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Abstract Human sound localization is an important computation performed by the brain.

Models of sound localization commonly assume that sound lateralization from interaural time

differences is level invariant. Here we observe that two prevalent theories of sound localization

make opposing predictions. The labelled-line model encodes location through tuned

representations of spatial location and predicts that perceived direction is level invariant. In

contrast, the hemispheric-difference model encodes location through spike-rate and predicts that

perceived direction becomes medially biased at low sound levels. Here, behavioral experiments

find that softer sounds are perceived closer to midline than louder sounds, favoring rate-coding

models of human sound localization. Analogously, visual depth perception, which is based on

interocular disparity, depends on the contrast of the target. The similar results in hearing and vision

suggest that the brain may use a canonical computation of location: encoding perceived location

through population spike rate relative to baseline.

DOI: https://doi.org/10.7554/eLife.47027.001

Introduction
A fundamental question of human perception is how we perceive target locations in space. Through

our eyes and skin, the activation patterns of sensory organs provide rich spatial cues. However, for

other sensory dimensions, including sound localization and visual depth perception, spatial locations

must be computed by the brain. For instance, interaural time differences (ITDs) of the sounds reach-

ing the ears allow listeners to localize sound in the horizontal plane. In the ascending mammalian

auditory pathway, the first neural processing stage where ITDs are encoded, on the timescale of

microseconds, is the medial superior olive (MSO). Here, temporally precise binaural inputs converge,

and their ITDs are converted to neural firing rate (Goldberg and Brown, 1968; Yin and Chan, 1990;

Spitzer and Semple, 1995; Pecka et al., 2010; Day and Semple, 2011). The shape of the MSO out-

put firing rate curves as a function of ITD resembles that of a cross-correlation operation on the

inputs to each ear (Batra and Yin, 2004). How this information is interpreted downstream of the

MSO has led to the development of conflicting theories on the neural mechanisms of sound localiza-

tion in humans. One prominent neural model for sound localization, originally proposed by Jeffr-

ess (1948), consists of a labelled line of coincidence detector neurons that are sensitive to the

binaural synchronicity of neural inputs from each ear, with each neuron maximally sensitive to a spe-

cific magnitude of ITD (Figure 1A). This labelled-line model is computationally equivalent to a neural

place-code based on bandlimited cross-correlations of the sounds reaching both ears (Domnitz and

Colburn, 1977). Several studies support the existence of labelled-line neural place-code mechanisms

in the avian brain (Carr and Konishi, 1988; Overholt et al., 1992), and versions of it have success-

fully been applied in many engineering applications predicting human localization performance (e.g.
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Durlach, 1963; Hafter, 1971; Stern and Trahiotis, 1995; Breebaart et al., 2001; Hartmann et al.,

2005).

A growing literature proposes an alternative to the labelled-line model to explain mammalian

sensitivity to ITD (Lee and Groh, 2014). One reason for an alternative is that two excitatory inputs

should suffice to implement the labelled-line model, but evidence from experiments on Mongolian

gerbils shows that in addition to bilateral excitatory inputs, sharply tuned bilateral inhibitory inputs

to the MSO play a crucial role in processing ITDs (Brand et al., 2002). Moreover, to date no

labelled-line type neurons encoding auditory space have been discovered in a mammalian species.

Indeed, using a population rate-code, several studies proposed that mammalian sound localization

can be modeled based on differences in firing rates across the two populations of neurons that are

tuned to opposing hemispheres (Figure 1B; van Bergeijk, 1962; McAlpine and Grothe, 2003;

Devore et al., 2009). Rate-based models generally predict that neuronal responses carry most infor-

mation at the steepest slopes of neural-discharge-rate versus ITD curves, where neural discharge

changes most strongly (Stecker et al., 2005), consistent with the observation that the peak ITDs of

rate-ITD curves often fall outside the physiologically plausible range (McAlpine and Grothe, 2003;

Grothe et al., 2010; but see also Joris et al., 2006). In addition, some authors have suggested that

how mammalian sound localization adapts to stimulus history further supports a rate-based neural

population code, as assessed behaviorally or via magnetoencephalography (Phillips and Hall, 2005;

Stange et al., 2013; Salminen et al., 2010).

It is unknown which of the two competing models, broadly characterized as labelled-line versus

rate-code model, describes human sound localization better. Here, we observe that the two different

models predict different dependencies of sound localization on sound intensity. By combining

behavioral data on sound intensity dependence in normal-hearing listeners with numerical

eLife digest Being able to localize sounds helps us make sense of the world around us. The

brain works out sound direction by comparing the times of when sound reaches the left versus the

right ear. This cue is known as interaural time difference, or ITD for short. But how exactly the brain

decodes this information is still unknown.

The brain contains nerve cells that each show maximum activity in response to one particular ITD.

One idea is that these nerve cells are arranged in the brain like a map from left to right, and that the

brain then uses this map to estimate sound direction. This is known as the Jeffress model, after the

scientist who first proposed it. There is some evidence that birds and alligators actually use a system

like this to localize sounds, but no such map of nerve cells has yet been identified in mammals. An

alternative possibility is that the brain compares activity across groups of ITD-sensitive nerve cells.

