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Introduction: The human brain has evolved under the constraint of survival in complex dynamic situa-
tions. It makes fast and reliable decisions based on internal representations of the environment.
Whereas neural mechanisms involved in the internal representation of space are becoming known, entire
spatiotemporal cognition remains a challenge. Growing experimental evidence suggests that brain mech-
anisms devoted to spatial cognition may also participate in spatiotemporal information processing.
Objectives: The time compaction hypothesis postulates that the brain represents both static and dynamic
situations as purely static maps. Such an internal reduction of the external complexity allows humans to
process time-changing situations in real-time efficiently. According to time compaction, there may be a
deep inner similarity between the representation of conventional static and dynamic visual stimuli. Here,
we test the hypothesis and report the first experimental evidence of time compaction in humans.
Methods: We engaged human subjects in a discrimination-learning task consisting in the classification of
static and dynamic visual stimuli. When there was a hidden correspondence between static and dynamic
stimuli due to time compaction, the learning performance was expected to be modulated. We studied
such a modulation experimentally and by a computational model.
Results: The collected data validated the predicted learning modulation and confirmed that time
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compaction is a salient cognitive strategy adopted by the human brain to process time-changing situa-
tions. Mathematical modelling supported the finding. We also revealed that men are more prone to
exploit time compaction in accordance with the context of the hypothesis as a cognitive basis for survival.
Conclusions: The static internal representation of dynamic situations is a human cognitive mechanism
involved in decision-making and strategy planning to cope with time-changing environments. The find-
ing opens a new venue to understand how humans efficiently interact with our dynamic world and thrive
in nature.
� 2020 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Time is ubiquitous in our world and essential for understanding
physical reality. But to what extent does our brain use it for inter-
acting with the environment? An explicit encoding of time is crit-
ical for the proper structuring of episodic memory [1]. It is also
mandatory for anticipating complex dynamic hazards, which has
been hypothesized as the ultimate brain function [2]. Therefore,
significant brain resources are devoted to the processing of spa-
tiotemporal sensory information [3–5].

Neural bases and their cognitive correlates for processing static,
i.e., purely spatial or time-invariant, situations are reasonably well
established [6]. Current studies mainly focus on spatially selective
neurons as place cells in the hippocampal formation, responsible
for codifying the subject’s position in space [7] and grid cells in
the Entorhinal cortex, providing a spatial metric for the surround-
ing environment [8].

Nonetheless, there is little knowledge on the mechanisms
underlying cognitive processing of time-changing situations.
Growing experimental evidence suggests that brain mechanisms
devoted to spatial cognition may also be involved in the processing
of spatiotemporal information. At the neuronal level, temporal
sequences of animal locations are encoded in the firing timing of
place cells [9–11]. Moreover, these neurons are also involved in
integrative processing of space and time, since some of them
simultaneously behave as time cells [12]. Besides, these cells exhi-
bit predictive activity during trajectory planning in path integra-
tion [13]. Thus, there are critical neural processes where time
and space are deeply interviewed. Therefore, the relevant question
is how this spatiotemporal entanglement is present in the brain at
the functional level. An answer to this question may open novel
venues for studying efficient survival behavior and decision-
making in humans.

Mental navigation, though requiring specific processing of time,
involves adaptive temporal mechanisms mediated by prospection
of combined spatial representations [14]. In this sense, the inter-
play between time and space is particularly prominent in memory,
where they act as crucial contexts for binding object information to
support a cued recall [15]. This led to the conclusion that one of the
critical areas shaping cognition, the hippocampus, must be
involved in the general structuring of spatiotemporal experiences,
far beyond the mere spatial domain, the function widely ascribed
to it nowadays [16,17]. Therefore, converging experimental evi-
dence suggests that coding and representation of space and time
in the brain, far from being independent processes, are notably
interweaved [18,19]. This spatiotemporal entanglement could be
exploited in the context of generating complex behaviors since
the time dimension introduces massive redundant information,
which can impede fast and accurate processing of experiences.
The latter is a paramount requirement for success during survival
actions such as hunting, fighting, and escaping, which require
real-time decision making in narrow time windows [20].

An effort for resolving the conflict ‘‘fast vs. complex” led to a
theoretical hypothesis called time compaction, which exploits the
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entanglement of space and time in the brain [21]. It states that
when dealing with time-changing situations, the brain does not
encode time explicitly but embeds it into space. Theoretically, time
compaction can significantly decrease the complexity of internal
representations and hence reduce brain resources involved in tra-
jectory planning, e.g., when moving among multiple obstacles [22].
It also provides a natural framework for the cognitive processing of
dynamic situations and serves as a building block for constructing
episodic memory [23]. However, the experimental validation of
this hypothesis has lacked until now. In this work, we focused on
the behavioral aspect of the hypothesis, relevant for understanding
survival behaviors. Our results show that humans use spatial (i.e.,
static) internal representations of the spatiotemporal (i.e.,
dynamic) situations as a cognitive strategy.

Hypothesis of time compaction

Static situations (e.g., a room with furniture or a maze)
described by the position of objects, their shapes, textures, colors,
etc. can be extremely complicated. This complexity is further mul-
tiplied in time-evolving scenarios, which can also last rather long
in time. Thus, it is highly unlikely that the brain encodes all
dynamic situations explicitly. This constraint has dramatic conse-
quences in situations when a subject’s survival depends on making
fast and reliable decisions, such as fighting, hunting, escaping, etc.
In short, for survival, there is no time for time. Then, there must be
specific mechanisms that could drastically reduce the amount of
information contributed by the time dimension. The hypothesis
of time compaction proposes a solution to the antagonism ‘‘com-
plexity vs. velocity” by addressing the challenge of spatiotemporal
cognition through embedding time into space [21].

According to the hypothesis, a dynamic situation is internally
represented as a static map, called a compact internal representa-
tion (CIR). A CIR spatially arranges future interactions among the
elements in the environment, eliminating (compacting) the time
from the internal representation of the faced dynamic situation.
Such a collapse or compaction of the temporal dimension can pro-
vide a remarkable reduction of information to be operated by the
brain. The latter enables efficient processing and learning of
time-changing situations and construction of sophisticated behav-
iors in real-time [23]. Therefore, time compaction proposes a para-
doxical formula: to deal with time effectively, the brain eliminates
time.

Let us illustrate the hypothesis on a simple example of a subject
walking among other agents (Fig. 1). According to the hypothesis,
the subject (pedestrian in the forefront) processes the situation
by (1) predicting the evolution of the situation (moving man and
dog, and standing woman), and (2) simulating his possible move-
ments at successive time instants t1, t2,. . ., tn (colored curves
denote the possible future subject’s positions). Both processes
can be implemented in neural networks (for technical details and
rigorous description see, e.g., [23]). Then, the coincidences between
the subject’s virtual positions and other parties correspond to
future collisions. These locations (orange zones in Fig. 1, right)

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. Hypothesis of time compaction. Left: Example of a dynamic situation. To move safely, the subject (forefront) generates a CIR of the situation. Right: The CIR is formed by
predicting the behavior of other parties (green arrows) and simulating the subject’s positions at different times (colored curves for times t1, t2, t3, . . ., tn). Coincidences
between the subject’s virtual positions and the predicted locations of the pedestrians correspond to potential collisions, represented as virtual static obstacles in the CIR
(orange areas). Then, the trajectory avoiding virtual obstacles in the CIR (blue arrowed curve) allows safe navigation in the real space (light blue arrowed curve). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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are virtual or mental static obstacles since the subject cannot tra-
verse them in the future [21]. Their spatial arrangement, according
to the subject’s reference framework constitutes the CIR. For safe
navigation, the subject can now simply avoid virtual static obsta-
cles, as if they existed in reality (Fig. 1, right: blue arrowed curves
in the CIR and real space). Thus, the brain internally reduces the
dynamic situation to the static map, the CIR, which does not explic-
itly contain time. In other words, it would be like transforming a
movie (the time-changing situation) into a single picture (the
CIR) containing the relevant information to understand the film.

