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H I G H L I G H T S  

• The radiomics model showed a good diagnostic effect in HOS patients. 
• The clinical model performed well in predicting the Huvos grade in HOS patients. 
• The combined model is apt for Huvos grading after preoperative HOS chemotherapy.  
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A B S T R A C T   

Objective: To develop a model combining clinical and radiomics features from CT scans for a preoperative 
noninvasive evaluation of Huvos grading of neoadjuvant chemotherapy in patients with HOS. 
Methods: 183 patients from center A and 42 from center B were categorized into training and validation sets. 
Features derived from radiomics were obtained from unenhanced CT scans.Following dimensionality reduction, 
the most optimal features were selected and utilized in creating a radiomics model through logistic regression 
analysis. Integrating clinical features, a composite clinical radiomics model was developed, and a nomogram was 
constructed. Predictive performance of the model was evaluated using ROC curves and calibration curves. 
Additionally, decision curve analysis was conducted to assess practical utility of nomogram in clinical settings. 
Results: LASSO LR analysis was performed, and finally, three selected image omics features were obtained. 
Radiomics model yielded AUC values with a good diagnostic effect for both patient sets (AUCs: 0.69 and 0.68, 
respectively). Clinical models (including sex, age, pre-chemotherapy ALP and LDH levels, new lung metastases 
within 1 year after surgery, and incidence) performed well in terms of Huvos grade prediction, with an AUC of 
0.74 for training set. The AUC for independent validation set stood at 0.70. Notably, the amalgamation of 
radiomics and clinical features exhibited commendable predictive prowess in training set, registering an AUC of 
0.78. This robust performance was subsequently validated in the independent validation set, where the AUC 
remained high at 0.75. Calibration curves of nomogram showed that the predictions were in good agreement 
with actual observations. 
Conclusion: Combined model can be used for Huvos grading in patients with HOS after preoperative chemo-
therapy, which is helpful for adjuvant treatment decisions.   
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1. Introduction 

OS stands as predominant malignant bone tumor prevalent. Its 
hallmark lies in presence of mesenchymal cells or osteogenic pro-
genitors, which generate osteoid and immature bone [1,2]. Around 90 % 
of OS cases are classified as high-grade osteosarcomas (HOSs) [3,4]. 
Standard treatment protocol for osteosarcoma typically involves pre-
operative neoadjuvant chemotherapy followed by definitive surgical 
resection.achieving a 5-year survival rate ranging between 60 % and 70 
%. However, a subset of patients displaying poor tissue response to 
chemotherapy fail to derive benefit from this preoperative intervention 
[5]. The treatment of HOS depends on the integration of multiple layers 
of data and delicate decision-making by the oncologist. Endogenous or 
acquired drug resistance is a major reason for treatment failure and a 
poor prognosis. Currently, The postoperative pathological sampling to 
ascertain the tumor necrosis rate following chemotherapy stands out as 
the most dependable approach to evaluate the response to neoadjuvant 
chemotherapy.However, this method is invasive lag and involves com-
plex surgery [6]. Therefore, using noninvasive methods is particularly 
important to track the response before surgery and obtain key infor-
mation about the tumor itself. 

Artificial intelligence (AI) can facilitate clinical decision-making by 
quantifying imaging information that cannot be detected by humans. 
Radiomics emerges as an innovative method harnessing sophisticated 
imaging characteristics for diverse applications, including lymph node 
metastasis prediction [7], malignant tumor staging [8–10], prognosis 
assessment [11], treatment response prediction [12], and even the 
identification of tumor biological properties [13,14]. In contrast to 
conventional radiological diagnostic methods, radiomics offers the po-
tential to furnish supplementary information and enhance diagnostic 
reproducibility. So, this study was aimed at developing a radiomics 
model and combining it with preoperative clinical features for the pre-
operative noninvasive and personalized determination of the Huvos 
grade in patients with HOS. We used the model to predict efficacy of 
chemotherapy in patients with HOS according to radiomics and clinical 
characteristics extracted from plain computed tomography (CT) scans at 
the initial diagnosis. We believe that the application of this model may 
improve treatment efficacy by facilitating the adjustment of the 
chemotherapy regimen in patients who may not respond to treatment. 

2. Materials and methods 

2.1. Patients and dataset 

Data of patients with HOS treated at Beijing Jishuitan Hospital 
(center A) and Peking University Shougang Hospital (center B) from 
June 2018 to June 2022 were retrospectively collected. Incorporated 
into the study were individuals who fulfilled the specified inclusion 
criteria:(1) Primary osteosarcoma was confirmed by histopathological 
examination after surgery; (2) Neoadjuvant chemotherapy (NCT) was 
received before surgical treatment; (3) Routine CT scan was performed 
within 10 to 17 days before chemotherapy, and no needle biopsy was 
performed; (4) The tumor necrosis rate after NCT can be calculated; (5) 
At least 1 year postoperative follow-up.Exclusion criteria: (1) CT plain 
scan image quality does not meet the requirements of diagnosis and 
post-processing; (2) Receiving other anti-tumor related treatments; (3) 
Incomplete clinical data; (4) The patient has not undergone surgical 
treatment in our hospital, or the tumor necrosis rate cannot be calcu-
lated; (5) No follow-up within 1 year after surgery.Finally, 225 patients 
from two independent institutions were included. The training and in-
dependent validation sets consisted of 183 patients with HOS from 
center A and 42 patients with HOS from center B, respectively. Table 1 
presents the specifics regarding two cohorts. 

2.2. Clinical and pathological data 

As per the treatment recommendations outlined by the National 
Comprehensive Cancer Network and consensus of experts from CSCO 
regarding diagnosis and management of osteosarcoma,multi-drug 
combination chemotherapy was used with methotrexate, cisplatin, and 
doxorubicin. Neoadjuvant chemotherapy was performed for 2–3 months 
before surgery and continued for 6–8 months after surgery. 

