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Abstract

The risk factors associated with mortality in patients with extremely high serum C-reactive

protein (CRP) levels are controversial. In this retrospective single-center cross-sectional

study, the clinical and laboratory data of patients with CRP levels�40 mg/dL treated in Sai-

tama Medical Center, Japan from 2004 to 2017 were retrieved from medical records. The

primary outcome was defined as 72-hour mortality after the final CRP test. Forty-four mortal

cases were identified from the 275 enrolled cases. Multivariate logistic regression analysis

(MLRA) was performed to explore the parameters relevant for predicting mortality. As an

alternative method of prediction, we devised a novel risk predictor, “weighted average of risk

scores” (WARS). WARS features the following: (1) selection of candidate risk variables for

72-hour mortality by univariate analyses, (2) determination of C-statistics and cutoff value

for each variable in predicting mortality, (3) 0–1 scoring of each risk variable at the cutoff

value, and (4) calculation of WARS by weighted addition of the scores with weights assigned

according to the C-statistic of each variable. MLRA revealed four risk variables associated

with 72-hour mortality—age, albumin, inorganic phosphate, and cardiovascular disease—

with a predictability of 0.829 in C-statistics. However, validation by repeated resampling of

the 275 records showed that a set of predictive variables selected by MLRA fluctuated occa-

sionally because of the presence of closely associated risk variables and missing data

regarding some variables. WARS attained a comparable level of predictability (0.837) by

combining the scores for 10 risk variables, including age, albumin, electrolytes, urea, lactate

dehydrogenase, and fibrinogen. Several mutually related risk variables are relevant in pre-

dicting 72-hour mortality in patients with extremely high CRP levels. Compared to conven-

tional MLRA, WARS exhibited a favorable performance with flexible coverage of many risk

variables while allowing for missing data.
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Introduction

Clinical data are frequently collected in daily practice at medical institutions. Generally, labo-

ratory data are used to generate alerts to improve clinical practice and ensure that the most

appropriate care is provided to the patient. Reuse or secondary use of clinical laboratory data

is an emerging field that is recognized as being essential for delivering high-quality healthcare

and improving healthcare management [1, 2]. We examined the utility of laboratory data to

determine how the structure of the medical care data marketplace can affect research priorities,

gaps, and possibilities. Health information technology may have the potential to improve the

collection and exchange of personal health records, allowing for utilization in electronic form

[1, 2]. However, the reuse or secondary use of clinical data for the improvement of the overall

quality of medical care remains limited.

A critical (panic) value is defined as a value that represents a pathophysiological state with

extreme deviation from normal as it becomes life-threatening without prompt action [3].

Meanwhile, extreme outlier values are statistically expressed as below the 0.5 to 1.0 percentile

value, or above the 99.0 to 99.5 percentiles [4]. These critical values have gained attention in

the efficacy of identifying and communicating relevant information to treating physicians [5].

Conversely, physicians who encounter patients with extreme outlier laboratory values may be

unsure whether such values are critical.

C-reactive protein (CRP) is a phylogenetically highly conserved plasma protein that func-

tions as an acute inflammatory marker [6]. The median CRP concentration in healthy young

adults is 0.08 mg/dL [7]. An acute stimulus very rapidly initiates de novo synthesis of CRP in

hepatocytes, and plasma levels rise above 0.5 mg/dL within 4–8 hours, and peak at 48 hours.

The half-life of plasma CRP is 19 hours, and a delay of 48 hours in reaching the maximum

CRP value has been reported in critically ill patients [8]. CRP has versatile roles in both physio-

logical and pathophysiological states [9], and has long been employed for clinical purposes as a

biomarker for acute inflammation [7]. Recent studies have shown that CRP levels are related

to the prognosis or activity of various diseases [10].

In hospital settings, physicians may encounter patients with CRP levels that significantly

exceed the normal range [11]. Indeed, several case reports have reported CRP levels >40

mg/dL in adults with pyogenic liver abscess with complicated intestinal tuberculosis [12]

and immune-hemolytic anemia [13]. Silvestre et al. observed no significant differences in

CRP concentrations at ICU admission between survivors and non-survivors (25.3 ± 13.7

versus 28.2 ± 13.2 mg/dL). Furthermore, the ICU mortality rates of patients with sepsis dur-

ing an ICU stay with CRP concentrations <10, 10–20, 20–30, 30–40, and >40 mg/dL were

20%, 34%, 30.8%, 42.3%, and 39.1%, respectively. This finding suggests that CRP is a poor

marker of prognosis and that CRP levels >40 mg/dL are not associated with increased mor-

tality of patients with sepsis during ICU stay [14]. In contrast, other studies have reported

that CRP level >40 mg/dL indicate severe bacterial infection [15, 16], can be used as a pre-

dictor of renal scarring associated with a first urinary tract infection [17], and indicate acute

pyelonephritis in the pediatric field [18]. Moreover, the cutoff value of CRP level >40 mg/

dL was used to predict sepsis in emergency departments and demonstrated a sensitivity of

82.3% and specificity of 38.7% [19]. Furthermore, the use of a point-of-care CRP level >40

mg/dL significantly increases the predictive accuracy of treatment failure among patients

with exacerbated mild to moderate chronic obstructive pulmonary disease [20, 21]. How-

ever, the prediction model of 72-hour mortality for patients with an extremely high outlier

value of CRP level >40 mg/dL remains elusive.