One of the oldest and simplest ways to measure this is to compare nerve activity in the left and right

hemispheres of the brain. This readout is known as the hemispheric difference model.

By analyzing data from published studies, Ihlefeld, Alamatsaz, and Shapley discovered that these

two models make opposing predictions about the effects of volume. The Jeffress model predicts

that the volume of a sound will not affect a person’s ability to localize it. By contrast, the

hemispheric difference model predicts that very soft sounds will lead to systematic errors, so that for

the same ITD, softer sounds are perceived closer towards the front than louder sounds. To

investigate this further, Ihlefeld, Alamatsaz, and Shapley asked healthy volunteers to localize sounds

of different volumes. The volunteers tended to mis-localize quieter sounds, believing them to be

closer to the body’s midline than they actually were, which is inconsistent with the predictions of the

Jeffress model.

These new findings also reveal key parallels to processing in the visual system. Visual areas of the

brain estimate how far away an object is by comparing the input that reaches the two eyes. But

these estimates are also systematically less accurate for low-contrast stimuli than for high-contrast

ones, just as sound localization is less accurate for softer sounds than for louder ones. The idea that

the brain uses the same basic strategy to localize both sights and sounds generates a number of

predictions for future studies to test.

DOI: https://doi.org/10.7554/eLife.47027.002
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predictions of human sound lateralization from both models, we attempt to disentangle whether

human auditory perception is based on a place-code, akin to the labelled-line model, or whether it is

instead more closely described by a population rate-code.

An extensive physiology literature characterizes labelled-line versus population-rate type neurons

and suggests that, at least from the perspective of evolution, birds and mammals use different neu-

ral mechanisms to calculate sound direction (review: Grothe, 2003). Thus, we searched the avian

and mammalian physiology literature and identi-

fied two studies that characterized labelled-line

versus population rate-code neurons at low

sound levels and as a function of both sound level

and ITD (Peña et al., 1996; Zwiers et al., 2004).

Both Peña et al. (1996) and Zwiers et al. (2004)

report neural firing rate in response to acoustic

noise stimuli and are thus suitable for predicting

each model’s sensitivity to the acoustic noises we

tested in the current study. Here, we ran a meta-

analysis, reconstructing simulated neurons with

response characteristics from each of the two

studies and using maximum likelihood estimation

to predict source laterality from these previous

findings.

Results

Model Predictions
To predict how lateralization depends on sound

intensity from the responses of labelled-line neu-

rons, we estimated neural firing rates from previ-

ous recordings in the nucleus laminaris in barn

owl (Peña et al., 1996). To estimate lateraliza-

tion’s dependence on level based on a popula-

tion rate-code, we used previous recordings from

the inferior colliculus of rhesus macaque monkey

and calculated hemispheric differences in firing

rate (Zwiers et al., 2004). The labelled-line neu-

rons predicted that, as sound intensity decreases,

perceived source laterality would converge

towards similar means for low versus high sound

intensities, with increased response variability at

decreasing sound intensities (Figure 1C). In con-

trast, the hemispheric-difference model predicted

that as sound intensity decreases to near thresh-

old levels, perceived laterality would become

increasingly biased toward the midline reference

(Figure 1D, for example note the shallower slope

and thus compressed laterality percepts for red

versus blue curves). At higher overall sound inten-

sities, both models predicted that lateralization

would be intensity invariant (see insets in

Figure 1C versus D). Therefore, analyzing how

sound intensity affects perceived sound direction

near sensation threshold offers an opportunity to

disentangle whether our human auditory system

relies on a place-based or rate-based population

code for localizing sound based on ITD.
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Figure 1. Modeling results. (A) Firing rate of a

simulated nucleus laminaris neuron with a preferred

ITD of 375 ms, as a function of source ITD. The model

predicts source laterality based on the locus of the

peak of the firing rate function. (B) Hemispheric

differences in firing rates, averaged across all 81

simulated inferior colliculus units. Rate models assume

that source laterality is proportional to firing rate,

causing ambiguities at the lowest sound intensities.

Inset: Reconstructed responses of an inferior colliculus

unit. The unit predominantly responds contralaterally to

the direction of sound (high-contrast traces). The

hemispheric difference model subtracts this activity

from the average rate on the ipsilateral side (example

shown with low-contrast traces). (C) Mean population

response using labelled-line coding across a range of

ITDs and sound intensities. Inset: The root-mean

square (RMS) difference relative to estimated angle at

80 dB SPL does not change with sound intensity,

predicting that sound laterality is intensity invariant. (D)

Mean population response using hemispheric-

difference coding. For lower sound intensities,

predicted source direction is biased towards midline

(compare red and orange versus blue or yellow). For

higher sound intensities, predicted source direction is

intensity invariant (blue on top of yellow line). Inset:

RMS difference relative to estimated angle at 80 dB

SPL decreases with increasing sound intensity,

predicting that sound laterality is not intensity invariant.