Following NCT, all patients underwent surgical intervention, with 
tumor necrosis rate assessed using Huvos grading criteria [15]. In this 
investigation, a tumor necrosis rate exceeding 90 % served as bench-
mark for evaluating response to neoadjuvant chemotherapy. A tumor 
necrosis rate of at least 90 % was deemed indicative of a favorable 
response to chemotherapy (pGR). Poor chemotherapy response (non- 
pGR) occurs in tumor necrosis rates of less than 90 % [15,16]. 

2.3. CT examination 

The imaging data were obtained using 5 different CT scanners: 
clinical spectral detector CT, 64-multislice CT (MSCT; Philips Health-
care, Netherlands), 256-MSCT (Philips Healthcare, Netherlands), 320- 
MSCT (Toshiba Medical Systems, Japan), and 64-MSCT (Toshiba Med-
ical Systems, Japan). Scanning parameters were set as follows: tube 
voltage ranged from 80 to 120 kVp, automatic milliampere-second, 
pitch of 1.0, and slice thickness of 0.5 mm. All medical images utilized 
in this investigation adhered to standard DICOM format. 

All lesions, defined as VOIs, underwent manual annotation utilizing 
ITK-SNAP (version 4.0.0; https://www.itksnap.org). The delineated 
VOIs encompassed the entirety of the lesion, including both osseous 
lesion and its adjacent soft-tissue mass, along with any cystic necrotic 

Table 1 
Demographic and clinical characteristics of patients with osteosarcoma in the 
training and validation cohorts.  

Characteristics  Training cohort Validation cohort 

pGR 
group 
(n =
91) 

non- 
pGR 
group 
(n =
92) 

P-value pGR 
group 
(n =
22) 

non- 
pGR 
group 
(n =
20) 

P-value 

Sex   0.834   0.569 
Male 62 64  14 11  
Female 29 28  8 9  
Age (mean ±

SD, years) 
18.18 
±

11.050 

19.03 
±

11.152 

0.522, 
F =
0.279 

22.09 
±

14.858 

16.90 
±

7.813 

0.170, 
F =
2.769 

ALP level (IU/ 
L)   

0.069   0.122 

Normal 73 63  21 16  
Elevated 18 29  1 4  
LDH level (U/ 

L)   
0.258   0.58 

Normal 69 76  19 16  
Elevated 22 16  3 4  
Pulmonary 

metastases  
0.152   0.372 

Yes 34 44  14 10  
No 57 48  8 10  
Location of the 

primary 
tumor   

0.122   0.778 

Femur 47 49  12 9  
Tibia 28 17  4 7  
Fibula 4 5  2 1  
Foot 0 1  0 0  
Shoulder 1 2  0 0  
Humerus 9 8  2 2  
Ulna 1 0  1 0  
Radius 0 3  0 0  
Pelvis 1 7  1 1   
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regions within lesion. However, areas of edema and adjacent blood 
vessels were deliberately excluded from annotations. Subsequent to 
image preprocessing, radiomics features were extracted from delineated 
tumor regions on CT images. 

Subsequently, pGR, non-pGR groups were classified per the patho-
logical response classifier. 

Thirty patients were selected from among the 239 patients by a 
random sampling method. One resident physician who had worked for 2 
years and one chief physician who had worked for 22 years were 
recruited for VOI determination, and consistency between groups was 
analyzed. In order to prevent the non-uniformity caused by different 
centers, different scanning instruments and scanning parameters, all 
images are normalized.For each VOI, the image intensity range was 
normalized to 0–255 and resampled to a 1 × 1 × 1 mm3 voxel size to 
reduce variability in image acquisition from different scanners [17,18]. 

2.4. Select features and develop models 

Radiomics feature selection process involved utilizing the LASSO 
algorithm, which identified features appearing in over 75 % of selections 
(a total of 20 times). Subsequently, a multivariate LR model was 
employed to establish quantitative radiomics labels for the selected 
characeristics exhibiting nonzero coefficients. The radiomics score for 
each patient was derived through a weighted linear combination of 
coefficients associated with selected features in radiomics label. To 
address missing data in training set, zero-value method was employed 
for data preprocessing [19]. Following feature selection, LR algorithm 
served as foundational component of models. LR, being a widely used 
algorithm in machine learning, is frequently employed as a benchmark 
for binary classification tasks. LR model was trained on complete dataset 
from source A and subsequently evaluated on an independent test set 
from source B. 

Three distinct models: 1) a clinical model utilizing solely clinical 
features, 2) a radiomics model derived from conventional plain CT 
scans, and 3) a composite model integrating independent clinical factors 
with delta-radiomics signature. Each model was constructed utilizing 
selected features to establish relationship and weights between features 
and the likelihood of progressive disease (pGR). Performance evaluation 
of models encompassed metrics such as accuracy, recall, sensitivity, and 
specificity. Furthermore, ROC curves, calibration plots, and decision 
curves were generated to depict model’s performance. The final nomo-
gram model was created by amalgamating independent clinical factors 
with the delta-radiomics signature. Model development, nomogram 
construction, and generation of calibration and decision curves were 
executed using R language. The schematic representation of research 
workflow is depicted in Fig. 1. 

3. Statistical analyses 

In training set, analysis was conducted by SPSS 20.0, Medcalc 15.0 
software, R studio. Normally distributed measurement data were pre-
sented as mean ± standard deviation (x ± S), skewed data were 
expressed as median (range). Use Mann-Whitney U to compare group for 
skewed data and χ2 test for enumeration data. Logistic regression (LR) 
analysis, initiated with all candidate variables exhibiting a P-value of <
0.05 in the univariate logistic model, was performed to discern clinical 
and imaging features correlated with progressive disease (pGR). The 
model was trained using the complete dataset and evaluated on an in-
dependent test set. Sensitivity, specificity, and accuracy of various 
diagnostic approaches were calculated using pathological results as the 
reference standard. Threshold for statistical significance is P < 0.05. 