In the current study, we aimed to elucidate the risk variables for predicting 72-hour mor-

tality among patients with extremely high CRP levels under heterogeneous pathological
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conditions. We primarily applied multivariate logistic regression analysis (MLRA) to

explore the variables for predicting mortality. Furthermore, we devised a flexible method of

predicting mortality by using a novel score, called “weighted average of risk scores”

(WARS) as an alternative approach. The WARS is based on the summation of scores

assigned to each risk variable in predicting the mortal outcome, and can incorporate all

available risk variables, even with some missing data. Its performance and clinical utility, in

contrast to the conventional MLRA, will be presented in predicting fatal outcomes among

patients with extremely high CRP levels.

We anticipate that the development of a reliable numerical model for predicting mortality

will contribute to improved initial management of severely ill patients in both primary and

critical care settings.

Materials and methods

The study protocol was designed according to the tenets of the Declaration of Helsinki [22]

and was approved by the Institutional Clinical Research Ethics Review Board of Saitama Medi-

cal Center, Jichi Medical University, Saitama, Japan (Clinical #10–79 and #S20-025). The

requirement for informed consent was waived due to the retrospective nature of the study.

Study design and participant selection

This was a retrospective, single center, case-controlled cross-sectional study. We used a

CRP data list that included 1,336,403 patients aged over 18 years who visited Saitama Med-

ical Center between 2004 and 2017. The incidence of an extremely high outlier value of

CRP level >40 mg/dL was 0.0302% overall, and 401 patients were selected. This rate meets

the extreme outlier values that lie statistically outside the 0.5.99.5 percentile range [4]. We

excluded 113 records that were metachronous duplicates from the same patient (only one

highest value of CRP from each of these patients was considered), 10 patients with cardio-

pulmonary arrest at arrival, and 6 patients with unknown outcomes. After applying the

exclusion criteria, a sample of 275 patients was selected for use as a training dataset (S1

Dataset) to build a model for predicting mortality risk.

Two additional patients’ records were retrieved for validation of the model: one for confir-

mation (S2 Dataset; composed of 90 patients with CRP levels�40 mg/dL from a subsequent

period between 2018 and 2020) and the other for assessing the specificity of risk variables

included in the regression (S3 Dataset; composed of 818 patients with 20� CRP < 40 mg/dL

and retrieved from 2019).

A flowchart of the selected cohort is shown in Fig 1.

The primary outcome was 72-hour mortality [23, 24] following the CRP test, regardless of

whether the patient was hospitalized or in an outpatient setting. Cases were defined as patients

with extremely high CRP levels who died in hospital during the first 72 hours after the test,

while the controls were patients with extremely high CRP levels who survived.

The following risk factors were tested for their association with the 72-hour mortality

outcome: age, sex, height, weight, body mass index (BMI), number of cigarettes smoked

(Brinkman index), vital signs at the time of examination (e.g., systolic blood pressure, dia-

stolic blood pressure, heart rate, respiratory rate, and body temperature), laboratory test val-

ues (e.g., white blood cell [WBC], red blood cell [RBC], hemoglobin [Hb], hematocrit [Ht],

platelet [Plt], total protein, albumin [Alb], total bilirubin, direct bilirubin, aspartate trans-

aminase [AST], alanine transaminase [ALT], γ-glutamyl transpeptidase [γ-GTP], lactate

dehydrogenase [LDH], alkaline phosphatase [ALP], creatine kinase [CK], amylase, C-reac-

tive protein [CRP], sodium [Na], potassium [K], chloride [Cl], calcium [Ca], inorganic
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Fig 1. Flow diagram outlining the patient selection.

https://doi.org/10.1371/journal.pone.0246259.g001
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phosphate [IP], blood urea nitrogen [BUN], creatinine [Cre], uric acid, total cholesterol

[TC], triglyceride, random plasma glucose, prothrombin time-international normalized

ratio [PT-INR], activated partial thromboplastin time [APTT], fibrinogen [Fbg], D-dimer

[DD], and antithrombin 3 [AT3]), total updated Charlson comorbidity index (CCI) scores

[25], CCI components, and medications taken on the day of the CRP test. The following

underlying causes of extremely high CRP were considered possible risk factors: sepsis,

pneumonia, abscess, peritonitis, other infectious diseases, malignancy, cardiovascular dis-

ease, and gastrointestinal perforation.

