured by both meth-

ods were investigated. For each compound, the mean pIC50 values were respectively calculated

for both binding assays and electrostatic assays, and plotted in Fig 3. The averages of the mean

IC50 values were 2.41μM in binding assays and 1.64μM in electrostatic assays. The coefficient

of determination and the root mean square deviation between the pIC50 values measured by

binding assays and electrostatic assays were 0.517 and 0.737, respectively. While the IC50 values

determined by both methods showed moderate correlation, slightly higher potencies tended to

be observed by electrostatic assays. Among the 209 compounds, 119 compounds showed

higher potencies in electrostatic assays. In contrast to binding assays, which directly measure

the binding affinity of a compound to the pore region of hERG, electrostatic assays, which

measure the decrease of tail-current, could be affected by various additional factors, including

non-specific binding to other ion channels, binding to a different region of hERG, or mem-

brane toxicity, possibly resulting in the slightly higher potency observed in the dataset.

Deviation of IC50 values and classification of hERG inhibitors and inactive

compounds

In some case, the resulting values had large deviations due to differences in the assay protocols

or curation errors such as misinterpretation of units in the manuscript, which could confuse

the classification of positive (hERG inhibitors) and negative (hERG inactive) compounds for

the statistical analysis. To exemplify the deviation of the hERG inhibitory activities registered

in the currently available databases, the distribution of the IC50 values of 263 compounds, for

which more than three IC50 values were reported, is shown in Fig 4. To ensure the validity of

the IC50 values and exclude extreme values due to curation errors, the IC50 values lower than

1pM or higher than 1mM were excluded, because such values were often caused by incorrect

registration of the units or misinterpretation of the digits of assay values in the curation

procedure.

Fig 2. Histogram showing the number of assay records for each compound. The vertical axis representing the

frequency is shown in logarithmic scale.

https://doi.org/10.1371/journal.pone.0199348.g002
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Fig 3. Comparison between mean pIC50 values of 209 compounds measured by binding assays and electrostatic

assays.

https://doi.org/10.1371/journal.pone.0199348.g003

Fig 4. Box plot showing the distribution of IC50 values of 263 compounds with more than three reported IC50 values. The compounds were sorted by

mean values.

https://doi.org/10.1371/journal.pone.0199348.g004
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Among the 263 compounds, 144 compounds showed consistent IC50 values with less than

one order of magnitude differences between the maximum and minimum results. However,

47 compounds recorded more than 100-fold differences between the maximum and minimum

IC50 values. An inspection of such cases revealed that only a small number of outlier values

often caused such large deviations. Therefore, the differences between the 25th percentile and

75th percentile of IC50 values were far less than those between the maximum and minimum

values. Only two compounds had more than a 100-fold difference between the 25th percentile

and 75th percentile, and those of 224 out of the 263 compounds were lower than 10-fold.

These observations emphasize the importance of outlier elimination, to construct a robust

dataset and avoid incorrect classification of positive and negative compounds. The integration

of various databases increases the number of assay results and enables the detection of more

outlier values, as compared to relying on a single database.

In this study, compounds were classified into either positive (hERG inhibitors showing

IC50�10μM or�50% inhibition at 10μM) or negative compounds (IC50>10μM or<50% inhi-

bition at 10μM). Fig 5 presents the step-wise proceeding of the classification procedure emp-

loyed to minimize the influence of outlier values and achieve robust classification through

unanimous agreement (Fig 5(A)),removal of outlier values (Fig 5(B)), and majority vote using

criteria of two-thirds (Fig 5(C)). Considering the large deviation of the IC50 values, majority

voting was applied to assign the labels rather than using the mean values which could be more

sensitive to outlier values. The compounds without IC50 information were classified based on

Fig 5. Step-wise procedure for compound classification. (a) Classification by unanimous results using all assay values. Positive, unclassified, and negative

compounds are shown in red, black, and blue, respectively. The dashed line indicates the threshold value between positive and negative compounds (IC50 =

10μM) (b) Distribution of assay values after removal of outlier values differing more than 10-fold from the mean IC50 values from undefined compounds. (c)

Classification by a two-thirds majority of filtered IC50 values. The remaining unclassified compounds with nearly equal numbers of positive and negative assay

results were considered as inconclusive compounds, and omitted from the subsequent analysis of physicochemical properties.

https://doi.org/10.1371/journal.pone.0199348.g005
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the percentage inhibition data. As in the case of the IC50 data, assay results showing more than

50% inhibition at a concentration lower than 10μM, and less than 50% inhibition at a concen-

tration higher than 10μM, were counted for each compound, and then assessed according to

whether more than two thirds of the data showed consistent results. When both the IC50 and

percentage inhibition data were available, only the IC50 information was considered for the

classification because the determination of an IC50 value generally requires assays with about 7

different concentrations for sigmoid curve fitting, and thus it could be more reliable than per-

centage inhibition data measured at a single concentration.