Ribbons show one standard error of the mean across

100 simulated responses. Sound intensity is denoted by

color (see color key in the figure).
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A listener’s ability to discriminate ITD can vary with sound intensity (Dietz et al., 2013). However,

it is difficult to interpret previous findings linking sensitivity to ITD and a listener’s judgement of

sound source direction as a function of sound intensity. Some reported decreased perceived source

laterality near sensation threshold (Teas, 1962; Sabin et al., 2005), but others reported weak or no

level effects on perceived lateralization (Von Békésy and Wever, 1960; Mickunas, 1963;

Hartmann and Rakerd, 1993; Macpherson and Middlebrooks, 2000; Inoue, 2001; Vliegen and

Van Opstal, 2004; Brungart and Simpson, 2008; Gai et al., 2013). Several factors complicate the

interpretation of these previous findings in the context of the current hypothesis. For instance,

assuming an approximately 30 dB dynamic range of rate-level function either at the MSO or down-

stream in the binaural pathway (e.g. medial superior olive: Goldberg and Brown, 1968; inferior colli-

culus: Zwiers et al., 2004), for stimuli at higher sensation levels (SL) where the rate-level functions

saturate, both the labelled-line and the hemispheric difference model predict level invariance. This

could explain how studies that tested for the role of sound level over a range of high intensities did

not see an effect. Moreover, when presented in the free field, sounds also contain interaural level

differences and spectral cues, in addition to ITD. For low-frequency sound, listeners rely dominantly

on ITD when judging lateral source angle. However, for broadband sound, listeners integrate across

all three types of spatial cue (Wightman and Kistler, 1992; Ihlefeld and Shinn-Cunningham, 2011).

Unlike ITDs, interaural level differences and overall sound intensity both decrease with increasing

source distance, raising the possibility that for stimuli with high-frequency content, listeners judged

softer sounds to be more medial because they interpreted them to be farther away than louder

sounds. Further, at low sound intensities, the sound-direction-related notches of the spectral cues at

high-frequencies should have been less audible than at higher sound intensities, increasing stimulus

ambiguity. A resulting increase in response variability may have obscured the effect of

sound intensity on ITD coding. Finally, some historic studies used only two or three listeners, sug-

gesting that they may have been statistically underpowered. Thus, the literature provides insufficient

evidence on how ITD-based lateralization varies with sound level near sensation threshold.

Human perception
Here, we contrasted two competing hypotheses toward the goal of disentangling whether ITD-

based human sound localization relies on a labelled-line versus a population rate-place neural code.

The labelled-line code hypothesis predicted that the mean perceived direction based on ITD would

be intensity invariant, even at intensities close to SL. Using a psychophysical paradigm, we studied

lateralization based on ITD as a function of sound intensity in a group of ten normally hearing listen-

ers (experiment 1). Stimuli consisted of low-frequency noise tokens that were bandlimited to cover

most of the frequency range where humans can discriminate ITD (Brughera et al., 2013; here, cor-

ner frequencies from 300 to 1200 Hz, shown in Figure 2A). In each one-interval trial, listeners had to

indicate perceived laterality across a range of ITDs from �375 to 375 ms. Lateralization was mea-

sured as function of SL. To examine how sound intensity affects perceived ITD coding of source

direction, we modelled perceived laterality with a nonlinear mixed effect model (NLME) that

included fixed effects of ITD and sound intensity as well as a random effect of listener.

Figure 2B depicts lateralization performance with spectrally flat noise at two sound intensities for

a representative listener (TCW). Figure 2C shows raw data (circles) and NMLE fits (lines) across all lis-

teners. Error bars show one standard error of the mean across listeners, and shaded ribbons indicate

one standard error of the mean fit across listeners. This model predicts 80.6% of the variance in the

measured responses and is deemed an appropriate fit of the data. Table 1 lists all NLME parame-

ters. Perceived laterality scores increased with increasing ITD, as expected. With decreasing sound

intensity, percepts were increasingly biased towards midline (compare order of colored lines, magni-

fied in the inset of Figure 2C). These trends were supported by the NLME model, which revealed

significant effects of ITD (p<0.001; ax1) and sound intensity (p<0.001; ay1) on the maximal extent of

laterality, confirming the predicted trend from the hemispheric difference model and rejecting our

null hypothesis. Average pure tone audiometric thresholds affect perceived laterality, albeit mildly

(p<0.001; ay2 = 0.01). Sound intensity did not significantly affect the slope of the psychometric func-

tions (p=0.14; ax2).

In a second experiment, we examined whether these results were robust to the spectral details of

the stimuli. A caveat of testing spectrally flat noise at low sound intensities is that parts of the spec-

trum may be inaudible, and this may contribute to the slight but significant effect of audibility on
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laterality (ay2). Therefore, the results of experiment 1 could potentially be confounded by the fact

that the bandwidth of the audible portion of the noise tokens decreased with decreasing sound

intensity. Alternatively, the effect of absolute pure tone detection thresholds that we observe in our

normal-hearing listeners may reflect differences in neural function beyond audibility. As a control for

perceived stimulus bandwidth, the same listeners were tested again, using inverse A-weighted

noises (experiment 2). Inverse A-weighting boosts sound energy at each frequency in rough propor-

tion to the human threshold. Resulting inverse A-weighted sensitivity thus achieves nearly constant

sensation level across frequency. All of the original ten listeners from experiment 1 completed

experiment 2. Methods were similar as in the first experiment, except that the stimuli consisted of