Statistical analysis

Sample size. From a preliminary analysis, we obtained a dead survival ratio of 15:85 (mor-

tality rate of 15%) among patients with CRP levels�40 mg/dL. Assuming a need to test the

utility of a binary risk variable by assessing the proportions of the two groups, the sample size

required to detect a difference of 0.20 in proportion was calculated as 211 (32 for the dead

group vs. 179 for the surviving group) by setting a power of 80% and an alpha error of 5% [26].

As a result, we expanded the actual data size to 275 (with expected data sizes of 42 vs. 233 for

the two groups) to ensure attainment of a higher power.

Descriptive statistics. The summary values of all variables are presented as the median

and inter-quartile range. The between-group differences were tested using Fisher’s exact test

for nominal variables and Mann–Whitney U test for numerical variables.

Univariate analysis. The primary focus was to detect relevant risk variables associated

with 72-hour mortality using receiver-operating characteristic (ROC) analysis and the Mann–

Whitney test (or Fisher’s exact test). The reliability of distinguishing dead from alive cases by

each risk variable was expressed as the C-statistics (or area under the ROC curve) for the for-

mer and P-value for the latter.

Multivariate logistic regression analysis. Multivariate logistic regression analysis

(MLRA) was primarily used to build a regression model for predicting mortality risk.

p ¼
1

1þ e� X
; X ¼ b0 þ

Xnp

i¼1

bixi

where X represents a linear combination of risk variables (xi) [I = 1~np], and βi is a partial regres-

sion coefficient for the i-th variable to be predicted by the maximum likelihood procedure. The

‘p’ represents a probability for belonging to the dead group to be calculated by assigning a set of

variable xi (I = 1~np) from a given patient. The outcome of death (yes = 1, no = 0) 72 hours after

the last CRP test was set as an object variable. The explanatory variables were all potential risk

variables (demographic parameters, such as sex, age, BMI, primary disease states, and biochemi-

cal test results). The stepwise selection method was used to obtain an optimal combination of

risk variables. For the laboratory tests, a distribution of values for each test was made approxi-

mately Gaussian by power transformation using the following Box–Cox formula [27].

X ¼
xl � 1

l
� � � ðl 6¼ 0:0Þ; X ¼ logðxÞ � � � ðl ¼ 0:0Þ

where x and X are a test result before and after the transformation, and λ is a power.

The power used for the major laboratory tests was λ = 0.0 (log-transformation) for LDH

and DD, λ = 0.3 for Mg and BUN, λ = 0.5 for fibrinogen, and λ = 0.7 for K.

Validation of the regression model predicted by MLRA. The actual flow of analyses

were as follows: (1) To build a risk prediction model using the training S1 Dataset (275 rec-

ords with CRP levels�40 mg/dL, composed of 44 dead and 231 alive cases); (2) to apply the
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validation S2 Dataset (90 records with CRP levels�40 mg/dL, composed of 8 dead and 82

alive cases) to the regression model derived using S1 Dataset, and to calculate the predicted

probability of all cases for belonging to the dead group; and (3) to calculate the reliability of

prediction for both S1 and S2 Datasets as C-statistics in reference to the actual status of the

mortality of each record.

For internal validation of the predicted regression model based on S1 Dataset, a boot-strap

method [28], as used by repeated random re-sampling of n = 275 records in S1 Dataset, allow-

ing duplicate sampling of the same data, and the reproducibility of the selected set of risk vari-

ables was evaluated.

In addition, the specificity of the regression model predicted by S1 Dataset from patients

with CRP levels�40 mg/dL was assessed by comparison with a model predicted indepen-

dently by S3 Dataset (818 records composed of 33 dead and 785 alive cases) from patients

with 20� CRP < 40 mg/dL.

Weighted average of risk scores (WARS). As an alternative method of risk prediction,

we devised a risk index, called the weighted average of risk scores (WARS). The WARS is

aimed at attaining flexibility and robustness in use by accommodating all available risk vari-

ables, even with partly missing data. The flow for the derivation of WARS is as follows:

1. For each risk variable, the degree of distinction between dead and alive cases was calculated

as C-statistics using ROC analysis. For variables with a C-statistic >0.6, an optimal cutoff

value for the distinction was determined as the point where the specificity equaled the

sensitivity.

2. Each risk variable was graded by assigning a “weight” (wt) in reference to the boundaries of

C-statistics, arbitrarily set at 0.65 and 0.70: wt = 1 (�0.65), wt = 2 (0.65–0.7), and wt = 3

(>0.7), as shown in Table 1.

3. Binary transformation of each risk variable was performed (based on the respective cutoff

values) to calculate the cumulative score. For example, when values of the dead group are

shifted to a higher side, score 1 is assigned for any value above the cutoff; otherwise, the

score is set to 0. Conversely, when the values of the dead group are shifted to a lower side,

any value below the cutoff is assigned a score of 1.

4. The weighted average of risk score for each patient was calculated as

WARS ¼
Pnp

i wti � sxiPnp
i wti

where sxi represents a score (0 or 1) assigned to a risk variable i in reference to the cutoff

value, np represents the number of risk variables available for a given patient, and wti repre-

sents the weight assigned to sxi (1, 2, or 3). Note that np can differ from one patient to

another according to the number of missing results.