Structural diversity of the integrated database

Using the standardized structures, the hERG activity entries from ChEMBL, GOSTAR, NCGC,

and hERGCentral were merged and classified into hERG inhibitors and inactive compounds

according to the aforementioned criteria. Table 1 presents the numbers of compounds in each

database and the resulting integrated database, after the removal of inconclusive compounds.

The ratios of inhibitors and inactive compounds were nearly 1:1 in ChEMBL and GOSTAR,

while they were about 1:6 in NCGC and 1:64 in hERGCentral, respectively. ChEMBL and GOS-

TAR are literature-based databases from medicinal chemistry journals and patents, and thus

they often contain structure activity relationships of compounds sharing certain scaffolds, result-

ing in a high ratio of hERG inhibitors. The NCGC data set consisted of a pharmacologically

active compound library from SIGMA (LOPAC1280 library) and NCGC (NPC). hERGCentral

uses the National Institutes of Health (NIH) Molecular Library Small Molecule Repository

(MLSMR) as a compound source. Since hERGCentral uses general small molecule library,

which is irrelevant to hERG inhibition or other bioactivities, its inhibitor ratio would most likely

approximate those in practical HTS in drug discovery project. By merging the compounds from

the four databases, a database consisting of 9,890 hERG inhibitors and 281,329 inactive com-

pounds was constructed. The size of the integrated dataset exceeded those of most previous stud-

ies. As reported by Villoutreix et al. [9], most of the previous studies used datasets consisting of

less than 5,000 compounds from public databases, or used in house datasets. The only exception

was the study employing 306,895 compounds from hERGCentral dataset by Du et al. [10]. The

slight decrease of the integrated dataset from original hERGCentral mainly came from the

Table 1. The number of compounds and their Murcko frameworks in each database.

Database Class Number of compounds Number of Murcko frameworks

ChEMBL Inhibitors 4,793 2,474

Inactives 5,275 3,012

All 10,068 4,954

GOSTAR Inhibitors 3,260 1,727

Inactives 3,509 1,692

All 6,769 3,098

NCGC Inhibitors 232 173

Inactives 1,234 504

All 1,466 639

hERGCentral Inhibitors 4,321 2,708

Inactives 274,536 73,419

All 278,857 74,687

Integrated database Inhibitors 9,890 5,516

Inactives 281,329 76,420

All 291,219 79,806

https://doi.org/10.1371/journal.pone.0199348.t001
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removal of the near 50% inhibition entries in HTS assays in hERGCentral. Because the strict cri-

teria (>70% inhibition at 10uM for HTS assays) was set to remove low confidence entries, the

integrated dataset was expected to achieve both the high reliability of assay results and the com-

prehensiveness of structural diversity.

The numbers of Murcko frameworks for hERG inhibitors and inactive compounds in each

database are shown in Table 1. For hERG inhibitors, the integrated database contains more

than twice as many scaffolds than any of the individual databases. Conversely, the structural

diversity of the inactive compounds in the integrated database was almost equivalent to that of

the hERGCentral dataset. This result revealed the unique nature of the hERGCentral dataset,

which contains comprehensive HTS results against large compound libraries covering a

broader chemical space than manuscripts or patents focused on specific compounds or chemi-

cal series. In total, the compounds in the integrated hERG database contained 79,806 Murcko

frameworks. By estimating that the 438,551 Murcko frameworks found in the whole ChEMBL

database represent the structural diversity of the all existing bioactive compounds, the inte-

grated database successfully covered 18.2% of that chemical space.

The transition of the number of compounds/scaffolds with hERG activities registered in the

databases is shown in Fig 6. Large increases in both hERG inhibitors and inactive compounds

were found in 2011, according to the hERGCentral release. Apart from this event, about 200–

700 hERG inhibitors and 200–1,000 inactive compounds have been reported each year since

2006. Considering that only 618 hERG inhibitors and 279 inactive compounds were reported

in 2006, the recent increase in the hERG-related bioactivity data (covering 18.2% of the

Murcko frameworks found in ChEMBL) enables us to construct accurate and robust hERG

prediction models for diverse drug-like compounds including newly synthesized ones. The full

information about the integrated database at various time points is provided in S1 Table.