4. Results 

4.1. Festures of patient 

Without significant differences observed in response to chemo-
therapy (pGR and non-pGR), age, sex, tumor diameter, preoperative ALP 
and LDH levels, presence of new lung metastases, or LPT between two 
groups. The rates of pGR in training and independent validation cohorts 
were 49.7 % and 52.4 %, respectively. the inter-cohort difference was 
not significant (p = 0.756, χ2 = 0.096). ICC analysis showed that the VOI 
sketched by the two doctors had good consistency (Table 2). In this 
study, VOI sketched by senior physicians was selected for data analysis. 

4.2. Outcomes achieved using different models for the prediction and 
classification of pGR and non-pGR 

Overall, 1743 image omics features were extracted based on plain CT 
scans, and 1233 features with an ICC of > 0.8 between the two physicians 
were selected for further analysis. LASSO LR analysis was performed, and 
finally, three selected image omics features were obtained. These char-
acteristics are first-order statistics (wavelet_HH_firstorder_Mean), GLCM 
feature, specifically wavelet_HH_glcm_ClusterShade, and NGTDM feature, 
exponential_ngtdm_Complexity, exhibited notable distinctions between 
pGR and non-pGR groups (necrosis scores of ≥ 90 % and < 90 %, 

Fig. 1. Schematic representation of the study flow.  

Table 2 
Consistency analysis of radiomics features.  

Characteristics of radiomics ICC 

exponential_ngtdm_Complexity 0.931(0.779～0.977) 
wavelet_HH_firstorder_Mean 0.975(0.914～0.991) 
wavelet_HH_glcm_ClusterShade 0.885(0.752～0.933)  
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respectively) in training and independent validation sets (P < 0.01). 
Functionality of P score is depicted below: 

P Score = 7.464e − 05 × exponential ngtdm Complexity + 0.7.351

× wavelet HH firstorder Mean + 0.4835

× wavelet HH glcm ClusterShade − − 0.1743.

Comparison of AI models constructed using selected characteristics 
to predict pGR and non-pGR was conducted. ROC curves for training and 
independent test sets are depicted in Fig. 2, respectively. In training and 
independent validation cohorts, radiomics model based on plain CT 
scans demonstrated reasonable AUCs (0.69 [95 % CI: 0.61–0.77] and 
0.68 [95 % CI: 0.51–0.85]). Clinical models (including sex, age, pre- 
chemotherapy ALP and LDH levels, new lung metastases within 1 year 
after surgery, and incidence) performed well in terms of Huvos grade 
prediction, with an AUC of 0.74 (95 % CI: 0.67–0.81) for training set. 
The AUC for independent validation set was 0.70 (95 % CI: 0.51–0.85). 
The model integrating both radiomics and clinical features exhibited 
promising predictive performance in training set (AUC: 0.78 [95 % CI: 
0.71–0.84]), a finding further validated in independent validation set 
(AUC: 0.75 [95 % CI: 0.57–0.9]). 

4.3. Visualization and clinical application of artificial intelligence model 

A nomogram was utilized to visually represent AI model for clinical 
application.Variables including age, sex, ALP and LDH levels, presence 
of pulmonary metastasis,LPT, and final P_score were utilized in 

prediction model. Each variable is depicted by a line segment marked 
with a scale, representing the range of possible values for the feature. 
The length of line segment expresses the contribution of feature to 
outcome event. Different values of each feature correspond to specific 
points. By summing points from all features, the total points for patient 
are determined.A vertical line is drawn downwards to determine risk for 
pGR. 

In calibration curve (Fig. 3B) for nomogram, x-axis represents 
nomogram-predicted probability, while y-axis denotes actual probabil-
ity of pGR. Black dotted line represents an ideal prediction scenario. 
Solid red line indicates the performance across the entire cohort. The 
solid green line, adjusted for bias via bootstrapping (1000 repetitions). 
Fig. 3B demonstrates that nomogram performance closely approximates 
that of an ideal prediction scenario. 

In Fig. 3C, decision curves of radiomics, clinical, and combined 
models are illustrated. X-axis represents the threshold probability, 
where Pi denotes the recorded risk probability when various methods 
reach a certain value, and Pt signifies the threshold at which Pi is stated 
as positive, prompting specific actions. The y-axis denotes the net 
benefit (NB) rate, calculated by subtracting pros and cons. Additionally, 
two gray lines representing extreme cases are included. The horizontal 
line shows that all samples are negative (Pi < Pt), necessitating no 
intervention and resulting in an NB rate of 0. Sloping line shows that all 
samples are positive, requiring intervention in every cases, with NB rate 
indicated by a backslash. 

Benefits of three models were higher than that indicated by the 
extreme curve, and the combined model had the largest and safest Pt 

Fig. 2. The receiver operating characteristic (ROC) curves of the training set (A). The ROC curves (B) of the models based on the selected features.  
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value range. 

5. Discussion 

We developed a radiomics model combining clinical risk factors and 
radiomic features from CT scans for a noninvasive, personalized 
assessment of the Huvos grade before surgery in patients with HOS. 

Although CT examination has been used as one of the important 
examination methods for early diagnosis and evaluation of HOS due to 
its advantages of rapid, economical and convenient, clinical application 
value of conventional imaging features in evaluation of HOS Huvos 
classification is limited. Literature shows that Huvos grading has no 
correlation with the number and distribution of tumor blood vessels 
under microscope. In addition, the relationship between texture analysis 
of CT enhanced images and Huvos grading lacks scientific medical 
explanation. Therefore, in theory, it is more medical logical to use CT 

plain scan images to evaluate Huvos grading. CT plain scan does not 
need contrast agent injection, and is easier to acquire than CT enhanced 
scan. 