Earlier it has been hypothesized that interceptive actions are
mediated by processing information related to time-to-collision
(TTC) [24], as suggested by timing performance experiments [25].
This evidence has led many authors to focus on the importance
of temporal dimension in the processes supporting interactive
tasks, leaving apart the contribution of spatial dimension [26].
The paradigm shift discussed in this work is grounded on these
ideas [21] and provides answers to critical challenges in the biol-
ogy of complex behaviors [20]. Fig. 1 shows that time compaction
uses TTC curves, but after that, the brain abandons the time dimen-
sion and works with the pure space domain.

In general, the CIR potential goes beyond its role as a substrate
for actions. CIR also provides a natural framework for learning and
building memories of dynamic situations [23]. This paradigm
allows storing previous experiences in a ‘‘library”. Then, such a
CIR library can be used for fast navigation [23] and manipulation
[27] by recalling the CIRs corresponding to given situations. Based
on these features, we hypothesized that time compaction is a
human cognitive mechanism mainly involved in survival-like
decision-making, as attack or defense strategies during agonistic
behaviors (fighting), trajectories generation (chasing and escap-
ing), and coordination of actions among several agents (hunting).
For instance, escape behaviors engage a wide range of processes
from simple stimulus reactions (i.e., reflexes) to decision-making,
and action selection [28,29]. The flexibility required to survive in
dynamic environments ultimately comes from the cognitive con-
trol of these processes. A subject escaping from another one must
quickly compute and decide between alternative trajectories
[30,31], which can be attained by recalling CIRs.

We remark that a CIR is constructed by a simultaneous simula-
tion of all possible subject’s actions [21]. Therefore, it contains dif-
ferent navigation strategies. For instance, in Fig. 1, the subject
follows the trajectory marked by the blue arrow, which is not
affected by the dog’s behavior. Nonetheless, the CIR comprises tra-
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jectories (not shown for clarity), avoiding the dog in case of neces-
sity. Therefore, CIRs would be fundamental building blocks of
cognition. High-level behaviors taking into account motivation,
goals, and planning are constructed on top of the CIRs.
Methods

To reveal the existence of time compaction, we propose a
behavioral methodology based on stimulus generalization [32,33]
and inspired by classic experiments studying the cognitive pro-
cesses involved in collision perception tasks [24,34].
Design of experimental approach to test time compaction

Experimental validation of time compaction requires testing
compacted versus non-compacted situations. The natural context
of time compaction is when a subject takes part in a situation (as
in Fig. 1). Under such egocentric scenarios, the subject is the agent
who acts and affects the situation directly. Thus, there are always
potential interactions leading to time compaction. Such ubiquity
of the phenomenon creates a bias for its experimental testing since
non-compacted situations are unlikely. We thus intentionally devi-
ate from the natural context in searching for clear-cut evidence of
time compaction.

The hypothesis states that time compaction must be a salient
cognitive mechanism, independent of whether the subject partici-
pates in a situation or not. Therefore, we designed experiments
using an allocentric perspective. The subject now is an observer
and cannot influence the situations (see Discussion). We provide
the participants with two types of visual stimuli.

1. Circles moving on a PC screen approaching in collision trajecto-
ries (Fig. 2A). Note that collision is not displayed on the screen,
but the brain constructs it virtually. In this case, time com-
paction plays a role, thus, according to the hypothesis, the situ-
ation is compacted and represented in the brain by the colliding
area only (CIR in Fig. 2A).

2. The same moving circles, but now collision is not expected
(Fig. 2B). Then, the subject cannot compact the situation and
resorts to represent it as a spatiotemporal structure (using ini-
tial positions, trajectories, velocities, etc.).



Fig. 2. From theory to experiments. Time-compacted internal representation in allocentric context. (A) Dynamic stimulus with future interactions is compacted and represented
by its CIR (collision area). (B) Dynamic stimuli without collisions are not compacted but represented as spatiotemporal events. (C) Idea of the two-phase experiment.
According to the hypothesis, in the brain a compacted dynamic stimulus and a static stimulus resembling its CIR will be closely related. Assume that in phase 1 (left), a subject
has learned an association between a specific static stimulus and an arrow key (e.g., the down-arrow key). Then, in phase 2 (right), when the compacted dynamic stimulus is
displayed, it will be represented by its CIR, whose resemblance with the static stimulus will elicit the same stimulus-key association, thus the subject will likely press the
same arrow key (down-arrow key in the figure). Note that the moving circles are depicted as sequences of light-to-dark circles. Light and dark circles correspond to the initial
and final positions of the circles, respectively. Besides, circle separation illustrates their speed: closer/further consecutive circles denote slower/faster movement (see also
Supplementary Video).
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Note that, following time compaction, for the brain, option 1 is
less demanding than option 2.
Experimentally verifiable predictions of time compaction

We now exploit the similarity between the internal representa-
tions of dynamic and static situations by tailoring a two-phase
experiment based on a stimulus generalization (Fig. 2C). The stim-
ulus generalization appears when, after a behavioral response is
associated with a specific stimulus, a similar novel stimulus trig-
gers the same response [32]. During phase 1, a subject learns to
associate static circles appearing at different positions on the
screen (stimuli) with the up and down keyboard arrows (re-
sponses). For example, the static circle on the top-center of the
screen can be associated with the down-arrow key (Fig. 2C, left).
During phase 2, a subject is exposed to dynamic stimuli. According
to time compaction, the situation with two circles moving in colli-
sion trajectories, even when such a collision is not displayed
(Fig. 2C, right), will be internally represented as the static scene
where the circle is on the top-center of the screen (Fig. 2A). Thus,
following the stimulus generalization and time compaction, after
the top-center circle stimulus is associated with pressing one of
the arrow keys in phase 1, the presentation of the stimulus display-
ing colliding circles in phase 2 should trigger the pressing of the
same arrow key. Note that the static and dynamic stimuli (here
depicted as sequences of light-to-dark circles, see also Supplemen-
tary Video), similar under the time compaction hypothesis, differ
significantly. Recent experimental findings confirm that the stimu-
lus generalization is mediated by abstract representations [33], as
the time compaction theory claims.

Therefore, if the hypothesis is correct (i.e., static and dynamic
situations can be represented internally in a similar way), then
prior learning of specific static scenes must accelerate or slow
down the posterior learning of dynamic situations. The sign of
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the effect will depend on the similarity/dissimilarity of the CIRs
of static and dynamic situations.
Overview of experiments

To test time compaction predictions and rule out alternative
explanations of the phenomenon, we designed different configura-
tions of static and dynamic stimuli (see below). The participants
were prompted to discover by trial-and-error two hidden rules
relating the stimuli with the up- and down-arrow keys (Fig. 3A).
The assignment of the keys was random for each participant. All
participants were divided into four groups: (1) Control, (2)
Favored, (3) Hampered, and (4) Validation.