SAR information of each chemical scaffold

To assess the SAR information of each chemical scaffold contained in the integrated database,

the distribution of IC50 values among the compounds sharing the same Murcko frameworks

was investigated. In the integrated dataset, the IC50 values were reported for 3,361 Murcko

frameworks. The number of compounds with IC50 entries in each Murcko frameworks is

shown in Fig 7. The distribution of IC50 values for 82 Murcko frameworks containing more

Fig 6. Transition in the number of unique compounds and coverage of Murcko frameworks for hERG inhibitors, inactive compounds, and all reported

compounds. Coverage of Murcko frameworks was calculated as the ratio to those of all ChEMBL22 compounds (438,551).

https://doi.org/10.1371/journal.pone.0199348.g006
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than 10 compounds is presented as a box plot sorted by the IC50 value of the most potent com-

pound in each group in Fig 8(A). The mean pIC50 value was employed when multiple IC50 val-

ues were reported for a compound. Six scaffolds showed more than 10,000-fold differences

between the IC50 values of the most and least potent compounds (Fig 9). All six Murcko frame-

works met the requirement of common hERG pharmacophores for charged compounds, con-

sisting of a positively charged atom and two aromatic rings reported in previous studies [34].

Thus, the compounds with various IC50 values could provide useful information about the

substituents conferring substantial interaction energy with hERG and those decreasing the

binding affinity, to design molecules with desirable properties. Such SAR information has also

been hugely improved by the recent increase in hERG-related data entries. The IC50

Fig 7. Histogram of the number of compounds in each Murcko frameworks.

https://doi.org/10.1371/journal.pone.0199348.g007

Fig 8. Box plot of IC50 distribution about each Murcko framework. (a) IC50 values for 82 Murcko frameworks

containing more than 10 compounds sorted by the IC50 values of the most potent inhibitors. (b) Corresponding IC50

values reported before 2009. The horizontal axes of both plots represent each of the 82 Murcko frameworks.

https://doi.org/10.1371/journal.pone.0199348.g008
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Fig 9. Six Murcko frameworks showing more than 10,000-fold potency differences.

https://doi.org/10.1371/journal.pone.0199348.g009
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distributions of the same chemical scaffolds, reported before 2009, are shown in Fig 8(B).

Among the 82 chemical scaffolds, only 28 scaffolds were associated with hERG inhibition

before 2009, and several scaffolds lacked highly potent compounds at the time, which could

lead to severe bias in the risk assessment of the scaffolds.

Physicochemical properties

To assess the contribution of the physicochemical properties to the hERG inhibitory activity,

the distributions of 12 physicochemical properties for hERG inhibitors, inactive compounds,

and all compounds in the integrated database were compared. The mean and standard devia-

tion of 12 physicochemical properties for both hERG inhibitors and inactive compounds in

each database are shown in Table 2. Among the 12 physicochemical properties, the distribu-

tions of MW, AlogP, N_Cations, MPSA, N_Rot, and pKa_base, which show significant differ-

ences between hERG inhibitors and inactive compounds, are highlighted in Fig 10. The results

indicated that hERG inhibitors tend to have a larger molecular weight (418.7, as compared to

355.9 for inactive compounds), higher hydrophobicity according to AlogP and logD (3.80 and

3.22, as compared to 2.77 and 2.58), have more cations (0.68, as compared to 0.22), and less

basic substituents (pKa value of most basic substituents was 8.18 as compared to 6.33). While

about 80% of the inactive compounds had no positively charged atoms, more than half of the

hERG inhibitors contained at least one positively charged atom. These differences were clearly

consistent with the previously reported pharmacophores [34] and the expected binding modes

of the known hERG inhibitors, because Tyr652 and Phe656 were identified as the important

residues frequently forming cation-π and π-π stacking interactions with various hERG inhibi-

tors according to site-directed mutagenesis analyses [35, 36].

Although the aforementioned general trends between hERG inhibitors and inactive com-

pounds were commonly observed in each database, slightly different property distributions were

found across the databases (S1 Table). ChEMBL and GOSTAR, which are based on scientific jour-

nals and patents, often contain hERG inhibitors and structurally similar derivatives synthesized

from an initial hit compound. The mean MWs were 438.7 for hERG inhibitors and 417.0 for inac-

tive compounds in ChEMBL, and 432.7 for hERG inhibitors and 417.8 for inactive compounds in

GOSTAR. In contrast, the NCGC dataset, consisting of the LOPAC1280 library, contained much

smaller and more hydrophilic compounds as compared to ChEMBL and GOSTAR. The mean

MWs were 345.1 for inhibitors and 273.1 for inactives; and for AlogP they were 3.75 for inhibitors

Table 2. Mean values (standard deviations) of 12 physicochemical properties for hERG inhibitors, inactive com-

pounds, and all compounds in the integrated database.