Radiomics features offer insights into three-dimensional volume, 
capturing its heterogeneity and providing a view of tumor to guide 
treatment decisions. Moreover, this noninvasive approach facilitates 
continuous monitoring of tumor dynamics and the ongoing response to 
treatment [20,21]. Previous studies of radiomics have mainly focused on 
establishing malignant tumor staging [9,10], predicting lymph node 
metastasis [22,23], obtaining a differential diagnosis [24,25], and pre-
dicting the tumor phenotype [26,27]. The pathological response of 
tumor cells to neoadjuvant chemotherapy is mainly reflected in tumor 
cell necrosis, apoptosis, differentiation and fibrosis, and this patholog-
ical change often affects the gray value of CT image pixels. Therefore, it 
is feasible to track the response of HOS neoadjuvant chemotherapy non- 
invasculatively based on texture analysis of CT plain scan images before 

Fig. 3. The nomogram for predicting the Huvos grade in patients with high-grade osteosarcoma (HOS) (A), the calibration curve of the nomogram (B) and the 
decision curve of different artificial intelligence (AI) models for predicting and classifying the Huvos grade (C). 
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surgery. 
In this study, the developed predictive features provided additional 

information on pathological response after neoadjuvant chemotherapy. 
However, The primary challenge for integration of radiomics into clin-
ical practice lies in ensuring reliability and reproducibility of developed 
models. This reliability is primarily influenced by two factors: segmen-
tation and variability in image acquisition [28,29]. In this study, The 
sketch of VOI was independently completed by two physicians in a 
double-blind manner. Although the two physicians’ image knowledge 
and diagnostic experience were inconsistent, ICC analysis showed that 
the VOI sketched by the two physicians was in good agreement (ICC >
0.8), which indicated that different physicians could reach a relatively 
unanimous opinion on VOI segmentation when interpreting and 
analyzing the same image data. The segmentation differences caused by 
human subjective factors are reduced. Uniformity is a first-order char-
acteristic parameter, which is mainly used to describe local and global 
characteristics of image data. ICC analysis results show that uniformity 
has the highest reliability (ICC = 0.975), indicating that uniformity has a 
high degree of consistency when measured at different times or by 
different observers. It also indicates that although the data in this study 
come from different centers, different sampling devices and different 
scanning parameters, the uniformity is highly repeatable [30]. The 
reliability of texture features is relatively low, because different centers, 
different sampling devices and different scanning parameters may lead 
to changes in the relative position and gray level relationship between 
pixels, so the performance of texture features may also be affected, 
resulting in poor repeatability. It is a complex and important task to 
establish standard CT scanning techniques and parameters and to 
improve the stability and repeatability of image omics feature extraction 
results. In the future, the author will further study the relevant tech-
nology and optimize the process to provide support for improving the 
value and reliability of imaging omics in medical diagnosis and 
treatment. 

Previous radiomics studies mostly used single-center imaging data 
[6,31]. However, radiomics features are easily affected by different CT 
acquisition parameters, and these single-center studies did not consider 
whether the CT acquisition equipment would hinder the transmission of 
radiomics features between different imaging centers. In this study, 
plain CT data were obtained from two centers and different hospitals 
were considered for the collection of CT parameters. Furthermore, the 
omics characteristics of images in this study were captured before the 

parameters in the standardized treatment were combined with clinical 
indicators, and independent validation was simultaneously adopted to 
evaluate the clinical and omics label value in clinical application. 
Therefore, we believe that results of study are generalizable and 
important for clinical application. 

In this study, 3D VOI was applied to target lesion segmentation of CT 
images. Compared with 2D single or multiple sections, 3D segmentation 
can retain more spatial information, better capture complex structures 
and relationships, reduce distortion and distortion, increase the degree 
of differentiation and recognition of tumor heterogeneity, and truly 
reflect the biological characteristics of tumors. It is important to note 
that how to design efficient algorithms and achieve automated 3D seg-
mentation is very challenging. 

In this study, a total of 1743 imaging omics features of 7 categories 
based on 10 kinds of image preprocessing were included. 1233 features 
with ICC > 0.8 between 2 physicians were selected for further analysis, 
and 3 features corresponding to the smallest diagnostic error were 
selected through 20 LASSO regression operations to form imaging omics 
labels. The logistic regression prediction model was established. The 
AUC values for training set and independent verification set are 0.69 (95 
% CI: 0.61–0.77) and 0.68 (95 % CI: 0.51–0.85). These findings suggest 
that model exhibits high stability and low redundancy.Radiomic fea-
tures can reveal the internal heterogeneity of the tumor and reflect a 
series of pathological features of the tumor after treatment, such as 
changes in cell functional status, intra-tumor necrosis, tumor microen-
vironment, vascularization and cell density [32,33]. The feature pool is 
divided into intensity statistical feature, geometric feature, texture 
feature and Baud sign.Intensity statistical features quantify statistical 
distribution of voxel intensities within tumor region. Geometric features 
characterize three-dimensional shape attributes of tumor region. 
Texture features are computed using various matrices such as GLCM, 
GLSZM, GLRLM, and NGTDM, elucidating relation and distribution of 
voxel spatial intensities within tumor region. Additionally, wavelet 
transform is employed to diminish image noise and enhance image 
sharpness,and the transformed high-order features can be used to 
describe the internal structure and texture of the tumor, as well as the 
differences between normal and diseased tissues [34]. Uniformity can 
reflect the heterogeneity within the tumor and can be used to monitor 
the therapeutic effect of the tumor. High uniformity suggests that the 
more complex the biological behavior of the tumor, the worse the 
prognosis and the lower the necrosis rate of neoadjuvant chemotherapy. 