inversely A-weighted noise (compare magnitude spectra in Figure 2A). The data and NLME model

fits for the second experiment are shown in Figure 2D (color key identical to Figure 2C), and coeffi-

cients are listed in Table 2. This second model accounts for 80.4% of the variance in the data, closely

fitting the measured responses. All NLME coefficients are significant (p<0.001 for ax1; ax2; ay1 and

ay2). The intercept coefficient (ax0 estimate = �0.60, SE = 0.03, p<0.001) revealed a slight leftward

response bias, consistent with a slight narrowband interaural level difference in our stimuli due to

precision limits of our test system. The fact that ax2 is significant shows that when all noise portions
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are approximately equally audible, as here, with inverse A-weighted noise, both perceived laterality

and the slope linking the change in laterality to ITD decrease with decreasing sound intensity. This is

consistent with the interpretation that by controlling for audibility across-frequency, the sensitivity of

the task to sound level increases, revealing a medial bias effect not only for the most lateral but also

for more medial source angles.

Thus, the results confirm the effect of biasing perceived laterality toward midline with decreasing

sound intensity. Therefore, for both spectrally flat noise and A-weighted noise, statistical analyses,

which partialed out overall differences between listeners, are inconsistent with a labelled-line model

of human sound localization.

Discussion
Population rate-coding to compute sensory dimension may not be unique to the auditory system. In

analogy to sound localization based on the comparison of signals from the two ears (Figure 3A),

visual depth is computed in the cerebral cortex based on signals from the two eyes (Figure 3B; Pog-

gio, 1995; Parker and Cumming, 2001; Parker, 2016). Specifically, in both primary V1 and extras-

triate V3a cortex of rhesus macaque monkeys, three types of neurons are thought to encode

binocular disparity. ‘Tuned-excitatory’ neurons respond best to zero spatial disparity between the

two eyes, whereas ‘near cells’ respond more vigorously when an object approaches, increasing

crossed disparity between the eyes (Parker and Cumming, 2001). Finally, ‘far cells’ fire more vigor-

ously as uncrossed disparity increases. In V1, the most frequently encountered type of binocular neu-

rons are of the tuned-excitatory type. However, in V3a the large majority of neurons is stereo-

specific (Poggio et al., 1988) and most neurons are either near or far cells. Functional magnetic res-

onance imaging experiments on human stereoscopic vision found that unlike V1 activity, the activity

in cortical area V3a predicts behavioral performance on tasks involving stereoscopic depth

(Backus et al., 2001). These observations lead us to propose that in order to compute perceptual

space from sensory input, the central nervous system has evolved a canonical computation that is

Table 1. Results of Nonlinear Mixed Effects Model for flat-spectrum noise condition.

Note that Laterality:sound intensity refers to the NLME weight attributed to acoustic sound intensity

of the auditory target. In contrast, Laterality:audibility captures the NLME weight attributed to pure

tone audiometric thresholds based on the listeners’ perceptual abilities (see Materials and methods

for details).

Description Value Std.error t-value p-value

Intercept: ITD ax0 0.06 0.04 1.58 0.11

Slope: ITD ax1 2.45 0.05 46.15 <0.001 ***

Slope: sound intensity ax2 0.02 0.01 1.47 0.14

Laterality: sound intensity ay1 0.05 0.01 7.59 <0.001 ***

Laterality: audibility ay2 0.01 0.002 4.86 <0.001 ***

10986 degrees of freedom.

DOI: https://doi.org/10.7554/eLife.47027.005

Table 2. Results of Nonlinear Mixed Effects Model for inverse A-weighted noise condition.

NLME weight Value Std.error t-value p-value

Intercept: ITD ax0 �0.60 0.03 �19.28 <0.001 ***

Slope: ITD ax1 2.57 0.06 46.26 <0.001 ***

Slope: sound intensity ax2 0.06 0.01 4.98 <0.001 ***

Laterality: sound intensity ay1 0.04 0.01 7.10 <0.001 ***

Laterality: audibility ay2 0.01 0.002 3.30 <0.001 ***

10986 degrees of freedom.

DOI: https://doi.org/10.7554/eLife.47027.006
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common to different sensory modalities. Specifically, we propose that near and far cells encode

visual distance from the fixation plane in a way similar to how inferior colliculus neurons encode audi-

tory azimuthal angle away from midline reference: firing rate increases monotonically with distance

from perceptual reference anchor or fixation.

We observe that in both the auditory and the visual system, the same cells that are tuned to bin-

aural ITD or binocular disparity also have intensity-response functions. A rate-code based on a popu-

lation of these cells should cause ambiguities when stimulated below the saturation firing rate, either

at low sound intensity or at low contrast (Figure 3C). Thus, based on the analogies between the ste-

reo-depth computation and the azimuth-ITD computation, we hypothesized that low visual contrast

might affect the computation of depth in a manner analogous to the effect of low sound levels in

sound localization—there might be a bias to lower perceived depth at lower contrast (Figure 3D).

Indeed, one study found such an effect, but only in some observers (Cisarik and Harwerth, 2008).