Experiments testing time compaction. In this part, we deal with
the first three groups of participants (the fourth group will be dis-
cussed below). During phase 1 (Fig. 3A, top panel), in each trial, a
participant observes for 1.5 s one static stimulus, randomly chosen
from a set of three static situations corresponding to his/her group
(Fig. 3B, top panel). When the stimulus disappears, the participant
presses either up- or down-arrow key. If the pressed key matches
the key associated with the shown stimulus according to hidden
rule 1, the participant receives positive feedback in the form of a
green tick; otherwise, a red cross is displayed. This procedure is
repeated until the participant figures out hidden rule 1, associating
the keys with static situations.

Once phase 1 has been fulfilled (i.e., hidden rule 1 has been dis-
covered), the participant goes through phase 2 (Fig. 3A, bottom
panel), which is similar to the previous phase but now the stimuli
are randomly taken from a set of six dynamic situations (Fig. 3B,
bottom panel). In phase 2, all experimental groups are exposed
to the same set of stimuli. Then, the participants should discover
the hidden rule 2 associating stimuli with up- and down-arrow
keys.



Fig. 3. Experimental procedure. (A) Participants go consecutively through phases 1 and 2. In each phase, they discover by trial and error a hidden rule relating the up- and
down-arrow keys with the stimuli shown on the screen. In each trial, a participant receives feedback depending on whether the pressed key matches the hidden rule or not.
(B) Hidden rule 1 associates the up-and down-arrow keys with the three static stimuli (a green circle located at the middle bottom part of the screen, and a red circle is at the
upper part of the screen for the Favored and Hampered groups, and located laterally above the green one for the Control group). For each participant, the arrow key
assignment is randomly established at the beginning of the experiment. This rule differs among Favored, Control, and Hampered groups. Note, the green circle does not carry
information and is intended as a spatial reference to clearly distinguish center from sides. Hidden rule 2 is the same for all these groups. It associates the up- and down-arrow
keys with the six dynamic stimuli, two dynamic matching (DM), and four non-dynamic matching (non-DM) stimuli (all dynamic stimuli show the green circle moving
upwards vertically, and the red one displacing upwards diagonally). The static and dynamic matching stimuli (SM and DM) are highlighted in purple. The picture shows one of
the two possible assignments of arrow keys; in the other one, the up-arrow key is changed by the down-arrow key and vice versa (dynamic stimuli are represented by
sequences of light-to-dark circles as in Fig. 2, see also Supplementary Video). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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During the experiments, we recorded the sequence of responses
of each participant and several other measures (see below). We
then expected that, according to the hypothesis, the classification
performance in phase 2 was modulated by phase 1 (different
among the experimental groups; Fig. 3B, top).

Validation experiments. To discard any potential bias inherent to
phase 2 that could interfere with the learning of the hidden rule 2,
we recruited new subjects. These subjects tackle phase 2 directly
(skipping phase 1). We then measure their learning performance
during stimulus classification as in time compaction experiments.
Hence, any internal discrepancy between phase 2 in the validation
and time compaction experiments would be due to previous expo-
sure to phase 1.
Stimulus combinations for different groups of participants: Expected
learning performance

To test the predicted modulation of the learning performance,
we designed specific static and dynamic stimuli. Each static situa-
tion comprises one green and one red circles, placed at different
locations of a PC screen (Fig. 3B, top panel). There are three sets
of static stimuli specific for each experimental group. In phase 2,
all groups receive the same set of dynamic stimuli consisting of
six videos displaying two moving circles: one always moving fol-
lowing the same upwards vertical trajectory, and the other one
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moving upwards diagonally (Fig. 3B, bottom panel). Note that no
movie shows a collision of the circles, i.e., they disappear before
crossing or collision. These dynamic scenes presented during phase
2 are similar to the stimuli employed to study the cognitive mech-
anisms used by humans in collision situations [24,34].

The hypothesis of time compaction is based on the functional
similarity of the internal representation of static and dynamic sit-
uations. We thus have one static and two dynamic stimuli that are
supposed to be identical from this point of view (Fig. 3B, high-
lighted in purple). They correspond to stimuli shown in Fig. 2.
We call them static matching (SM) and dynamic matching (DM)
stimuli. The experimental groups differ by the use of SM and hid-
den rules.

Control group. Among the static stimuli, there is no SM (Fig. 3B,
top panel, Control). Therefore, the CIRs for static and dynamic stim-
uli are different, and hence no connection between hidden rules 1
and 2 exists. Thus, learning in phase 2 is independent of phase 1.
We use the results of this group as the control for monitoring the
performance of other groups of participants.

Favored group. In this case, the SM (Fig. 3B, top panel, Favored;
highlighted in purple) and two symmetric DM (Fig. 3B, bottom
panel; highlighted in purple) are displayed in phases 1 and 2,
respectively. Let us now assume that for a given participant, both
the SM and DMs are associated with the down-arrow key, as
shown in Fig. 3B. Then, according to time compaction, a match
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exists between hidden rules 1 and 2. During learning the hidden
rule 1, the subject creates the association: ‘‘SM-down key”. Then,
time compaction predicts that when the DM appears during phase
2, the subject will recall its CIR, which is similar to the SM, and
hence he/she will likely press the down key, which is the correct
choice. Thus, subjects in this group will learn faster during phase
2, compared to the other groups.

Hampered group. This group is similar to the Favored group, but
now in hidden rule 1, the SM and one non-SM are interchanged
(Fig. 3B, top panel, Hampered). Thus, hidden rules 1 and 2 relate
the SM and DM to opposite keys and, following the example, SM
and up key will be linked. In this case, a subject after learning hid-
den rule 1 will be stacked at the presentation of the DM, since the
‘‘logical” response ‘‘up key” will produce an error. Then, an effort to
‘‘forget” the previous association and establish a new one will be
required. Thus, subjects in this group will learn slower during
phase 2.

Conceptual experimental constraints

The experimental procedure described above was intended to
uncover time compaction as a salient cognitive mechanism for
dealing with dynamic situations. We recall that CIR serves as a cog-
nitive substrate for motivation, planning, etc. In other words, time
compaction is a primary mechanism that takes place indepen-
dently on such high-level processes. Thus, no special instructions
or training of the participants prior to the experiment are neces-
sary. We then made sure that before the experiment, all partici-
pants were not aware of (1) the nature of the experiment, (2) a
possible relationship between static and dynamic stimuli, and (3)
the importance of collisions.

Subjects

We engaged in the study 410 university students and graduates
(adults). None of them reported prior attentional problems. All
subjects had normal or corrected-to-normal vision, were naïve to
the study purpose, and had no experience with the tasks and stim-
uli used here. Mean age of the participants was 21.08 years for
women and 22.46 for men (95% confidence intervals [19.98,
22.17] and [21.08, 23.84]; no significant difference, Welch test
p = 0.12).