5. The utility of WARS for predicting the mortality risk was evaluated by univariate logistic

regression analysis.

Statistical software. The statistical package for StatFlex software version 7.0.11 (Artech

Co. Ltd, Osaka, Japan) was used for data analysis, and G�Power version 3.1.9.4 [26] was used

for sample size calculation.
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Results

Univariate analyses of demographics and risk variables

The characteristics of the study groups with respect to mortality, such as patient demographics,

vital signs, laboratory test values, updated CCI, underlying causes of extremely high CRP, and

medications are presented in Tables 1 and S1. The 72-hour mortality rate was 44/275 (16.0%),

and the survival rate was 231/275 (84.0%). There was no significant difference in the CRP levels

between the dead (44.1 mg/dL) and survival (43.7 mg/dL) groups. Detailed characterization of

the two groups is presented in Table 1 for variables that have the potential to be relevant for pre-

dicting mortality. The dead group had significantly higher values for age, LDH, K, IP, Mg,

BUN, and DD than the survival group. Conversely, Alb, TC, and fibrinogen levels were signifi-

cantly higher in the survival group. In Table 1, variables with C-statistics >0.6 are check-

marked at the head of respective rows, and their cutoff values for distinguishing the two groups

are shown together with the weight (wt) for use in calculating the WARS.

In the subsequent analyses for building a risk prediction model using MLRA and calculating

WARS, we selected 10 variables with C-statistics>0.6 or P< 0.01 by the Mann–Whitney test.

TC was not included in calculating WARS due to the limited data (n = 79). The actual magni-

tude of between-group differences for these major variables is graphically shown in Fig 2.

Table 1. Univariate comparison of laboratory data according to the outcome (dead/alive) at 72 hours.

ROC analysis

variables Unit n Dead Me (IQR) [n] Alive Me (IQR) [n] C-statistic cutoff �1 P value by M-W Wt �2

✓ Age year 275 74 (62–79) [44] 64 (52–72) [231] 0.682 68 0.00013 2

RBC 104/μL 275 342 (295–389) [44] 363 (308–422) [231] 0.567 0.15295

Hb g/dL 275 10.3 (8.8–12.2) [44] 11.1 (9.3–12.8) [231] 0.561 0.19823

TP g/dL 263 5.5 (4.9–6.0) [41] 5.8 (5.1–6.5) [222] 0.596 0.04976

✓ Alb g/dL 264 2.0 (1.7–2.3) [42] 2.5 (2.0–2.9) [222] 0.686 2.2 0.00013 2

AST U/L 268 40 (25–64) [41] 32 (19–63) [227] 0.580 0.09917

✓ LDH U/L 269 358 (236–750.0) [42] 291 (200–417) [227] 0.605 322 0.03126 1

✓ K mmol/L 273 4.5 (4.00–5.5) [44] 4.2 (3.6–4.6) [229] 0.650 4.24 0.00151 1

✓ IP mg/dL 219 4.7 (3.6–6.7) [38] 3.4 (2.4–4.7) [181] 0.699 4.0 0.00011 2

✓ Mg mg/dL 95 2.7 (2.1–3.3) [10] 2.1 (1.9–2.4) [85] 0.747 2.28 0.01053 3

✓ BUN mg/dL 275 59.5 (44.5–84.5) [44] 35.0 (23.3–53.8) [231] 0.732 48 0.00000 3

Cre mg/dL 274 1.8 (1.3–2.9) [43] 1.3 (0.8–3.0) [231] 0.561 0.21428

UA mg/dL 150 8.1 (4.95–9.75) [23] 6.10 (4.53–8.30) [127] 0.610 0.09298

TC mg/dL 79 108 (85.5–127.5) [8] 127 (111–154) [71] 0.690 120 0.07917

Glu mg/dL 143 122 (88–171) [23] 144 (120–209) [120] 0.627 0.05444

✓ Fbg mg/dL 91 538 (508–877) [13] 896 (693–1108) [78] 0.744 799 0.00509 3

✓ D-dimer μg/mL 104 12.5 (7.7–28.7) [19] 6.5 (3.8–13.8) [85] 0.683 9.2 0.01277 2

✓ CVD 1 = yes; 0 = no 275 1 (25%) vs. 0 (75%) [44] 1 (8%) vs. 0 (92%) [231] 0.00282 2

✓ indicates a candidate parameter adopted for use in the prediction modeling.

TC was omitted in the analysis because of small sample size.

�1 Cutoff values were determined as a test result where sensitivity = specificity, at the boundary of 0.65 and 0.70.

�2 Wt represents a weight for use in scoring.

Wt was graded into 1 to 3 based on C-statistics, Wt for CVD was arbitrary set to 2 from P<0.005.