A confounding factor in that earlier study is that perceived depth is a complicated neural computa-

tion, not only dependent on stereoscopic disparity but also on monocular cues including contrast

(Parker, 2016). Several studies on depth perception indicate that low contrast is interpreted by the

brain as a cue for distance; lower contrast targets are perceived farther away (e.g. Schor and

Howarth, 1986; Rohaly and Wilson, 1999). However, experiments that controlled for low contrast

bias demonstrated that low contrast causes perceived depth to shrink, both for near and far devia-

tions from baseline (Chen et al., 2016). Thus, there is a link between population rate-coding and

stimulus intensity in perceived visual depth as in perceived auditory azimuth, two perceptual spatial

dimensions computed by the brain.

To illustrate how rate-based decoding of tar-

get location varies with sound intensity, we here

chose a rate-coding model that compares firing

rates across two populations of neurons, tuned to

opposite hemifields. This read-out is a direct real-

ization of the original canonical rate-based model

for ITD decoding (van Bergeijk, 1962). Alterna-

tive rate-code readouts exist (for a recent sum-

mary of binaural models, see Dietz et al., 2018).

Most of these rate-code models rely on subtrac-

tive comparisons between populations of neu-

rons that are tuned to opposite hemifields,

inherently sharing ambiguous readouts at low

suprathreshold sound intensities. In contrast, divi-

sive comparisons between ipsi- and contralater-

ally tuned neural populations are less likely to

predict the observed behavioral bias due to stim-

ulus intensity (Groh, 2001). Future work will need

to delineate how specific implementations of

rate-based readouts shape the intensity-induced

bias of sound localization. Moreover, it has been

suggested that depending on perceptual task,

the mammalian brain could combine place- and

rate-codes (Porter and Groh, 2006;

Goodman et al., 2013). For instance, the mam-

malian auditory pathway may convert place- into

rate-codes and vice versa (Groh et al., 2003;

Porter and Groh, 2006). However, downstream

from the inferior colliculus, rate-coding seems to

be maintained, at least in the superior colliculus

of rhesus macaque (Werner-Reiss and Groh,

2008; Lee and Groh, 2014). Moreover, our psy-

chophysical and computational results suggest

that for sound localization based on ITD at low

sound levels, cortical maps do not play a role.
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Figure 3. Conceptual model of canonical computation

of location. (A) Computing sound direction requires

analysis of the binaural difference between the signals

reaching the left and right ear. (B) Estimating visual

depth hinges on analysis of the binocular disparity

between the signals reaching left and right eye. (C) For

both hearing and vision, the proportion of the neural

population that is stimulated (in the inferior colliculus

or V3) depends both on the physical dimension to be

estimated (source laterality or source distance) and the

intensity of the stimulus (sound intensity or visual

contrast). For hearing and vision, ambiguity in this

putative neural code predicts D) biased responses at

low stimulus intensities (sound intensity or contrast).

DOI: https://doi.org/10.7554/eLife.47027.007
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However, there is good evidence for spatial map-like signals in higher order auditory cortical fields

when interaural level differences are present, at medium to high sound levels (Higgins et al., 2010).

How these interaural-level-difference-based cortical maps influence sound localization behavior is

yet to be determined.

An additional factor restricting rate-based readouts is that auditory cortex units display nonlinear

rate-intensity functions. For instance, excitatory-excitatory (EE) cells in auditory cortex that are tuned

to sound locations near midline are also often tuned for sound intensity (Semple and Kitzes, 1993;

Pollak et al., 2002; Zhang et al., 2004; Razak and Fuzessery, 2010; Higgins et al., 2010). This

intensity tuning may complicate rate-based decoding at higher sound intensities. However, it is not

apparent at the very low sound intensities needed to explain the perceptual bias observed here.

There are additional fascinating findings in the neurophysiological literature regarding frequency

and intensity tuning, and interesting correlations between non-monotonicity in the azimuthal and

intensity dimensions (Woods et al., 2006), but a detailed discussion of these points is beyond the

scope of the present behavioral-computational study.

In summary, unlike predictions from a rate-code neuronal readout, labelled-line coding predicts

that sound localization is intensity invariant. Our experimental results show that for low frequency

noise, where ITDs are the dominant localization cue, and at low sound intensities, sound lateraliza-

tion based on ITD is not intensity invariant; it becomes increasingly medially biased with decreasing

SL. The observed localization bias is overall small in magnitude, showing that the brain can robustly

localize based on ITD across a large range of sound intensities. However, this bias is of theoretical

importance as it confirms the prediction of a subtractive rate-based neuronal readout. Moreover,

our auditory finding parallels a phenomenon of visual fixation bias when calculating visual distance

from binocular disparity at low contrast. This casts doubt on the idea that the neural mechanism of

ITD-based sound localization and binocular disparity-based visual distance estimation are based on

place-based coding. Instead, our perceptual data on auditory localization together with previously

published data on visual distance perception are parsimonious with the idea that a population rate-

code underlies the brain’s computation of location.

Materials and methods

Experimental model and subject details
Twelve naı̈ve normal-hearing listeners (ages 18–27, five females) were enrolled in this study and paid

for their time. Their audiometric thresholds, as assessed via a calibrated GSI 39 Auto Tymp device

(Grason-Stadler), were 25 dB hearing level or better at octave frequencies from 250 to 8000 Hz, and

did not differ by more than 10 dB across ears at each octave frequency. This study was approved by

and all testing was administered according to the guidelines of the Institutional Review Board of the

New Jersey Institute of Technology, protocol F217-14. All listeners gave written informed consent

both to participate in the study and to publish the results with confidential listener identity.