Experiments were conducted over randomly composed groups
of men and women. The final sample of n = 261 subjects (135
women and 126 men) for Control (35 women, 40 men), Favored
(52 women, 48 men) and Hampered (48 women, 38 men) groups
comprised participants who fulfilled the task showing a stable per-
formance (see Supplementary Material), i.e., with the learning
lengths not exceeding 46 trials (82% out of a sample of 318). Most
subjects completed the experiment within 10 min. The other 92
participants (50 women and 42 men) were assigned to the Valida-
tion group.

Procedure

Participants were subjected to a computer-based trial and error
training. The experiment in the Control, Favored, and Hampered
groups consisted of two phases: static conditioning (phase 1) fol-
lowed by dynamic testing (phase 2) (Fig. 3A). The Validation group
was tested in phase 2 only (i.e., skipping the phase 1). All subjects
completed the procedure individually, as no interaction between
them was allowed.

The experimental protocol was implemented on PCs by using
MATLAB v17 (MathWorks). Static and dynamic situations were
shown on the PC screen for 1.5 s and contained either two static
or two moving circles of a diameter of 1 cm colored in red and
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green and presented on a white background (Fig. 3B). Circles were
chosen to avoid prior cognitive bias [35]. In the static situations, a
green circle was added as a geometric reference to facilitate the
distinction between stimuli with the lateral and central red circles
(compare Figs. 2 and 3B). It also helped to pass from the static to
the dynamic phase (all the time showing two circles). During phase
2, the green circle always moved upwards vertically with a velocity
of 4.5 cm/s. The red circle moved upwards diagonally with one of
the three velocities: 1/3, 2/3, and 4/3 of the speed of the green cir-
cle. The initial position of the red circle was chosen in such a way
that the velocity ratio 2/3 corresponds to circle collision, i.e., to the
DM stimuli. In the DMs, collision is not shown on the screen but
would take place 1 s after the circles disappear (recall that circles
were displayed during 1.5 s).

Before each experiment, a researcher read aloud a brief instruc-
tion to be followed by the participants, which was also shown on
the PC screen. Any question asked by the participants was
answered by citing the instructions again. There was no mention
of the connection between phases. The structure of the instruction
was as follows. First, it says that the experiment consists of a static
stage, followed by a dynamic stage. The objective is to find out the
relationship between the displayed situations and the up/down
arrow keys. In the static stage, the instruction specified that the
green circle is located at the bottom in the center of the image,
whereas the red circle appears randomly at the upper left, center,
or right of the screen. In the dynamic stage, both green and red cir-
cles move along straight lines at a constant velocity. While the
green circle always starts from the bottom center and moves
upwards vertically, the red circle changes its movement from trial
to trial randomly, and can appear at the bottom left or the bottom
right of the screen. Therefore, the participants were not aware of
possible collisions between the moving circles and of the relation
between static and dynamic stimuli.

There was no time limit to complete both phases 1 and 2. How-
ever, there was a maximum of 80 trials per phase. A subject was
considered to have learned the hidden rule if he/she gave at least
18 correct responses in the last 20 trials. In this case, the experi-
ment was stopped, and the trial at which the participant reached
the criterion was considered the learning length. Note that a 20-
trial range corresponds to the expectation of the number of trials
such that every situation appears at least twice (for further details
on the task complexity and stimulus difficulty see Supplementary
Material and Figs. S2 and S3).

After completing phases 1 and 2, participants were prompted to
write down the underlying association rule, which in their opinion,
best explain the relationships between the displayed situations
and the arrow keys. At the end of the experiment, the participants
filled out a form containing information about age and gender. All
subjects provided informed consent for their anonymous participa-
tion in accordance with the experimental procedures, approved by
the Institutional Review Board (Committee of Bioethics, National
Distance Education University). All experiments were performed
following the guidelines and regulations set forth by the Declara-
tion of Helsinki.

Statistical analysis of data

Estimation of time-to-event curves. A time-to-event function rep-
resents the probability that a certain proportion of individuals had
learned hidden rule 2 at a given trial. It was obtained through the
Kaplan-Meier nonparametric estimator [36]. To assess whether
gender and experiment might simultaneously affect the time-to-
event curves estimation, a multivariate Cox proportional-hazards
regression model was fitted [37]. The model assumptions were
checked via the Schoenfeld test [38,39] and residuals plots against
time for each covariate (Figs. S4A, S4B). This procedure helped
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identify two potential cutoffs at learning lengths 20 and 46, which
may hamper the proportional-hazards assumption. We extended
the Cox model to allow for time-dependent coefficients [40] using
a step function, dividing the sample into three learning length
intervals: < 20, 20–46, and > 46 (Figs. S4C, S4D). The revised fit
revealed that the effect of the experiment was mainly limited to
the first two intervals.

Estimation of learning curves. General estimating equations
(GEE) were used to model the probability of success at a given trial
since it allows taking into account different correlation structures
in the data [41–43]. Binomial ‘‘logit” was used as a link function
given the dichotomous nature of the response variable (either fail
a trial or not). A backward stepwise elimination procedure was fol-
lowed to select the minimal set of variables with a significant
explanatory power. Variables taken into account were gender,
group, trial number, and their interactions. Successive nested mod-
els were compared using the F-test and the Quasilikelihood Infor-
mation Criterion (QIC) [44]. The interaction terms were interpreted
separately for gender and experiment. To ensure that the model
characterized the learning phase, we considered the set of trials
with a mean success rate lower or equal to 0.99. A factor represent-
ing the different researchers that conducted experiments was
introduced in the model, and no significant effect was found (F-
test, p = 0.21). Thus, there was no detectable bias introduced in
the results by the researcher, which confirms the reproducibility
of the experimental approach.

Association rule verbalization and response time. Potential rela-
tionships between the verbalization of the association rules found
by the participants and the learning length were explored by using
a Generalized Linear Model (GLM) with a binomial ‘‘logit” link
function. Regarding verbalization, 96.2% of participants (251 from
261) expressed the dynamic rules in two main categories: in ‘col-
lision’ terms (containing words as collision, crash, finding, etc.) or
in ‘velocity’ terms (with words as velocity, speed, etc.). The remain-
ing participants (10 from 261 or 3.8%) wrote the dynamic rule by
mixing ‘collision’ and ‘velocity’ terms or using spatially related
descriptions based on directions, positions, etc. The learning
lengths were divided into four groups: less or equal to 20 trails,
[21,30,31,40], and [40,46]. The differences in response time due
to experiment or gender were checked by fitting a GEE with a gaus-
sian ‘‘identity” link function and considering the response time as a
continuous response variable.

Table S1 (Supplementary Material) provides a comprehensive
description of all statistical contrasts (sample size, test, sample
statistic value, p-value). All statistical calculations were performed
in R v3.3.1, using the packages survival [45], survminer [46], geep-
ack [47], stats, base [48], and dplyr [49].
Probabilistic model of time compaction

The model describes the process of finding hidden rule 2 in
phase 2. It quantifies the probability of a successful answer at each
trial, based on the following assumptions:

� The association key-stimulus is learned at the first stimulus pre-
sentation (if the pressed key is not correct, then the opposite
one is correct). Thus, the wrong answers to the same stimulus
are due to a faulty recall.

� The probability of a correct recall decays exponentially with the
trial. The decay rate depends on the number of times the same
stimulus has appeared and does not depend on the specific
stimulus.