C-statistics = area under the ROC curve (= AUC); RBC = red blood cells; Hb = hemoglobin; TP = total protein; Alb = albumin; AST = aspartate aminotransferase;

LDH = lactate dehydrogenase; K = potassium; IP = inorganic phosphate; Mg = magnesium; BUN = blood urea nitrogen; Cre = creatinine; UA = uric acid; TC = total

cholesterol; Glu = glucose; Fbg = fibrinogen; CVD = cardiovascular disease.

https://doi.org/10.1371/journal.pone.0246259.t001
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Prediction of mortality by MLRA and validation of the model

MLRA using S1 Dataset (n = 275; 44 dead, 231 alive) was performed to determine a regression

model for predicting 72-hour mortality. An optimal regression model (A) was derived by step-

wise selection of risk variables, which consisted of four risk variables: age, albumin, inorganic

phosphate, and CVD as follows:

p ¼ 1=½1þ expð� 4:97þ 0:058ðAgeÞ � 0:835ðALBÞ þ 0:615ðIP0:5Þ þ 1:489ðCVDÞ� ðEq 1Þ

where ‘p’ is the probability of a given patient belonging to the dead group. The accuracy of pre-

diction in terms of C-statistics was 0.829 (95% CI = 0.760–0.900) (Table 2: Analysis-1).

For confirmation, the validation S2 Dataset (n = 90; 8 dead, 82 alive) was applied to the

regression model (Eq 1), and the probability of belonging to the dead group (p) was com-

puted for all 90 patients. The accuracy of the prediction based on p values was calculated as

0.754 (95% CI = 0.595–0.913) in C-statistics with reference to the actual outcome: dead or

alive (Table 2: Analysis-2). However, the C-statistics were not statistically different from

those of S1 Dataset because of the wide 95% CI of the C-statistics as a result of the small

sample size of S2 Dataset.

To test the specificity of the regression model for patients with CRP levels �40 mg/dL,

S3 Dataset from patients with 20 � CRP < 40 mg/dL (n = 818; 33 dead, 785 alive) was also

Fig 2. Comparison of 10 major risk variables in relation to the outcome. Patients with CRP levels�40 mg/dL (S1 Dataset) were divided by 72-hour outcome

(44 dead and 218 alive). The utility of each risk variable for distinguishing the two groups was calculated as C-statistics (C-S) by ROC analysis. The cutoff value

for the distinction (shown by the vertical line in the center) was determined as a value where the sensitivity is equal to the specificity.

https://doi.org/10.1371/journal.pone.0246259.g002
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applied to Eq 1 to compute the probability of belonging to the fatal outcome (p). The

accuracy of the prediction was 0.788 (95% CI = 0.695–0.881) (Table 2: Analysis-3). This

reduction from 0.829 was not statistically significant since 0.829 is within the 95% CI of

C-statistics for S3 Dataset. Independent derivation of a mortality prediction model was

performed by using S3 Dataset through stepwise selection of risk variables. The regression

model was quite different from Eq 1 as shown in Table 2: Analysis-4. In this case, Alb was

chosen again, age and IP were not selected, and BUN, LDH, Ht, and Hb were newly

included in the model.

As a work of internal validation with respect to the reproducibility of Eq 1, bootstrap

resampling of S1 Dataset, which allows for replacement (duplicate sampling of the same data),

was conducted 25 times, and a risk prediction model was derived by MLRA for each dataset.

Three variables, Mg, Fbg, and DD, were not included in the bootstrap analysis due to limited

data. The results shown in Table 3 demonstrate that a certain degree of variability is inevitable

in the automatic selection of risk variables, except for age.

Table 2. Multivariate logistic regression analyses for predicting 72-hour mortality.

Analysis (1) Dataset-A for training (CRP≧40: 2004~2017) n = 212 (with all 4 Exp Vars)

MLRA: Obj Var = Death

Exp Var β SE(β) z P OR 95%CI

0 -4.969 1.666

1 Age 0.058 0.0187 3.113 0.0019 1.06 1.022–1.099

2 Alb -0.835 0.3659 -2.282 0.0225 0.434 0.212–0.889

3 IP 0.615 0.2207 2.788 0.0053 1.85 1.201–2.852

4 CVD 1.489 0.6146 2.422 0.0154 4.431 1.328–14.78

AIC = 158.588, C-S = 0.829 (95%CI = 0.759–0.900)

P = 1/[1+exp(-4.97 + 0.058(Age)– 0.835(ALB) + 0.615(IP0.5) + 1.489(CVD)]

Analysis (2) Dataset-B for validation (CRP≧40: 2018~2020) n = 73 (with all 4 Exp Vars)

ROC analysis to evaluate the accuracy of predicted probability (p) for the fatal outcome.

N dead N alive C-S 95%CI of C-S

8 65 0.754 0.595–0.913

Analysis (3) Dataset-C for testing specificity (20≦CRP<40: 2019) n = 818 (with all 4 Exp Vars)

ROC analysis to evaluate the accuracy of predicted probability (p) for the fatal outcome.