Method details
Listeners were seated in a double-walled sound-attenuating booth (Industrial Acoustics Company)

with a noise floor of 20.0 dB SPL (wideband LAFeq). Stimuli were digitally generated in Matlab

R2016b (The MathWorks, Inc), D/A converted through an external sound card (Emotiva Stealth DC-

1) at a sampling frequency of 192 kHz, with a resolution of 24 bits per sample, and presented to the

listener through ER-2 insert earphones (Etymotic Research Inc). The equipment was calibrated using

an acoustic mannequin (KEMAR model, G.R.A.S. Sound and Vibration) with a precision of less than

±5 ms ITD and less than ±1 dB interaural level difference. Foam eartips were inserted following

guidelines provided by Etymotic Research to encourage equal representation of sounds to both ears

and minimize interaural leakage. Each session lasted approximately 60 min. Listeners kept the insert

earphones placed inside their ears throughout testing. Insert earphones were replaced by the exper-

imenter after each break. Throughout this study, to generate stimuli, tokens of uniformly distributed

white noise were generated and bandpassed using a zero-phase Butterworth filter with 36 dB/octave

frequency roll-off, and 3 dB down points at 300 and 1200 Hz. Each noise token was 1 s in duration,

including 10 ms long squared cosine ramps at the onset and offset.
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Sensation level measurements
At the beginning of each session, and, as a re-test control, mid-way through each session, each indi-

vidual listener’s SL was measured for the type of sound that was later on used for training and test-

ing, via one run of adaptive tracking. On each one-interval trial of each track, a new noise token was

generated and presented diotically. Trials were spaced randomly in time (uniform distribution, inter-

token intervals from 3 to 5.5 s). Listeners pressed a button when they heard a sound. No response

feedback was given.

On each trial, a response was scored a ‘hit’ if a listener responded with a button push before the

onset of the subsequent trial, and a ‘miss’ if the listener did not respond during the interval. If a lis-

tener’s response changed from hit to miss or from miss to hit across sequential trials, this was inter-

preted as a response reversal. Using one-up-one-down adaptive tracking, the noise intensity was

increased or decreased after each reversal, with a step size of 5 dB (decreasing) or 2.5 dB (increas-

ing). Each listener completed ten adaptive-track reversals, with SL threshold equaling the median of

the final six reversals. Each SL was used as reference intensity for the subsequent 30 min of testing.

If detection thresholds changed between initial test and re-test control by more than 5 dB, this indi-

cated that an insert earphone moved, and the experimenter replaced the earphones. Thresholds

generally did not change by more than 5 dB.

Training
To train listeners on consistently reporting their perception of ITD, using adaptive tracking, listeners

matched the perceived laterality of a variable-ITD pointer to that of a fixed-ITD target. Target token

intensity was set relative to the listener’s own diotic sensation threshold, at 10 or 25 dB SL, and pre-

sented with 0 dB interaural level difference. The pointer intensity was fixed at 25 dB SL. Target ITDs

spanned the range from �375 to 375 ms, in 75 ms steps. Target ITDs and SLs were randomly inter-

leaved across runs, but held fixed throughout each adaptive run. In each two-interval trial of a run,

the pointer token was presented in the first, and the target token in the second interval. The start

ITD of the pointer token at the beginning of each run equaled 0 ms. Using a hand-held controller

(Xbox 360 wireless controller for Windows, Microsoft Corp.), listeners adjusted the ITD of the pointer

token. Specifically, listeners pushed the directional keys (D-pad) either to the left or right in order to

move and match the pointer direction with that of the target sound. When a listener indicated a left-

or right-ward response, the pointer ITD was decreased or increased. Initial ITD step size equaled

100 ms, then 50 ±5 ms (uniformly distributed) after the first reversal. By the end of the second rever-

sal, ITD step size was reduced to 25 ±5 ms (uniformly distributed) and remained the same for all of

the following reversals. Listeners were instructed to ‘home in’ on the target by moving the pointer

initially to a position more lateral than the target, then more medial than the target with the goal of

centering on the target. No response feedback was provided. A run was completed after a listener

had completed a total of five adaptive-tracking reversals. For each target ITD, the matched pointer

ITD was estimated by averaging the pointer ITDs of the final two reversals. Each listener performed

three sessions of training: In the first session only a subset of target ITDs were presented (�375,–
150, 0, 150 and 375 ms), whereas the two following sessions included all of the eleven ITDs. Per train-

ing session, each ITD was presented once at 10 and 25 dB SL, for a total of 54 adaptive tracking

runs across all training sessions. To familiarize listeners with the experimental task (described below),

at the end of second and third sessions of training listeners performed an additional 5 blocks of the

experimental testing task, without response feedback. These task training data were not used for

statistical analysis.