Besides, in experiments, we observed the probability of 0.97
and 0.88 for men in Favored and Hampered groups, respectively,
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and 0.91 considering together women and Control men. Thus, we
introduce additional, data-driven assumption:

� If a stimulus has appeared four or more times, then the recall
probability reaches 1, and hence the pressed key will always
be correct.

Time compaction is taken into account through the associations
between situations and keys to be learned during phase 2 after the
previous conditioning training in phase 1. We can assume that the
Favored group learns associations for two DM situations in phase 1.
Then, the remaining four non-DMs have to be learned. The Ham-
pered group must re-elaborate the two associations for DMs since
they were ‘‘wrongly” assigned during phase 1.

The model describes the probability of a successful answer at
each trial T for the Favored, Control, and Hampered groups by:

PF ¼ 1� 1
3

5
6

� �T�1

1þ a a; Tð Þ þ b b; Tð Þ½ �
PC ¼ 1� 1
2

5
6

� �T�1

1þ a a; Tð Þ þ b b; Tð Þ½ �
PH ¼ 1� 1
2

5
6

� �T�1 4
3
þ a a; Tð Þ þ b b; Tð Þ

� �

where ⍺ and b stand for the recalling terms for the second and
third appearance of a stimulus, respectively, and a and b denote the
corresponding recalling rates (see Supplementary Material for
details).

The model comprises the analytical description of the popula-
tion learning process and the computational simulation of the indi-
vidual learning performance. Probabilistic model parameters were
estimated from the sample learning rates by the trust-region-
reflective least-squares fitting. In the beginning, each participant’s
answer vector was padded with ones (success) to get an identical
length of 46 trials. Initially, the model was fitted to data from the
groups of women and the Control of men taken together. Boot-
strapped confidence intervals were obtained for the model param-
eters. Then, the model was fitted to data of men in the Favored and
Hampered groups constraining the first recalling rate values to the
interval range found in Control, as we expect that the first repeti-
tion of any stimulus contains similar information among condi-
tionings. Final values of the pair of recalling decay rates for the
Favored, Control, and Hampered groups were: (a, b) = (0.1797, 0),
(0.2194, 0.0549), and (0.0832, 1.2166), respectively.

To computationally simulate the individual learning perfor-
mance according to the model, we proceeded through the follow-
ing steps.

1. For each real participant, we identified the sequence of stimuli
he/she received during the experiment.

2. Since his/her learning length is shorter than the maximum
length of stimulus sequence, the sequence was padded with
random stimuli until reaching a length equal to 80. We gener-
ated 103 extended stimulus sequences from the real stimulus
sequence for this participant.

3. Each extended stimulus sequence was then introduced 103

times into the simulation.
4. We obtain 106 sequences of possible answers from this partic-

ipant, leading to 106 learning lengths.
5. Steps 1 to 4 are repeated for all participants from each group.

We thus got a set of learning lengths that were used to approx-
imate the distribution of the experimental learning lengths (Fig. 7).
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Model fitting and experiment simulation were programmed in
MATLAB v17 (MathWorks) [50] and R v3.3.1, package nlstools [51].
Results

We engaged 261 participants (135 women and 126 men), dis-
tributed between Control, Favored and Hampered groups, and
other 92 participants (50 women and 42 men) assigned to the Val-
idation group (see Methods). Participants of the first three groups
classified the static stimuli, discover the hidden rule 1, and then
classified the dynamic stimuli trying to reveal the hidden rule 2
(Fig. 3A). The learning performance in phase 2 was then assessed:
(1) at the population level as the average number of successful
answers per trial, leading to the success rate, and (2) at the individ-
ual level as the number of trials required by each participant to
learn the rules, named as learning length (Fig. S1). These two met-
rics were also used to quantify the learning performance of sub-
jects in the Validation group.

Existence of time compaction

The analysis of the population learning was performed by fitting
the rate of successful answers to logistic regressions. The indepen-
dent variables were trial, gender, group, and researcher (the person
who conducted the experiment). We included gender as a factor to
test whether time compaction is represented differently in men
and women in line with other cognitive sex-biases known in the
literature (see Discussion). Only gender and group factors were
found significant. Fig. 4A shows the success rate per trial separately
for men and women and different groups. As predicted by time
compaction, population learning in men was significantly faster/
slower for Favored/Hampered groups compared to Control. Sur-
prisingly, women showed no significant difference among Favored,
Hampered, and Control groups. Moreover, their performance was
identical to men in the Control group.

To characterize the individual learning performance, we evalu-
ated the learning length of each participant as the number of trials
required to figure out hidden rule 2 (Fig. 4B). As expected, men
from Favored/Hampered groups had a significantly higher/lower
probability of learning compared to men in the Control group
(Fig. 4B, inset). On the contrary, phase 1 did not affect individual
learning in women. Again, no significant difference was found for
all groups of women against men in the Control group.

These findings reveal an intrinsic cognitive relationship
between SM and DM stimuli in men suggesting that men internally
represent dynamic situations primarily by the static representation
of relevant interactions. The lesser salience of time compaction in
women reported in our experiments and the absence of differences
between the groups of women and the Control group of men point
to that women may rely on time compaction in conjunction with a
broad range of decision-making strategies, as has been reported by
other authors [52,53] (see Discussion).

Salience of time compaction within phase 2

As shown above, the previous exposure to phase 1 alters the
learning performance in phase 2. Let us get an insight into this
process.

Fig. 5A shows a typical random sequence of dynamic stimuli.
Learning hidden rule 2 involves two opposite mechanisms. On
the one hand, the accumulation of information with each trial facil-
itates the discovery of the association rule. On the other hand, the
distance (in trials) between consecutive appearances of a stimulus
promotes the forgetting of the associations found before. Thus, we
can guess that in control conditions (no previous information is
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available), a subject randomly answers to the first presentation
of, e.g., stimulus DM2 at trial 3. The feedback obtained allows
deducing the correct association. For example, if the pressed key
is wrong, the opposite one must be right. Then, if DM2 appears,
say, at trial 7 (after four trials), the three intermediate stimuli will
interfere in the recalling of the association learned for DM2.

Time compaction predicts that phase 1 should have an effect on
the forgetting of learned associations within phase 2. We thus
explore this claim by analyzing the probability of successful
answers as a function of the distance between stimulus appear-
ances and the trial in different groups. Fig. 5B summarizes the pop-
ulation results.

At trial 5, the majority of stimuli were repeated only once
(Fig. 5B, left, inset), and hence learning has barely begun. A close
repetition of the same stimulus (distance < 5) causes a successful
answer with a high probability (>0.75) in all groups of subjects
(Fig. 5B, left). Nonetheless, participants in the Favored group have
a significantly higher probability than the other subjects for all dis-
tances. The latter supports time compaction since, according to this
hypothesis, participants from the Favored group have acquired pre-
vious CIR knowledge in phase 1, which helps answer correctly in
phase 2. At trial 13, most of the stimuli have been repeated 1–3
times (Fig. 5B, middle, inset). At this point in the learning process,
the curves for Favored/Hampered participants are less/more
affected by distance, so these subjects are more/less resilient to for-
get the learned associations than Control participants, as predicted
by time compaction. Finally, trial 20 represents the final learning
stage, showing the above-discussed learning differences (Fig. 4).