N dead N alive C-S 95%CI of C-S

33 785 0.788 0.695–0.881

Analysis (4): Dataset-C for testing specificity (20≦CRP<40: 2019) n = 720 (with all 5 Exp Vars)

MLRA: Obj Var = Death

Exp Var β SE(β) z P OR 95%CI

0 -8.547 1.803

1 Alb -1.343 0.4262 -3.151 0.0016 0.261 0.113–0.602

2 BUN 0.492 0.1134 4.339 0.0000 1.636 1.310–2.043

3 LDH 0.572 0.2129 2.685 0.0073 1.771 1.167–2.688

4 Ht 0.365 0.1237 2.948 0.0032 1.44 1.130–1.84

5 Hb -0.918 0.3843 -2.389 0.0169 0.399 0.188–0.848

AIC = 182.899, C-S = 0.906 (95%CI = 0.867–0.943)

p = 1/[1+exp(–8.55–1.343(ALB) + � � �� � � – 0.918(Hb)]

Obj Var = object variable; Exp Var = explanatory variable; β = partial regression coefficient; SE = standard error; OR = odds ratio; C-S = C-statistics; ALB = albumin;

BUN = blood urea nitrogen; IP = inorganic phosphate; CVD = cardiovascular diseases; ALB = albumin; BUN = blood urea nitrogen; IP = inorganic phosphate;

Ht = haematocrit; Hb = haemoglobin.

https://doi.org/10.1371/journal.pone.0246259.t002
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Utility of WARS for the prediction of mortality

The WARS was calculated from S1 Dataset by combining the risk scores of 10 major risk vari-

ables, which are shown in Fig 2, using the following formula:

WARS ¼ fðbKÞ þ ðbLDHÞg þ 2fðbAgeÞ þ ðbALBÞ þ ðbIPÞ þ ðbDDÞ þ ðCVDÞg

þ 3fðbMgÞ þ ðbBUNÞ þ ðbFbgÞg=
Xnp

i¼1
wti

where prefix ‘b’ implies the binary transformation of original variables. Note that the denomi-

nator changes from one patient to another according to the number of missing data.

Univariate logistic regression analysis was performed to derive a risk prediction model, as

shown in Table 4.

p ¼ 1=½1þ expð� 4:42þ 5:954�WARSÞ� ðEq 2Þ

The probability (p) for belonging to the dead group was calculated for all 275 cases, and the

accuracy of the prediction was determined as C-statistics of 0.837 (95% CI: 0.780–0.893); this

was a slight improvement from that of the MLRA model (0.829), although the difference was

Table 3. Reproducibility of the prediction model by MLRA.

Rep N AUC Age Alb LDH K IP BUN CVD

Original 212 0.829 ◎ 〇 ◎ 〇
1 201 0.846 ◎ ◎ ◎
2 245 0.843 ◎ ◎ 〇 ◎ 〇
3 220 0.828 ◎ ◎ 〇
4 220 0.879 ◎ ◎ 〇 ◎
5 222 0.859 ◎ ◎ ◎
6 275 0.832 ◎ ◎ ◎
7 260 0.832 ◎ ◎
8 207 0.875 ◎ ◎ ◎ 〇
9 264 0.869 ◎ ◎ ◎ 〇 〇

10 263 0.876 ◎ ◎ 〇 ◎
11 218 0.86 ◎ 〇 〇 ◎
12 215 0.892 ◎ ◎ ◎
13 270 0.825 ◎ 〇 〇 ◎
14 214 0.827 ◎ ◎ 〇
15 220 0.867 ◎ ◎ ◎
16 225 0.85 ◎ ◎ ◎
17 224 0.896 ◎ ◎ 〇
18 231 0.786 ◎ ◎
19 192 0.85 ◎ ◎ 〇 〇
20 263 0.863 ◎ 〇 ◎ ◎
21 224 0.866 ◎ ◎ ◎ ◎
22 218 0.85 ◎ ◎ ◎ ◎
23 252 0.849 ◎ ◎ ◎
24 275 0.825 ◎ ◎ ◎
25 223 0.81 ◎ 〇 〇

◎: P < 0.001; 〇: P < 0.01 Rep = iteration numver; N = valid sample size; AUC = area under the curve; Alb = albumin; LDH = lactate dehydrogenase; K = potassium;

IP = inorganic phosphate; BUN = blood urea antigen; CVD = cardio vascular disease.

https://doi.org/10.1371/journal.pone.0246259.t003
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not statistically significant. Applying validation S2 and S3 Datasets to Eq 2 resulted in C-statis-

tics of 0.745 (0.546–0.944) and 0.785 (0.705–0.865), respectively.

Fig 3 displays the comparison of utility among mortality risk variables by ROC analysis

with MLRA and WARS.

Discussion

Pathological and prognostic implications of extremely high serum CRP

CRP is an expedient inflammatory biomarker with rapid kinetics in response to inflammation.