To assess whether listeners could reliably report their lateralization percepts, training perfor-

mance was evaluated for each listener by calculating the Pearson correlation coefficient between tar-

get ITD and matched pointer ITD in the final training session. Criterion correlation equaled 0.9

(N = 11 ITDs, significance level = 0.01, power = 0.95). Ten listeners reached criterion, suggesting

that they were able to consistently report where they perceived the sounds based on ITD. Two of

the originally recruited twelve listeners failed to reach training criterion (R2 = <0.84, 0.87>) and were

excluded from testing.
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Testing
Using the method of fixed stimuli, we tested lateralization in two experiments. Except for the stimuli,

which consisted of spectrally flat noise tokens in experiment 1 and A-weighted noise tokens in

experiment 2, the methods were similar across the two experiments. Noise tokens were generated

from a statistically similar noise distribution as those presented during both SL measurements and

training (see Overall Design). A touchscreen monitor (Dell P2314T) displayed the response interface

at about 40 cm distance from the listener. Using a precise touch stylus (MEKO Active Fine Point Sty-

lus 1.5 mm Tip), listeners indicated perceived laterality of noise in a one-interval task. Noise tokens

were presented at 5, 10, 15, 20, and 25 dB SL. ITDs varied randomly from trial to trial, in 75 ms steps

spanning the range from �375 ms to 375 ms. On each trial, a new token of noise was generated.

Each listener performed 20 blocks of 55 trials each (11 ITDs at each of the five sound intensities),

with SL measured both before the first and the eleventh block. ITDs and sound intensity were ran-

domly interleaved from trial to trial such that each combination of ITD and sound intensity was pre-

sented once before all of them were repeated in a different random order.

Models
We estimate the combined effects of ITD and sound intensity on predicted source laterality both in

avian labelled-line type units and in binaurally sensitive units of a mammalian auditory system. The

sound intensities where we expect to see an effect of overall sound level fall below 30 dB SPL,

because only in this range would most auditory neurons fire below saturation, allowing us to disam-

biguate labelled-line versus hemispheric rate-difference coding. However, scant data exist for either

type of unit at sound pressure levels below 30 dB SPL. We identified two prior studies that have

measured neural discharge rate as a function of ITD at these very low sound intensities. Both studies

used noise as acoustic stimuli, and the neural response statistics they report are thus suitable for esti-

mating what type of information would be available to either type of coding mechanism with the

type of noise stimuli that human listeners lateralized in the behavioral experiments here.

One study in barn owl shows that the output functions of nucleus laminaris neurons can be mod-

eled through interaural cross-correlation functions, even at very low sound intensities (Peña et al.,

1996). That study reports Pearson correlation coefficients between the neural response function of

nucleus laminaris units at 50 dB SPL versus all other tested sound levels. To reconstruct the spatial

information realistically available from the output of labelled-line neurons, across both a range of

�375 to 375 ms ITD in 20 ms steps, we first constructed biologically plausible interaural cross-correla-

tion functions at 50 dB SPL and then added internal noise to the resulting curves to mimic the Pear-

son correlation coefficients reported by Peña et al. (1996). Our model predictions pertain to sound

intensities spanning the range from 10 to 70 dB SPL, similar to previous work (Peña et al., 1996).

Due to overall scarcity of available data at low dB SPL, here we use firing rate characteristics for unit

# 0123795–530.02 (Peña et al., 1996) with a nominal best frequency of 1 kHz. To generate the

acoustic inputs to the labelled-line model, we initially generated a Gaussian noise token, duplicated

it and introduced a variable ITD, spanning a range from �375 to 375 ms, with 20 ms step size and 0

dB interaural level difference. To simulate ITD information available after cochlear processing, we

then processed both noises with a 1/3-octave wide bandpass filter with 24 dB/octave frequency roll-

off, followed by half-wave rectification and low-pass filtering at 1500 Hz. We then simulated internal

noise by adding uniformly distributed dichotic noise tokens with mean spontaneous firing rates of

5% of the root mean square value of the signal, resulting in left (L) and right (R) inputs to the binaural

cross-correlation neurons, called xL tð Þ and xR tð Þ. To establish 50 dB SPL reference functions, at each

simulated ITD, we then calculated the binaural cross-correlation function cc tð Þ of xL tð Þ and xR tð Þ, as

follows: ccðtÞ ¼ 300þ ð450� 300Þ
R þ¥
�¥

xLðtÞxRðtþtÞdtÞ

maxj
R þ¥
�¥

xLðtÞxRðtþtÞdtj
, with t signifying the best ITD of each neuron, and

extrema scaled such that cc tð Þ spans a range from 300 to 450 spikes/sec, approximating nucleus

laminaris firing rates at 50 dB SPL (Peña et al., 1996). To simulate non-sound driven neural dis-

charge, we then added uniformly distributed random noise ĉcref tð Þ ¼ cc tð Þ þ U 0; �ð Þ, with a mean

discharge of � = 5 spikes/sec, (Peña et al., 1996). The resulting signal is our reference cross-correla-

tion function at 50 dB SPL, called ccref tð Þ, shown in Figure 1A as yellow bold line for a representative

simulated neuron.
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For each sound level and ITD, we then statistically reconstructed a family of interaural cross-corre-

lation functions that match the originally reported functions (Peña et al., 1996). Specifically, we