Fig. 3. (continued). 
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GLCM texture features are used to describe the spatial relationship be-
tween pixels in an image, and provide information about the variation, 
distribution and local texture structure of pixels [35]. NGTDM texture 
features can capture structure, edge and texture information in images, 
better reveal local texture structure in images, and be more sensitive to 
subtle changes in tumors [36]. In conclusion, the non-invasive first- 
order features and texture features selected in this study can provide 
important disease information for patients with HOS, real-time moni-
toring of the disease, and individualized prognosis assessment. This kind 
of assessment is also more convenient and effective. 

Among various diagnostic models examined, the integrated diag-
nostic model demonstrated the highest diagnostic efficacy and was 
comparatively superior to other models. This combined model effec-
tively amalgamates both patient’s clinical information and radiomics 
characteristics extracted from CT plain scans, resulting in a compre-
hensive diagnostic approach. ROC curve analysis revealed that com-
bined model exhibited superior performance with higher AUC values, 
sensitivity, specificity, and accuracy in training set and independent 
validation set. Notably, in training set, the AUC reached as high as 0.78, 
surpassing predictive performance of Huvos classification, clinical 
model, and imaging omics model. These findings suggest that combined 
diagnosis serves as a crucial tool for evaluating efficacy of chemotherapy 
for osteosarcoma. By enhancing accuracy and providing a more 
comprehensive and precise diagnostic foundation for clinical imaging, 
combined diagnosis has potential to improve assessment outcomes 
significantly. 

At present, the status of ALP and LDH in pre-treatment blood tests 
can be easily obtained at hospitalization, and these clinical indicators 
may have a certain suggestive role in the Huvos grade of osteosarcoma, 
so we included them in our study. ALP is one of the signature products of 
bone metabolism and can reflect the overall activity of bone. LDH exists 
in cytoplasm of cells and is responsible for generating a large amount of 
ATP in process of glycolysis to provide energy for tissue cells. The 
nomogram shows that ALP contributes more to the total number of 
points, indicating that ALP can be used as a common clinical indicator to 
evaluate Huvos grade of osteosarcoma. Of course, this prediction needs 
to be verified by large sample and multi-center data. 

Although the application methods and emphasis of clinical model 
and radiomic feature model are different, they can complement and 
combine with each other in practical applications. For example, the 
introduction of radiomic features into clinical models can improve 
prediction accuracy of the models; At the same time, radiomic signature 
models can also be combined with patient clinical data to more fully 
assess a patient’s disease status. In conclusion, both clinical model and 
radiomic feature model are important medical prediction models, and 
their relationship is complementary to each other, which can provide 
strong support for medical research and clinical practice. 

In this study, clinical radiomics nomogram, constructed utilizing CT 
radiomics features and clinical characteristics, exhibited superior pre-
dictive capabilities for HOS patients. ROC curve analysis was used to 
assess performance of combined according to AUC value, sensitivity, 
specificity, and accuracy, both in training set and the independent 
validation set. Remarkably, in training set, the AUC reached 0.78, sur-
passing performance of clinical model and a simplistic imaging omics 
label forecast.Further evaluation based on calibration curve with high 
consistency analysis showed that the predicted and measured values 
indicated that the nomogram achieved the goal of predicting the Huvo’s 
grade of HOS patients well, and the results were further confirmed in the 
independent validation set (AUC: 0.75). To address clinical utility 
concern and illustrate relation between benefits and risks associated 
with different cut-off points across various models, decision curve 
analysis was implemented [37,38]. In our study, all three models 
demonstrated benefits exceeding those of extreme curve. Furthermore, 
compared to both clinical model and the radiomics model, combined 
model exhibited the widest and safest range of Pt values. Decision curve 
generated from nomogram showcased favorable clinical utility. 

Noninvasive tool visually represents diagnostic model and can serve as a 
valuable reference for physicians. 

5.1. Deficiency 

Firstly, retrospective nature of our analysis solely included patients 
meeting predefined inclusion criteria, potentially introducing selection 
bias. Future investigations should encompass better prospective studies 
conducted in multicentric settings with more patient cohort to verify 
reliability and reproducibility. Secondly, it’s worth noting that standard 
for pretreatment imaging in osteosarcoma patients in some hospitals is 
magnetic resonance imaging MRI, not CT, thereby potentially limiting 
generalizability of our findings to clinical practice. Thirdly, while our 
study compared models with different features, we did not explore 
different algorithms utilizing the same features. As such, it remains 
uncertain whether alternative algorithms may better suit this task, a 
question that warrants exploration in future research endeavors. 

6. Conclusion 

The amalgamation of radiomics features extracted from plain CT 
scans and clinical features holds significant potential for individualized 
pathological response assessment (Huvos grading) in patients with HOS 
following preoperative chemotherapy. This combined approach can 
offer valuable insights for guiding adjuvant treatment decisions tailored 
to the specific needs of each patient. 

Funding 

1. Beijing Hospitals Authority Clinical Medicine Development of 
Special Funding (NO.ZYLX202107); 2. Beijing Jishuitan Hospital 
Research Funding (NO.ZR202315). 

CRediT authorship contribution statement 

Fan Yang: Writing – original draft, Methodology, Data curation, 
Conceptualization. Ying Feng: Formal analysis, Data curation. Pengfei 
Sun: Formal analysis, Conceptualization. Alberto Traverso: Writing – 
review & editing, Validation, Supervision. Andre Dekker: Validation, 
Supervision. Bin Zhang: Validation, Resources. Zhen Huang: Method-
ology, Data curation. Zhixiang Wang: Writing – review & editing, 
Writing – original draft, Supervision, Software, Project administration. 
Dong Yan: Writing – review & editing, Project administration. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

[1] M.S. Isakoff, S.S. Bielack, P. Meltzer, R. Gorlick, Osteosarcoma: current treatment 
and a collaborative pathway to success, J. Clin. Oncol. 33 (2015) 3029–3035, 
https://doi.org/10.1200/JCO.2014.59.4895. 