The association between prognosis and high CRP has been reported in several diseases, includ-

ing septic shock [29], bacterial infection [30], acute ischemic stroke [31], acute idiopathic peri-

carditis [32], unstable angina or non-Q-wave myocardial infarction [33], and most adult solid

tumors [34], including advanced non-small cell lung cancer [35], urothelial cancer along with

renal cell carcinoma, prostate cancer, bladder cancer, and upper urinary tract urothelial carci-

noma [36]. Furthermore, a recent study demonstrated significant differences in CRP levels

between patients who died and those who survived following 48 h and 96 h after admission to

a palliative care unit [37], as well as patients who were hospitalized in internal medicine wards

[38]. Regarding the critical level of CRP, several reports regard CRP levels�40 mg/dL as a

panic value with imminent mortality risk [15–17]. Moreover, the cutoff value of CRP�40 mg/

dL is often used to predict sepsis in emergency departments [19], as well as treatment failure

among patients with exacerbated mild to moderate chronic obstructive pulmonary disease [20,

21]. In contrast, Silvestre et al. suggested that CRP levels�40 mg/dL were not associated with

increased mortality among patients with sepsis during an ICU stay [14]. Accordingly, the

prognostic implication of CRP levels�40 mg/dL remains controversial, and it is of clinical

importance to elucidate mortality risk variables and devise a numerical model for predicting

short-term mortality in patients with extremely high CRP level.

Table 4. Accuracy of WARS computed from 10 risk variables for predicting 72-hour mortality.

Analysis (1): Dataset-A (CRP ≧ 40: 2004~2017) for deriving a risk prediction model using WARS

WARS; Obj Var = Death n = 275

Exp Var β SE(β) z P OR 95% CI

0 -4.417 0.5355

1 WARS 5.954 0.9375 6.35 3.11E-10 385.2 61.3–2419.2

AIC = 193.63, C-S = 0.837 (95% CI = 0.780–0.893), E = exponential

p = 1/[1+exp(-4.42 + 5.954×WARS)]

Analysis (2): Dataset-B (CRP ≧ 40: 2018~2020) for validation of WARS. n = 90

ROC analysis to evaluate the accuracy of predicted probability (p) for the fatal outcome.

N dead N alive C-S 95%CI of C-S

8 82 0.745 0.546–0.944

Analysis (3): Dataset-C (20≦CRP<40: 2019) for testing specificity of WARS. n = 818

ROC analysis to evaluate the accuracy of predicted probability (p) for the fatal outcome.

N dead N alive C-S 95%CI of C-S

33 785 0.785 0.705–0.865

Obj Var = object variable; Exp Var = explanatory variable; β = partial regression coefficient; SE = standard error; OR = odds ratio; C-S = C-statistics; E-10 = 10−10.

WARS = weighted average risk score.

https://doi.org/10.1371/journal.pone.0246259.t004
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Study summary

In the current study, we explored mortality risk factors in patients with extremely high CRP

levels. The 72-hour mortality rate among 275 patients with CRP levels�40 mg/dL was 16.0%,

but there was no significant difference in CRP levels between the dead and surviving groups.

Using MLRA, we revealed four main independent risk variables as follows: age, serum Alb,

serum IP, and the CVD status. However, internal validation of MLRA results demonstrated

that there were other relevant variables in predicting mortality, namely, BUN, K, Mg, LDH,

fibrinogen, and DD, as shown in Table 3.

Mortality risk variables and their pathophysiological implications

Serum albumin concentration is closely correlated with health homeostasis [39]. The median

serum Alb in the dead group was 2.0 g/dL; hence, the group was considered extremely mal-

nourished [40]. Many studies have established that hypoalbuminemia is one of the strongest

prognostic factors related to mortality [41, 42], morbidity [41], and length of hospitalization

[41], including mortality in elderly patients [43]. Therefore, an extremely low Alb level is well

established as a mortality risk.

The normal range of serum IP is 2.5.4.5 mg/dL. In this study, the median serum IP value of

the dead group was 4.7 mg/dL, in contrast to 3.4 mg/dL in the surviving group. It has been

reported that a serum IP level>5.5 mg/dL is associated with an increase in the risk of cardio-

vascular and all-cause mortality in patients with mild or moderate renal function impairment

Fig 3. Comparison of the utility among mortality risk variables by ROC analysis. ROC analysis was performed

using S1 Dataset to compare the utility of the following mortality risk variables: predicted probability (p) derived by

MLRA, WARS, serum albumin, and serum IP. The C-statistics calculated for each variable is shown attached to its

name.

https://doi.org/10.1371/journal.pone.0246259.g003
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[44]. Indeed, Dhingra et al. reported a strong relationship between all-cause mortality for 45

months in patients with chronic kidney disease and serum IP concentration [45]. Moreover,

high serum IP levels have been shown to be associated with the risk of cardiovascular disease

and high mortality [45]. Naffa et al. reported that elevated serum IP levels affect the mortality

rate of patients with community-acquired pneumonia [46]. Another study in our hospital tar-

geted patients with extremely high AST, and demonstrated that serum IP was an excellent pre-

dictor of short-term prognosis [47]. We postulate that there are several mechanisms that lead

to elevated IP, including renal failure with decreased reabsorption of IP from renal tubules,

leakage from apoptotic cells, and intense muscular exertion in near-death agony.