Therefore, this analysis suggests two processing mechanisms
involved in learning modulation during the experiments: the pre-
viously acquired information and the resilience to forgetting,
which are both compatible with the connection between phases
1 and 2 hypothesized by time compaction.

Rule verbalization corroborates gender-wise salience of time
compaction

To explore to what extent time compaction manifests itself at a
conscious level, we asked participants to verbalize the hidden rule
2 they figured out in phase 2. We then analyzed the written
answers and separated them into ‘‘collision-related” (i.e., CIR
related) and ‘‘others” (see Methods). Fig. 6A shows the probability
of ‘‘collision-related” responses as a function of the learning length.
The generalized linear model with logit link function revealed that
fast-learning men show a significant tendency to answer in terms
of a ‘‘collision” regardless of the experimental group.

Moreover, the more learning time they required, the more they
resorted to alternative strategies based on other criteria, such as,
e.g., circles’ velocities. Women had no such tendency. About 45%
of them responded in terms of a collision regardless of the learning
length. It means, in particular, that in the group of participants
with learning length within [40,46] trials, women more frequently
identified the correct ‘‘collision rule” than men. This result further
supports the conclusion mentioned above on the broad range of
decision-making strategies used by women.

The analysis of population and individual learning performance
during phase 2 has revealed differences caused by phase 1. To
explore whether these differences could also be explained by
changes in the difficulty of the association task (see Supplementary
Material), we studied the response time (i.e., the time elapsed from
the disappearance of the displayed situation until the participant
pressed a key; see Methods). Fig. 6B shows the regression analysis
of the response time, which for women and men shows no signif-
icant differences regarding the experimental group. Thus, this sug-
gests that all participants had similar difficulty in resolving the test
regardless of their previous conditioning. This conclusion is in line



Fig. 4. Modulation of learning performance in phase 2. Top and bottom rows correspond to men and women, respectively; blue, black, and orange colors stand for Favored (F),
Control (C), and Hampered (H) groups respectively (F: 48 men, 52 women; C: 40 men, 35 women; H: 38 men, 48 women). (A) Population learning process as success rate per
trial (considered up to 0.99 level, dashed lines). Men in Favored/Hampered group learned the testing association rule faster/slower than men in Control group (F vs. C:
p = 3e�04; F vs. H: p = 9.8e�13; C vs. H: p = 2.5e�04). Population learning process in women showed no dependence on the direction of conditioning (F vs. C: p = 0.43; F vs. H:
p = 0.28; C vs. H: p = 0.93). Men from the Control group and women from all groups showed no significant differences (p = 0.23, n = 40 vs. 135). Curves describe the logistic
regression of the corresponding population learning (circles, squares, and triangles correspond to Favored, Control, and Hampered groups respectively). (B) Individual learning
performance. The histograms show the distributions of the learning length (from left to right: Favored, Control, and Hampered). It is significantly more/less likely for men in
Favored/Hampered groups to learn the association rule than in Control condition (F vs. C: p = 7.2e�04; F vs. H: p = 3.5e�8; C vs. H: p = 5.8e�03). This effect was not observed
in women (F vs. C: p = 0.98; F vs. H: p = 0.67; C vs. H: p = 0.76). Men from the Control group and women from all groups did not show significant differences (p = 0.95, n = 40 vs.
135). Insets show Cox survival curves quantifying differences in the individual learning performance. Dotted lines mark the learning length for the learning probability of 0.5.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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with the findings previously discussed (Fig. 5), supporting that
observed differences lie in the information managed during phase
2 more than in an alteration of the task difficulty.

Probabilistic modeling of time compaction

The reported experimental results reveal a time compaction-
based mechanism involved in human decision-making. To get an
insight into how this mechanism works, we developed a proba-
bilistic model describing the participant’s behavior during the
experiment. Since men were more prone to exploit time com-
paction, the model will be compared with their results (Fig. 4,
top row).

The model introduces the probability P of a successful answer of
a participant at each trial T in phase 2 of the experiment. It
assumes a recalling exponential decay, i.e., the forgetting rate
[54,55]. Thus, the probability can be expressed as

PðT;GÞ ¼ 1� cGðTÞdT

where d is the decay exponent and cGðTÞ is the decay rate that
depends on the trial and, more importantly, on phase 1 or group
G. Time compaction introduces biases for Favored and Hampered
groups relative to the Control one. Favorably conditioned partici-
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pants start phase 2 with a set of associations already learned,
whereas hampered participants need to re-elaborate the hidden
rule 2 (Supplementary Material). Thus, the decay rate is different
for different experimental groups: cF < cC < cH , whose parameters
were adjusted by fitting the experimental data (see Methods).

The simulation of the learning process during phase 2 was per-
formed by creating a set of virtual participants ‘‘responding” to the
same input sequences used in the experiments with human sub-
jects. Fig. 7 compares experimental results with simulations, show-
ing a notable agreement between learning data and theoretical
predictions for Favored and Control groups. Thus, the model,
through the description of the mechanisms behind participant’s
behavior, provides additional support for time compaction.

Nonetheless, for the Hampered group, there is a deviation
between the theoretically predicted histogram of individual learn-
ing and experimental data, i.e., the model does not capture accu-
rately specific behavior of this group. A possible reason can be
related to the model assumptions. For example, the learning of
hampered participants could require more than two stimulus
appearances, while the model is based on two parameters only.
However, a more likely reason is the influence of exogenous factors
not included in the model, such as motivation, frustration, tired-
ness, etc. (see Supplementary Material).



Fig. 5. Salience of time compaction within phase 2. (A) Typical sequence of six dynamic stimuli (two DMs and four non-DMs) in phase 2. The distances between successive
appearances of e.g., stimulus DM2 influence its learning. (B) Population probability of answering successfully at the next appearance of DM stimulus for different groups of
subjects at trial 5 (left, beginning of learning), 13 (middle, the intermediate stage of learning), and 20 (right, the final stage of learning). Insets show the frequency of N
repetitions of the stimuli in a sequence as in (A). Solid and dashed colored curves depict the success probability fitted by logistic regression (GLM, logit link). The repetition
distance and trial association differ significantly between experimental groups for men (between distance, trial and group p = 5e�4; pairwise distance and trial for Favored
group p = 1e�4, for Control Group p = 0.028 and for Hampered group p = 1e�3) but not for women (between distance, trial and group p = 0.08; pairwise distance and trial for
Favored group p = 0.06, for Control Group p = 0.54 and for Hampered group p = 0.92). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 6. Rule verbalization and response time (top and bottom rows correspond to men and women, respectively). (A) Rule verbalization in terms of ‘collision’ has a probability
above 0.7 for men who quickly learned the rule regardless of the experimental group. The probability decreases with the learning length. No correlation is observed for
women (thick curves and grey areas denote logistic regression and confidence intervals at 95%, respectively; men: p = 1.2e�3, n = 126; women: p = 0.67, n = 135). (B)
Response time shows no differences among groups (GEE with linear link function, F vs. C: p = 0.13, n = 100 vs. 75; F vs. H: p = 0.45, n = 100 vs. 86; C vs. H: p = 0.42, n = 86 vs.
75) and for gender (p = 0.4, n = 126 men vs. 135 women). ***: < 0.001; **: < 0.01; *: < 0.05; NS: No significant difference.
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Validation of time compaction against alternative hypotheses

The above-described results establish a connection between
mental abstraction of static and dynamic situations. In the frame-
work of time compaction (Figs. 1 and 2), such a link is due to the
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hypothesized similarity between internal representations of speci-
fic static and dynamic stimuli. To validate time compaction as the
only plausible mechanism explaining the data, we now explore
alternative interpretations that could be compatible with the
experimental findings.