Property Inhibitors Inactives All

MW 418.7(77.1) 355.9(76.6) 358.0(77.5)

AlogP 3.80(1.39) 2.77(1.34) 2.80(1.35)

logD 3.22(1.47) 2.58(1.41) 2.60(1.42)

HBA 4.47(1.67) 4.41(1.64) 4.41(1.64)

HBD 1.07(0.94) 1.25(0.91) 1.24(0.91)

N_Cations 0.68(0.63) 0.22(0.46) 0.23(0.47)

N_Anions 0.03(0.17) 0.11(0.33) 0.11(0.33)

MSA 424.7(75.7) 356.8(75.0) 359.1(76.0)

MPSA 71.0(30.6) 86.1(31.6) 85.6(31.7)

N_Rot 6.24(2.43) 5.22(2.32) 5.25(2.33)

pKa_base 8.18(2.74) 6.33(3.31) 6.41(3.31)

pKa_acid 3.33(4.15) 2.67(3.71) 2.69(3.73)

https://doi.org/10.1371/journal.pone.0199348.t002
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and 1.87 for inactives on average. The size of the compounds in the hERGCentral dataset fell

between them, with mean MWs of 399.2 for inhibitors and 354.5 for inactive compounds. The

difference in the molecular sizes could be due to the fact that the compounds published in medici-

nal chemistry journals or patents were often synthetically optimized to achieve high potency or

desirable properties, and this process generally increased their size from the initial hit compounds

in chemical libraries for HTS. Thus, the construction of hERG prediction models based on only a

single database could be severely affected by the choice of the database. These results emphasize

the importance of the collection and integration of SAR information from various databases, to

cover a wider chemical space and enable a more robust analysis. The full description of the physi-

cochemical properties for each database is available in S1 Table.

Conclusion

By integrating the ChEMBL, GOSTAR, NCGC, and hERGCentral datasets, the largest dataset

for the hERG blockade activities of small compounds was constructed in this study. The assay

deviation of each compound revealed that large deviations up to more than 100-fold could

occur by incorrect curation, emphasizing the importance of removing the outlier values. After

the consideration of multiple assay entries, the dataset consisting 9,890 hERG inhibitors and

281,329 inactive compounds was built. The database covered 18.2% of all of the Murcko

framework-based chemical space occupied by ChEMBL compounds. The amount of hERG

activity information has dramatically increased over the past decade. The number of reported

hERG inhibitors increased almost 10-fold in the past 10 years, along with about a 100-fold

increase of inactive compounds. The variety of chemical scaffolds commonly (more than 10

compounds) found in hERG inhibitors also increased nearly 3-fold (only 28 scaffolds were

reported before 2009, among the 82 scaffolds currently reported).

Fig 10. Distribution of 6 physicochemical properties showing significant differences. The distributions of hERG inhibitors and inactive compounds are

shown as red and blue lines, respectively.

https://doi.org/10.1371/journal.pone.0199348.g010
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Investigations of the physicochemical properties of hERG inhibitors in the integrated data-

base reproduced their well-known characteristics. hERG inhibitors tend to exhibit larger

molecular weight, more hydrophobicity, more cationic atoms, and less polar surface area. A

notable observation was found in the difference of the property distribution among the indi-

vidual databases. The molecular weight distribution in each database reflected the origin of the

compounds where the database collected the SAR information. These differences in the data

sources could affect the interpretation of the physicochemical properties in the construction of

prediction models for hERG inhibition when the prediction model is built using only one data

source. The integration of hERG-associated information from various databases would

decrease the bias of the data sources and provide a robust data set for statistical analysis.

The integrated database is available at our home page (http://drugdesign.riken.jp/hERGdb/

), with the exception of GOSTAR, which is a commercial database that is not publicly accessi-

ble. The current interface allows structural searches and filtering by assay types or data sources.

More features such as keyword search, ftp downloads, etc. are planned for future development.

The authors are currently constructing a discrimination model of hERG inhibitors and inac-

tive compounds based on the integrated database, which has already showed promising pre-

diction performance exceeding those by commercial software to predict hERG inhibition. The

prediction model will be released publicly with the integrated database itself on our homepage.

Along with the functional additions, updates of the integrated database to accommodate to lat-

est versions of the ChEMBL and NCGC datasets are ongoing. The corresponding changes in

the basic statistics of the updated database and the distribution of molecular properties will be

presented on the home page.

Supporting information

S1 Table. Statistics of the physicochemical properties for both hERG inhibitors and inac-

tive compounds in each individual database and the integrated database at various time

points.

(XLS)
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