[2] B.R. Eaton, R. Schwarz, R. Vatner, B. Yeh, L. Claude, D.J. Indelicato, N. Laack, 
Osteosarcoma, Pediatr. Blood Cancer 68 (Suppl 2) (2021) e28352, https://doi.org/ 
10.1002/pbc.28352. 

[3] F. Letaief, S. Khrouf, Y. Yahiaoui, A. Hamdi, A. Gabsi, M. Ayadi, A. Mezlini, 
Prognostic factors in high-grade localized osteosarcoma of the extremities: the 
tunisian experience, J. Orthop. Surg. (Hong Kong) 28 (2020) 2309499020974501, 
https://doi.org/10.1177/2309499020974501. 

[4] W. Kim, I. Han, J.S. Lee, H.S. Cho, J.W. Park, H.S. Kim, Postmetastasis survival in 
high-grade extremity osteosarcoma: a retrospective analysis of prognostic factors in 
126 patients, J. Surg. Oncol. 117 (2018) 1223–1231, https://doi.org/10.1002/ 
jso.24963. 

[5] Z. Yao, Z. Tan, J. Yang, Y. Yang, C. Wang, J. Chen, Y. Zhu, T. Wang, L. Han, L. Zhu, 
Z. Yang, Prognostic nomogram for predicting 5-year overall survival in Chinese 
patients with high-grade osteosarcoma, Sci. Rep. 11 (2021) 17728, https://doi. 
org/10.1038/s41598-021-97090-0. 

F. Yang et al.                                                                                                                                                                                                                                    

https://doi.org/10.1200/JCO.2014.59.4895
https://doi.org/10.1002/pbc.28352
https://doi.org/10.1002/pbc.28352
https://doi.org/10.1177/2309499020974501
https://doi.org/10.1002/jso.24963
https://doi.org/10.1002/jso.24963
https://doi.org/10.1038/s41598-021-97090-0
https://doi.org/10.1038/s41598-021-97090-0


Journal of Bone Oncology 47 (2024) 100614

8

[6] L. Zhang, Y. Ge, Q. Gao, F. Zhao, T. Cheng, H. Li, Y. Xia, Machine learning-based 
radiomics nomogram with dynamic contrast-enhanced MRI of the osteosarcoma for 
evaluation of efficacy of neoadjuvant chemotherapy, Front. Oncol. 11 (2021) 
758921, https://doi.org/10.3389/fonc.2021.758921. 

[7] C. Yang, M. Huang, S. Li, J. Chen, Y. Yang, N. Qin, D. Huang, J. Shu, Radiomics 
model of magnetic resonance imaging for predicting pathological grading and 
lymph node metastases of extrahepatic cholangiocarcinoma, Cancer Lett. 470 
(2020) 1–7, https://doi.org/10.1016/j.canlet.2019.11.036. 

[8] J.C. Peeken, M.B. Spraker, C. Knebel, H. Dapper, D. Pfeiffer, M. Devecka, 
A. Thamer, M.A. Shouman, A. Ott, R. von Eisenhart-Rothe, F. Nusslin, N.A. Mayr, 
M.J. Nyflot, S.E. Combs, Tumor grading of soft tissue sarcomas using MRI-based 
radiomics, EBioMedicine 48 (2019) 332–340, https://doi.org/10.1016/j. 
ebiom.2019.08.059. 

[9] X. Lin, S. Zhao, H. Jiang, F. Jia, G. Wang, B. He, H. Jiang, X. Ma, J. Li, Z. Shi, 
A radiomics-based nomogram for preoperative T staging prediction of rectal 
cancer, Abdom Radiol (NY) 46 (2021) 4525–4535, https://doi.org/10.1007/ 
s00261-021-03137-1. 

[10] G. Xiao, W.C. Rong, Y.C. Hu, Z.Q. Shi, Y. Yang, J.L. Ren, G.B. Cui, MRI radiomics 
analysis for predicting the pathologic classification and TNM staging of thymic 
epithelial tumors: a pilot study, AJR Am. J. Roentgenol. 214 (2020) 328–340, 
https://doi.org/10.2214/AJR.19.21696. 

[11] T. Wang, Y. She, Y. Yang, X. Liu, S. Chen, Y. Zhong, J. Deng, M. Zhao, X. Sun, 
D. Xie, C. Chen, Radiomics for survival risk stratification of clinical and pathologic 
stage IA pure-solid non-small cell lung cancer, Radiology 302 (2022) 425–434, 
https://doi.org/10.1148/radiol.2021210109. 

[12] J. Shin, N. Seo, S.E. Baek, N.H. Son, J.S. Lim, N.K. Kim, W.S. Koom, S. Kim, MRI 
radiomics model predicts pathologic complete response of rectal cancer following 
chemoradiotherapy, Radiology 303 (2022) 351–358, https://doi.org/10.1148/ 
radiol.211986. 

[13] A.S. Tagliafico, M. Piana, D. Schenone, R. Lai, A.M. Massone, N. Houssami, 
Overview of radiomics in breast cancer diagnosis and prognostication, Breast 49 
(2020) 74–80, https://doi.org/10.1016/j.breast.2019.10.018. 

[14] Z. Bodalal, S. Trebeschi, T.D.L. Nguyen-Kim, W. Schats, R. Beets-Tan, 
Radiogenomics: bridging imaging and genomics, Abdom Radiol (NY) 44 (2019) 
1960–1984, https://doi.org/10.1007/s00261-019-02028-w. 

[15] G. Bacci, F. Bertoni, A. Longhi, S. Ferrari, C. Forni, R. Biagini, P. Bacchini, 
D. Donati, M. Manfrini, G. Bernini, S. Lari, Neoadjuvant chemotherapy for high- 
grade central osteosarcoma of the extremity histologic response to preoperative 
chemotherapy correlates with histologic subtype of the tumor, Cancer 97 (2003) 
3068–3075, https://doi.org/10.1002/cncr.11456. 