Fig. 7. Probabilistic modeling of time compaction. Main panels: Histogram and stair-like curve correspond to experimental and simulated individual learning performance,
respectively (Favored in blue, Control in black, and Hampered in orange). Insets: Population learning process. Different markers correspond to experimental data, while curves
show the model predictions, i.e., the successful answer probabilities PðT; cÞ. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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No unexpected spatial compatibility between static and dynamic
stimuli. The experiment revealed differences between learning
compacted and non-compacted dynamic stimuli, DM and non-
DM, respectively. Time compaction focuses on the relationship
between SM and DM stimuli to explain the results. However, there
may be a relationship between non-SM and non-DM stimuli, also
explaining the learning differences. Let us provide a rationale for
discarding this option.

On the one hand, Favored and Control groups differ by a single
static stimulus: the SM stimulus and a third non-SM stimulus for
Favored and Control subjects, respectively (Fig. 3B). Thus, a poten-
tial unexpected spatial compatibility between the other non-SMs
and non-DM stimuli must be the same for both groups. Therefore,
its effect cannot explain the learning differences (Fig. 4). On the
other hand, the spatial information ‘‘contained” in dynamic stim-
uli, such as initial positions of circles and their trajectories, is com-
mon. The only difference is the final positions of the red circle.
Then, by assuming a link between the final positions of the red cir-
cle in dynamic stimuli and its locations in static stimuli, we end up
with a learning process inconsistent with the experimental results
(see Supplementary Material and Fig. S8). Besides, if the final posi-
tions play a role, it should be reflected in the rules written by the
participants after the experiment. However, the participants
answered in terms of collision or velocities and did not refer to
the final positions.

Another issue may be a possible transfer of spatial information
not explicitly displayed in the stimuli. The most relevant is the pos-
sible relationship between the locations of the red circle in static
stimuli with the predicted final positions in dynamic stimuli. When
circles in non-DM stimuli disappear, each participant mentally
continues and finishes the movement differently, hence the
extracted ‘‘final” positions changes from subject to subject. There-
fore, the transfer of a stable rule relating non-SM to non-DM stim-
uli is unlikely. Moreover, time compaction uses collision as the
limit unique for DM stimuli. Thus, time compaction emerges as
the most plausible explanation of the reported results.

No crosstalk due to possible stimulus–response compatibility. One
of the most ubiquitous sources of information transfer, and hence a
possible connection between phases 1 and 2, is the stimulus–re-
sponse compatibility (SRC) [56]. It addresses the question: How
much of the response can be inferred from the stimulus? The stim-
uli used in the experiments (Fig. 3B) contain spatial information
that could be shared with the response, i.e., the keyboard buttons.
For the experiments, we choose vertical-arrow keys to minimize
potential bias due to handedness, possible meanings linked to let-
ter keys, finger use preferences, etc. (see Supplementary Material).
121
To avoid any information transfer between the up-arrow key
and the top position or movement direction of the circles, up and
down arrow keys were counterbalanced. We randomly assigned
them for each participant (as an example. in Fig. 3B SM and DM
stimuli were assigned to down-arrow key). Furthermore, to discard
any crosstalk, we analyzed whether the assignment of the up- or
down-arrow key had any influence on the learning performance.
The analysis revealed that the key assignment explains no variabil-
ity across gender and experimental group in terms of the learning
length (Fig. 8A). One of the main signatures of SRC is the alteration
of the response time, i.e., the time the participant takes to relate
the stimulus with the response [56]. We found no such bias
between experimental groups (Fig. 6B), as well as related to the
key assignment (Fig. S9, Supplementary Material). This points
SRC as an unfeasible cause of crosstalk that could explain the
obtained results.

No crosstalk due to implicit bias in dynamic stimuli. We now
address the following question: Do the dynamic stimuli pose any
implicit bias in the results? The laterality in circles positions and
directions of movement could potentially introduce a preference
of some stimuli against the others [57]. However, the symmetry
in the setup design avoids the bias of the DMs over non-DM stim-
uli. Red and green circles move along different trajectories (neither
opposite nor parallel) and velocities (Fig. 3B). This discards that
some stimuli were, by themselves, differently processed than
others [58]. Regarding other visual information presented during
the experiment, the feedback provided during learning in the form
of a tick or a cross does not transfer any information, artificially
linking SM and DMs (see details in Supplementary Material).

No gender-related bias in the setup. One of our most relevant
results is the gender differences in the salience of time compaction
in favor of men. It is widely known that men outperform women in
specific tasks related to spatial perception, as, e.g., in the rod-and-
frame and the water level tests [59]. Such processing is based on
spatial (static) perception and mental rotation [60]. Nevertheless,
in our experiments, these cognitive mechanisms were barely
involved in phase 1 only, where no differences between men and
women were found, whereas learning performance was measured
in the dynamic phase.

Therefore, more complex mechanisms beyond the mere spatial
perception should be considered. These include (1) spatial visual-
ization and mental management of information for establishing
the stimulus-key relationship (when visual information disap-
pears, and a key must be pressed) and (2) mental animation
detected in subjects who verbalized the rule in terms of ‘collision’.
On the one hand, no significant differences exist between men and



Fig. 8. Exploration of alternative hypotheses. (A) Statistical tests of the influence of arrow keys (down and up) on the learning length in different groups of subjects. All
associations are not significant (between gender, experimental group, and arrow key p = 0.17; pairwise interactions gender and arrow key: p = 0.91 for men, p = 0.29 for
women; group and arrow key: p = 0.23 for Favored, p = 0.34 for Control, and p = 0.76 for Hampered). (B) Learning in phase 2 without previous exposure to phase 1. No
significant differences between women (green) and men (purple) were found in population (left, p = 0.59) and individual (right, p = 0.48) learning performances. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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women when performing spatial visualization tasks [59]. On the
other hand, spatial memory is strongly involved in the rule learn-
ing, since participants must memorize and recall previous
stimulus-key associations to correctly answer after each stimulus
presentation. In this regard, given the dynamic nature of the stim-
uli and the simplicity of circles’ trajectories, a plausible way of cod-
ing them, an alternative to time compaction, is through circles’
initial and final positions. It is also equivalent to coding in terms
of velocities (see Section ‘Rule verbalization’ and Fig. 6). Such a pro-
cessing demand spatial memory of the object location, which
shows gender bias in favor of women [61]. The use of circles also
positively biases the woman’s performance during object location
memory tasks [61]. In consequence, there are several cognitive
mechanisms involved in the processing of the dynamic stimuli
here considered, but in general, without clear gender bias (or even
more favorable to women). This conclusion is consistent with our
findings, which show no difference between women and men in
the Control group.