Regarding the other risk variables that were identified by univariate analysis, BUN is also

well documented as a mortality risk factor [48, 49]. Increased BUN during the period of

impending death is caused by dehydration, renal dysfunction, or enhanced catabolism, which

lead to the breakdown of proteins with increased tissue release of ammonia. Hyperkalemia

prior to death can be explained by renal failure, apoptotic release from cells during multi-

organ failure, or increased intravascular hemolysis. Hypermagnesemia is also known to occur

in renal and/or cardiac failure, and is associated with imminent death. Furthermore, increased

serum LDH is commonly encountered in patients with impending death due to hypoxemia in

circulation failure, leakage from damaged cells in the liver, muscles, and erythrocytes, or end-

stage cancer tissue. The relative decrease in fibrinogen and increased DD prior to death can be

explained by progressive occlusion of small vessels caused by hypotension and hypoperfusion.

Limitations of MLRA in predicting mortality risk

In summary, the heterogeneous variables identified in this study are relevant in predicting

mortality regardless of the type of primary disease. However, it is not feasible to reflect all of

these variables together in building a regression model because the method does not allow

mutually correlated variables to be included together. Therefore, the selection of variables in

the lower order of importance can change easily with a slight change in the dataset, as illus-

trated in Table 3. Another problem we encountered in performing MLRA was that the regres-

sion model does not allow any missing data, and thus, risk variables that were measured less

frequently tended to not be included in the model even with high C-statistics for predicting

mortality; in other words, MLRA ignores patients with missing data that are required in the

regression model. This is another drawback when working with a heterogeneous set of clinical

records, which inevitably contain a large amount of missing data.

WARS as an alternative method of predicting mortality risk

From this perspective, we propose to use WARS as an alternative method of predicting mortal-

ity because it can cover a wider range of risk variables even with partly missing data. In the cur-

rent study, the performance of WARS in mortality prediction was found to be comparable or

superior to that of MLRA.

However, WARS must be performed with caution because, unlike MLRA it does not con-

sider correlations among the risk variables. Therefore, if risk variables have very high correla-

tions with each other, such as BMI and body fat%, or AST and ALT. Inclusion of these factors

together in calculating WARS may factitiously increase the risk score. A confounding phe-

nomenon has the potential to be problematic when using WARS. For example, assuming that

age is a primary risk variable and the two groups to be distinguished show differences in age, a

risk variable that is influenced by age tends to have a higher weight in the calculation of

WARS. Fortunately, we did not detect such a phenomenon in computing WARS from S1

Dataset.
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It is of note that WARS can be readily applicable to any clinical situation that requires a

numerical model for predicting a prognosis among a cohort of patients based on a heteroge-

neous combination of clinical and laboratory findings, even in the presence of many missing

results using the following procedures: (1) To perform univariate ROC analysis of prognosis

with derivation of a cutoff value and C-statistics, (2) to dichotomize or 0–1 scoring of each var-

iable for prediction in reference to the cutoff value, (3) assign appropriate weight to each vari-

able based on the C-statistics, and (4) compute WARS as a weighted average score of risk

variable chosen for use in predicting the prognosis.

Limitations

The current study has several limitations. First, this was a single center retrospective study con-

ducted at Saitama Medical Center in Japan, and our findings may not be generalizable to other

populations. Second, we selected patients with CRP levels over 40 mg/dL (only 0.0302% of our

cohort); therefore, the clinical relevance of our findings for the general population is limited.

In fact, the risk factors for 72-hour mortality identified by MLRA were different in patients

with lower CRP levels, although WARS was still applicable to them in predicting mortality due

to the wider coverage of risk variables.

Conclusion

We aimed to develop a numerical model for predicting 72-hour mortality in patients with a

disputed CRP level of �40 mg. Multiple risk variables were identified by univariate analysis,

including increased age, IP, BUN, Mg, K, LDH, DD, low Alb and fibrinogen, and presence

of CVD. By MLRA, the selected variables in the optimal regression model were limited to

age, Alb, IP, and CVD; this was due to similar predictability among other variables and the

presence of many missing data in some variables. In contrast, mortality prediction using

WARS resulted in a performance comparable to that of MLRA, and exhibited a superior

property of covering all relevant risk variables and robustness in use even with missing data.

Therefore, we believe that the novel WARS should be used as the method of choice for pre-

dicting 72-hour mortality in patients with extremely high CRP levels. WARS has the poten-

tial to assist physicians in decision-making, provide therapeutic and management options

to patients and their families, and improve the quality of initial medical management in

both primary and critical care settings.
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