[16] C.M. Coffin, A. Lowichik, H. Zhou, Treatment effects in pediatric soft tissue and 
bone tumors: practical considerations for the pathologist, Am. J. Clin. Pathol. 123 
(2005) 75–90, https://doi.org/10.1309/h0d4vd760nh6n1r6. 

[17] U.J. Nyúl L.G., Zhang, New variants of a method of MRI scale standardization, IEEE 
Trans Med Imaging 19(2000)143-150, 10.1109/42.836373. 

[18] M. Shafiq-Ul-Hassan, G.G. Zhang, K. Latifi, G. Ullah, D.C. Hunt, Y. Balagurunathan, 
M.A. Abdalah, M.B. Schabath, D.G. Goldgof, D. Mackin, L.E. Court, R.J. Gillies, E. 
G. Moros, Intrinsic dependencies of CT radiomic features on voxel size and number 
of gray levels, Med. Phys. 44 (2017) 1050–1062, https://doi.org/10.1002/ 
mp.12123. 

[19] K. McCartney, K.L. Bub, M. Burchinal, Best practices in quantitative methods for 
developmentalists, Monogr. Soc. Res. Child Dev. 71 (2006) 1–145, https://doi.org/ 
10.1111/j.1540-5834.2006.07103001.x. 

[20] H. Chen, X. Zhang, X. Wang, X. Quan, Y. Deng, M. Lu, Q. Wei, Q. Ye, Q. Zhou, 
Z. Xiang, C. Liang, W. Yang, Y. Zhao, MRI-based radiomics signature for 
pretreatment prediction of pathological response to neoadjuvant chemotherapy in 
osteosarcoma: a multicenter study, Eur. Radiol. 31 (2021) 7913–7924, https://doi. 
org/10.1007/s00330-021-07748-6. 

[21] Q. Huang, C. Chen, J. Lou, Y. Huang, T. Ren, W. Guo, Development of a nomogram 
for predicting the efficacy of preoperative chemotherapy in osteosarcoma, Int. J. 
Gen. Med. 14 (2021) 4819–4827, https://doi.org/10.2147/IJGM.S328991. 

[22] J. Yu, Y. Deng, T. Liu, J. Zhou, X. Jia, T. Xiao, S. Zhou, J. Li, Y. Guo, Y. Wang, 
J. Zhou, C. Chang, Lymph node metastasis prediction of papillary thyroid 
carcinoma based on transfer learning radiomics, Nat. Commun. 11 (2020) 4807, 
https://doi.org/10.1038/s41467-020-18497-3. 

[23] J. Zhang, L. Li, X. Zhe, M. Tang, X. Zhang, X. Lei, L. Zhang, The diagnostic 
performance of machine learning-based radiomics of DCE-MRI in predicting 
axillary lymph node metastasis in breast cancer: a meta-analysis, Front. Oncol. 12 
(2022) 799209, https://doi.org/10.3389/fonc.2022.799209. 

[24] Y. Dai, P. Yin, N. Mao, C. Sun, J. Wu, G. Cheng, N. Hong, Differentiation of pelvic 
osteosarcoma and ewing sarcoma using radiomic analysis based on T2-Weighted 
images and contrast-enhanced T1-weighted images, Biomed. Res. Int. 2020 (2020) 
9078603, https://doi.org/10.1155/2020/9078603. 

[25] P. Yin, X. Zhi, C. Sun, S. Wang, X. Liu, L. Chen, N. Hong, Radiomics models for the 
preoperative prediction of pelvic and sacral tumor types: a single-center 
retrospective study of 795 cases, Front. Oncol. 11 (2021) 709659, https://doi.org/ 
10.3389/fonc.2021.709659. 

[26] R.J. Gillies, P.E. Kinahan, H. Hricak, Radiomics: images are more than pictures, 
they are data, Radiology 278 (2016) 563–577, https://doi.org/10.1148/ 
radiol.2015151169. 

[27] D.C. Sullivan, N.A. Obuchowski, L.G. Kessler, D.L. Raunig, C. Gatsonis, E.P. Huang, 
M. Kondratovich, L.M. McShane, A.P. Reeves, D.P. Barboriak, Metrology standards 
for quantitative imaging biomarkers, Radiology 277 (2015) 813–825, https://doi. 
org/10.1148/radiol.2015142202. 

[28] D.F. Polan, S.L. Brady, R.A. Kaufman, Tissue segmentation of computed 
tomography images using a random forest algorithm: a feasibility study, Phys. 
Med. Biol. 61 (2016) 6553–6569, https://doi.org/10.1088/0031-9155/61/17/ 
6553. 

[29] B. Zhang, J. Tian, D. Dong, D. Gu, Y. Dong, L. Zhang, Z. Lian, J. Liu, X. Luo, S. Pei, 
X. Mo, W. Huang, F. Ouyang, B. Guo, L. Liang, W. Chen, C. Liang, S. Zhang, 
Radiomics features of multiparametric MRI as novel prognostic factors in advanced 
nasopharyngeal carcinoma, Clin. Cancer Res. 23 (2017) 4259–4269, https://doi. 
org/10.1158/1078-0432.CCR-16-2910. 

[30] L. He, Y. Huang, Z. Ma, C. Liang, C. Liang, Z. Liu, Effects of contrast-enhancement, 
reconstruction slice thickness and convolution kernel on the diagnostic 
performance of radiomics signature in solitary pulmonary nodule, Sci. Rep. 6 
(2016) 34921, https://doi.org/10.1038/srep34921. 

[31] S. Zhao, Y. Su, J. Duan, Q. Qiu, X. Ge, A. Wang, Y. Yin, Radiomics signature 
extracted from diffusion-weighted magnetic resonance imaging predicts outcomes 
in osteosarcoma, J Bone Oncol 19 (2019) 100263, https://doi.org/10.1016/j. 
jbo.2019.100263. 