Validation group discards gender bias in phase 2 other than time
compaction

The previous arguments suggest that known mechanisms that
could be involved in the dynamic stimuli processing cannot
explain the gender differences here reported. Nonetheless, to dis-
card any other factors inherent to the dynamic stimuli by them-
selves, which could not have been considered above, we
conducted experiments with the Validation group consisting of
additional 92 subjects (50 women and 42 men). The participants
of this group skipped the conditional phase and took part in phase
2 only.

We performed the same analysis of the population and individ-
ual learning performances, as described in Fig. 4. The results show
no gender bias during the classification of the dynamic stimuli
according to hidden rule 2 (Fig. 8B). Therefore, we discard phase
2 by itself as the origin of the reported sex bias. This result con-
firms that observed learning differences between men and women
arise when phase 2 is linked to phase 1 according to time
compaction.

Discussion

Survival in nature forces spatial and temporal restrictions on
the animal’s attack and defense behaviors, which elicits challeng-
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ing questions addressed in this work. (1) How does the brain coor-
dinate sophisticated strategies? (2) What are the functional
mechanisms involved in the computation of behaviors? The
hypothesis of time compaction offers a solid framework to deal
with these questions. In this paper, we have reported the first
experimental evidence of its existence as a mechanism of human
cognition.

Predation and evasion behaviors share neuronal mechanisms
[20], which helps different animals to act as a predator or prey
depending on the circumstances. Elementary defensive interac-
tions are mainly encoded by temporal information, as answers to
threatening looming objects, which are mediated by computing
time-to-collision [62,63]. However, experiments with the intercep-
tion of virtual balls in different gravity conditions have confirmed
the importance of spatial prediction versus the predominance of
the temporal dimension in these non-trivial, though simple, situa-
tions [26]. These results are not only compatible with the concept
of time compaction but are in its basis.

Our results have shown that time compaction is a salient func-
tional strategy, exploited even when the subject is not involved or
explicitly interested in interacting with the environment. On the
one hand, this suggests that human brain uses time compaction
as a central strategy in dynamic scenarios. On the other hand, time
compaction can serve as a vehicle for acquiring knowledge through
observation, so there is no need to experience potentially danger-
ous situations critical for surviving [64].

Time compaction explains how fast and accurate responses to
complex scenarios are generated in narrow time windows. The
representation of lived experiences as static maps containing the
relevant information to deal with them, allows constructing ‘mem-
ories.’ Then the experiences can be efficiently learned, stored,
recalled, compared, and structured by managing their CIRs [23].
Thus, when the subject must respond in real-time, it can rapidly
recall the corresponding CIR from memory. Moreover, the cogni-
tive architecture based on time compaction [23] provides an oper-
ational mechanism for the coexistence of the so-called model-
based (MB) and model-free (MF) computations [65].

MB computation reflects prospective simulation of future
actions and outcomes, which corresponds to the ‘conscious’ con-
struction of the CIRs. In contrast, the MF process is faster and uses
previously learned experiences, which will be consistent with the
CIR recalling, to elicit rapid and effective ‘subconscious’ responses.
These responses are often structured as sequences of actions, con-
structed considering their semantic content, i.e., the meaning of
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such actions in the context of the global task, which is a compul-
sory requirement to chain movements and behaviors into sophisti-
cated strategies. The action representation supported by time
compaction allows encapsulating the semantic of each potential
response [27].

One of the most relevant cognitive dimensions emerges in situ-
ations that engage the subject with other cognitive beings in a cir-
cular relationship. Then, mutual decisions affect the cognitive
beings recursively [66], which is a particular case of the theory of
mind. Time compaction offers a context where this challenge can
be tackled from an operational perspective [22]. This could help
unravel that cognitive entanglement, e.g., between two fighters
in combat, is decisive to understand survival interactions in
humans.

Time compaction was conceived initially as a primary gender-
independent cognitive mechanism, however we have found a sig-
nificant sex bias during our experiments. The salience of time com-
paction was statistically significant in men but not in women.
Notably, the learning performance was the same for all groups of
women and the control group of men. Moreover, the proportion
of women (about 45%), verbally relating the experiments with time
compaction (responses in terms of collision), was independent of
the learning length, whereas men exhibited a strong decay from
about 70% to 20%. Thus, our data suggest that women do rely on
time compaction but in combination with other decision-making
strategies.

The gender differences found here are in agreement with other
studies. Men frequently use holistic strategies, gathering informa-
tion about spatial relations among stimuli. In contrast, women
often use a segmentary approach, focusing on particular aspects
of the relevant elements and less on their relationships [52,53].
Thus, men outperform women in mental transformations of
objects (image integration, rotation, projection, etc.), a skill that
may have decisively contributed to their ability to anticipate tra-
jectories of preys or thrown objects during agonistic encounters
[67]. At the same time, women show a better performance in tests
related to object location memory, compatible with their predom-
inant role in foraging, where memorizing locations of relevant
items is a significant advantage [61,68]. This way, a plausible
explanation for our gender-biased results is coherent with sex dif-
ferences reported in the literature related with hunter-gatherer
hypothesis [61]: the preferred participation of males in survival
tasks as hunting, chasing, and fighting is consistent with the sal-
ience of time compaction as a cognitive process optimizing real-
time interactions in complex dynamic situations. On the other
hand, the postulated role of women as gatherers would be in line
with our findings, which show that, in the circumstances elicited
by the experimental setup, they do not primarily invoke time com-
paction among other cognitive strategies, though, as commented, it
also belongs to female’s cognitive repertoire.

The design of conducted experiments and found gender differ-
ences suggest that CIRs of dynamic situations work at the cognitive
level, beyond visual substrate and primary mechanisms as time
compression [69] and visual extrapolation [70,71]. We note that
time compaction provides a functional generalization of the inter-
nal representation of static situations, which suggests that the
notion of CIR resonates with the concept of cognitive maps [6].
Cognitive map theory argues that the hippocampus is involved in
the navigation to unmarked locations, defined by their relation-
ships with the environment, but not in the navigation to visible
static goals [72]. Nevertheless, avoidance of visible, dynamic
objects does rely on the hippocampus [73]. This finding is coherent
with time compaction, where a CIR appears from the forecasted
interactions, and so the relationships, among elements in a time-
changing environment. This increases the likelihood that cognitive
maps and CIRs share neurobiological mechanisms.
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Thus, we hypothesize that specific cell populations responsible
for physical object encoding, as recently characterized object-
vector cells [74], may also be involved in the encoding of virtual
objects in a CIR representing future interactions. This perspective
may reveal time compaction as the central part of a general frame-
work unifying spatial and spatiotemporal cognition.
Conclusion

In this work, we have shown that humans internally represent
time-changing situations as static abstractions consisting of the
spatial arrangement of future interactions. Our experimental and
mathematical findings have confirmed the predictions made by
the time compaction hypothesis. Thus, compact internal represen-
tations, or CIRs, would be among the central mechanisms underly-
ing the human ability of making reliable decisions for fast
interaction with dynamic environments. Our results also uncov-
ered a preference of men to use time compaction for coping with
dynamic situations, whereas women rely on a broader range of
strategies. This gender bias is compatible with earlier reported
sex differences related to role separation in humans to strengthen
survival opportunities. Thus, the reported findings support the
potential importance of time compaction as a cognitive strategy
central for survival interactions at the levels of action and
abstraction.
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