added scaled dichotic uniformly distributed noise tokens nL tð Þ  U 0; �ð Þ and nR tð Þ  U 0; �ð Þ to the

xL tð Þ and xR tð Þ, such that the monaural inputs to the binaural cross-correlation functions equal

x̂L;R tð Þ ¼ axL;R tð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

nL;R tð Þ. The resulting cross-correlation function for each sound level and

ITD is then ĉc tð Þ ¼ xL$xRð Þ tð Þ, shown for a representative neuron in Figure 1A as blue, brown and

red lines corresponding to 70, 30 and 10 dB SPL. We then searched through the space of scaling

coefficients a until the Pearson correlation coefficient between ccref tð Þ and ĉc tð Þ matched the coeffi-

cients originally reported by Peña et al. (1996) with a precision error of less than 10%.

To estimate predicted sound laterality as a function of sound intensity for these simulated

labelled-line neurons, at each intensity, we then identified the t where ĉc tð Þ ¼ max ĉc tð Þð Þ. For each
sound level and ITD, we calculated predicted sound laterality in 100 repetitions of these simulations.

Figure 1C shows mean estimated laterality across these 100 simulations, with ribbons showing one

standard error of the mean across simulations.

To estimate source laterality based on rate-coding, we assayed the mammalian auditory system,

where one previous study reports firing statistics for 81 inferior colliculus units in rhesus macaque as

a function of ITD and over a wide range of sound intensities, including very low sound intensities

(Zwiers et al., 2004). From the previously published linear regression parameters, we initially recon-

struct linear regression functions linking ITD, sound intensity and firing rate (Zwiers et al., 2004).

However, while linear regression fits afford statisticial convenience, they cannot fully capture the sig-

moidally shaped firing rate functions in mammalian inferior colliculus units. Therefore, we multiplied

the original linear reconstructions with sigmoid functions. Specifically, consistent with prior literature,

each simulated sigmoidal output function saturates over a 30 dB dynamic range, has linear growth

over the physiologically plausible range of contralateral ITDs, has a threshold between uniformly dis-

tributed between 0 and 10 dB SPL, and a spontaneous non-sound-evoked discharge of between 2

and 10 spikes/second (e.g. Ramachandran et al., 1999).

The inset of Figure 1B shows a representative simulated inferior colliculus unit (color denotes

sound intensity, dark shading shows contralateral responses), whereas Figure 1B shows the differen-

ces in firing rates for contra minus ipsi-lateral simulated firing rates, averaged across all 81 simulated

inferior colliculus units. From these resulting differences in contra versus ipsi firing rates we calcu-

lated, collapsed across sound intensities from 0 to 80 dB SPL, the probability density of the firing

rate for each inferior colliculus unit as a function of source ITD. Assuming an ideal observer, we then

classified the sound azimuth as a function of sound intensity via maximum likelihood estimation. To

calculate the mean and variance of predicted ITD as a function of sound intensity, we then ran a

bootstrapping analysis, sampling with replacement 100 times. Figure 1D shows the across-simula-

tion average predicted source laterality, with ribbons showing one standard error of the mean across

simulations.

Quantification and statistical analysis
Growth curve analysis was used to analyze perceived laterality scores as a function of ITD and sound

intensity. For each of the two noise conditions, the perceived laterality scores were fitted with an

NLME model. The model included fixed effects a and random effects b. Equation 1 describes a sig-

moidal function linking ITD to perceived laterality, with a score from left (�1) to right (1). The effect

of sound intensity on the maximal extent of lateralization is ay1. To factor out across-listener differen-

ces in absolute hearing thresholds, for each listener, we calculated the pure tone average (PTA)

detection threshold in quiet, averaged across ears, and across 500 and 1000 Hz. Weight ay2 models

the contribution of PTA. The slope terms are ax1 for perceived laterality changes attributed to ITD,

and ax2 for laterality-ITD slopes attributed to sound intensity. Our stimuli were initially calibrated to

have a broadband interaural level difference of 0 dB. However, because the transfer function of our

sound card was not perfectly flat across frequency, fluctuations of ±1 dB interaural level difference

occurred across frequency, on the same order of magnitude as the minimal threshold for human

interaural level difference discrimination (Francart and Wouters, 2007). Thus, parameter ax0 factors

out central response bias from the lateralization scores. Random effects of individual differences

across listeners were used to model both the maximal extent of lateralization, by0;listener, and the per-

ceived midline, bx0;listener, centering the sigmoid (Equation 1):
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response~
ay2�PTAþay1� intensityþby0;listener

1þ e� ax2�intensityþax1� ITD�ax0�bx0;listenerð Þ½ � � 0:5 (1)

To better conform with the assumptions of the NLME model, prior to fitting, ITD and sound inten-

sity parameters were scaled by subtracting the mean stimulus value, and dividing by the standard

deviation of stimulus parameters, resulting in distributions of stimulus parameters with zero-mean

and a variance of one. Laterality scores were then fitted using these normalized parameters, with the

nlme package, programmed in RStudio 1.1 for Windows (RStudio Inc, Boston, MA, USA).

Data and software availability
All data and analysis code are available at Dryad (http://doi.org/10.5061/dryad.t8c381f) .
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