[32] C.A. Karlo, P.L. Di Paolo, J. Chaim, A.A. Hakimi, I. Ostrovnaya, P. Russo, H. Hricak, 
R. Motzer, J.J. Hsieh, O. Akin, Radiogenomics of clear cell renal cell carcinoma: 
associations between CT imaging features and mutations, Radiology 270 (2014) 
464–471, https://doi.org/10.1148/radiol.13130663. 

[33] S. Khaleel, A. Katims, S. Cumarasamy, S. Rosenzweig, K. Attalla, A.A. Hakimi, 
R. Mehrazin, Radiogenomics in clear cell renal cell carcinoma: a review of the 
current status and future directions, Cancers (Basel) 14 (2022) 2085, https://doi. 
org/10.3390/cancers14092085. 

[34] E. Huynh, T.P. Coroller, V. Narayan, V. Agrawal, Y. Hou, J. Romano, I. Franco, R. 
H. Mak, H.J. Aerts, CT-based radiomic analysis of stereotactic body radiation 
therapy patients with lung cancer, Radiother. Oncol. 120 (2016) 258–266, https:// 
doi.org/10.1016/j.radonc.2016.05.024. 

[35] N. Fujima, A. Homma, T. Harada, Y. Shimizu, K.K. Tha, S. Kano, T. Mizumachi, 
R. Li, K. Kudo, H. Shirato, The utility of MRI histogram and texture analysis for the 
prediction of histological diagnosis in head and neck malignancies, Cancer Imaging 
19 (2019) 5, https://doi.org/10.1186/s40644-019-0193-9. 

[36] J. Liu, T. Lian, H. Chen, X. Wang, X. Quan, Y. Deng, J. Yao, M. Lu, Q. Ye, Q. Feng, 
Y. Zhao, Pretreatment prediction of relapse risk in patients with osteosarcoma 
using radiomics nomogram based on CT: a retrospective multicenter study, Biomed 
Res. Int. 2021 (2021) 6674471, https://doi.org/10.1155/2021/6674471. 

[37] L. Yang, Q. Wang, T. Cui, J. Huang, N. Shi, H. Jin, Reporting of coronavirus disease 
2019 prognostic models: the transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis statement, Ann. Transl. Med. 9 (2021) 
421, https://doi.org/10.21037/atm-20-6933. 

[38] J. Zhong, Y. Hu, G. Zhang, Y. Xing, D. Ding, X. Ge, Z. Pan, Q. Yang, Q. Yin, 
H. Zhang, H. Zhang, W. Yao, An updated systematic review of radiomics in 
osteosarcoma: utilizing CLAIM to adapt the increasing trend of deep learning 
application in radiomics, Insights Imaging 13 (2022) 138, https://doi.org/ 
10.1186/s13244-022-01277-6. 

F. Yang et al.                                                                                                                                                                                                                                    

https://doi.org/10.3389/fonc.2021.758921
https://doi.org/10.1016/j.canlet.2019.11.036
https://doi.org/10.1016/j.ebiom.2019.08.059
https://doi.org/10.1016/j.ebiom.2019.08.059
https://doi.org/10.1007/s00261-021-03137-1
https://doi.org/10.1007/s00261-021-03137-1
https://doi.org/10.2214/AJR.19.21696
https://doi.org/10.1148/radiol.2021210109
https://doi.org/10.1148/radiol.211986
https://doi.org/10.1148/radiol.211986
https://doi.org/10.1016/j.breast.2019.10.018
https://doi.org/10.1007/s00261-019-02028-w
https://doi.org/10.1002/cncr.11456
https://doi.org/10.1309/h0d4vd760nh6n1r6
https://doi.org/10.1002/mp.12123
https://doi.org/10.1002/mp.12123
https://doi.org/10.1111/j.1540-5834.2006.07103001.x
https://doi.org/10.1111/j.1540-5834.2006.07103001.x
https://doi.org/10.1007/s00330-021-07748-6
https://doi.org/10.1007/s00330-021-07748-6
https://doi.org/10.2147/IJGM.S328991
https://doi.org/10.1038/s41467-020-18497-3
https://doi.org/10.3389/fonc.2022.799209
https://doi.org/10.1155/2020/9078603
https://doi.org/10.3389/fonc.2021.709659
https://doi.org/10.3389/fonc.2021.709659
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015142202
https://doi.org/10.1148/radiol.2015142202
https://doi.org/10.1088/0031-9155/61/17/6553
https://doi.org/10.1088/0031-9155/61/17/6553
https://doi.org/10.1158/1078-0432.CCR-16-2910
https://doi.org/10.1158/1078-0432.CCR-16-2910
https://doi.org/10.1038/srep34921
https://doi.org/10.1016/j.jbo.2019.100263
https://doi.org/10.1016/j.jbo.2019.100263
https://doi.org/10.1148/radiol.13130663
https://doi.org/10.3390/cancers14092085
https://doi.org/10.3390/cancers14092085
https://doi.org/10.1016/j.radonc.2016.05.024
https://doi.org/10.1016/j.radonc.2016.05.024
https://doi.org/10.1186/s40644-019-0193-9
https://doi.org/10.1155/2021/6674471
https://doi.org/10.21037/atm-20-6933
https://doi.org/10.1186/s13244-022-01277-6
https://doi.org/10.1186/s13244-022-01277-6

	Preoperative prediction of high-grade osteosarcoma response to neoadjuvant therapy based on a plain CT radiomics model: A d ...
	1 Introduction
	2 Materials and methods
	2.1 Patients and dataset
	2.2 Clinical and pathological data
	2.3 CT examination
	2.4 Select features and develop models

	3 Statistical analyses
	4 Results
	4.1 Festures of patient
	4.2 Outcomes achieved using different models for the prediction and classification of pGR and non-pGR
	4.3 Visualization and clinical application of artificial intelligence model

	5 Discussion
	5.1 Deficiency

	6 Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	References


