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Dandruff is a prevalent chronic inflammatory skin condition of the scalp that has been

associated with Malassezia yeasts. However, the microbial role has not been elucidated

yet, and the etiology of the disorder remains poorly understood. Using high-throughput

16S rDNA and ITS1 sequencing, we characterized cutaneous bacterial and fungal

microbiotas from healthy and dandruff subjects, comparing scalp and forehead (lesional

and non-lesional skin sites). Bacterial and fungal communities from dandruff analyzed

at genus level differed in comparison with healthy ones, presenting higher diversity

and greater intragroup variation. The microbial shift was observed also in non-lesional

sites from dandruff subjects, suggesting that dandruff is related to a systemic process

that is not restricted to the site exhibiting clinical symptoms. In contrast, Malassezia

microbiota analyzed at species level did not differ according to health status. A 2-step

OTU assignment using combined databases substantially increased fungal assigned

sequences, and revealed the presence of highly prevalent uncharacterized Malassezia

organisms (>37% of the reads). Although clinical symptoms of dandruff manifest locally,

microbial dysbiosis beyond clinically affected skin sites suggests that subjects undergo

systemic alterations, which could be considered for redefining therapeutic approaches.
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INTRODUCTION

Human skin is a complex ecosystem inhabited by a variety of microorganisms, including bacteria,
fungi, archaea, and viruses (Kong, 2011). Our knowledge of the skin microbiome has increased
substantially in recent years, driven by advances in sequencing technologies and in bioinformatics
(Tomic-Canic et al., 2014). These approaches have shown interpersonal, topographical, and
temporal variations of microbial communities (Grice et al., 2009; Caporaso et al., 2011; Findley
et al., 2013; Oh et al., 2014, 2016).

Skin microbiome has positive impact on several aspects of human health, such as immune
response modulation and protection against pathogens (Wanke et al., 2011; Naik et al., 2015).
Microorganisms interact with host keratinocytes and innate immune system, stimulating the
secretion of antimicrobial peptides, free fatty acids, cytokines and chemokines, which might lead to
adaptive immune responses (Gallo and Nakatsuji, 2011; Fyhrquist et al., 2016).

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
https://doi.org/10.3389/fcimb.2016.00157
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2016.00157&domain=pdf&date_stamp=2016-11-17
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:luciana.paulino@ufabc.edu.br
https://doi.org/10.3389/fcimb.2016.00157
http://journal.frontiersin.org/article/10.3389/fcimb.2016.00157/abstract
http://loop.frontiersin.org/people/366707/overview
http://loop.frontiersin.org/people/374362/overview
http://loop.frontiersin.org/people/391347/overview
http://loop.frontiersin.org/people/390554/overview
http://loop.frontiersin.org/people/374446/overview
http://loop.frontiersin.org/people/374668/overview


Soares et al. Dysbiotic Skin Microbiome in Dandruff

Microbial communities from skin have also been associated
with the development of skin disorders (Grice, 2014). Dandruff
is one of the most common skin conditions, affecting
approximately half of adult population worldwide (Piérard-
Franchimont et al., 2006a). This inflammatory chronic disorder is
related to skin barrier disruption, epidermal cellular proliferation
and differentiation, as well as shifts in gene expression patterns,
and in cytokine and lipid production (Kerr et al., 2011; Mills
et al., 2012; Bonnist et al., 2014). It is characterized by erythema,
itching and scaling on scalp (Schwartz et al., 2013), and is
also related to alopecia (Piérard-Franchimont et al., 2006b).
Dandruff also has social and psychological impact, affecting self-
esteem, and confidence (Manuel and Ranganathan, 2011). It has
been frequently associated with yeasts from Malassezia genus,
which are also members of the healthy cutaneous microbiome
(Saunders et al., 2012). However, the role Malassezia organisms
play in the development of the symptoms has not been elucidated
and the etiology of dandruff remains poorly understood.

We used next-generation sequencing (NGS) to analyze
bacterial and fungal microbiota associated with skin from
healthy and dandruff subjects. The comparison between lesional
and non-lesional skin sites from dandruff subjects provided
new perspectives for the understanding of this skin disorder,
establishing steps toward a broader view of dandruff etiology and
the role of the microbiome in the symptom development.

MATERIALS AND METHODS

Subjects and Sample Collection
The research protocol was approved by the UFABC Institutional
Review Board (Protocol 732.172) and was conducted according
to the principles expressed in the World Medical Association
Declaration of Helsinki. All subjects provided written informed
consent prior to any study-related procedures.

Thirteen patients with dandruff and 11 healthy subjects
were enrolled, with the collaboration of “Instituto Superior
de Medicina e Dermatologia—ISMD” (São Paulo, SP, Brazil).
Volunteers were individuals from both genders, ages between
18 and 61 years old (Supplementary Table 1). All participants
provided information regarding health status, medical history,
and daily habits. Volunteers were non-smokers, did not have
cutaneous diseases except dandruff, did not receive antibiotics
or systemic antifungals 1 month prior to sampling, and did
not use anti-dandruff shampoos and chemical products (dyeing,
bleaching, permanent waving, straightening etc.) on scalp and
hair at least 2 weeks prior to sampling.

Volunteers were asked to use a neutral shampoo 3 times a
week during 2 weeks prior to sampling to standardize the scalp
condition. They were advised not to wash their scalp 2 days before
the sampling procedure, and not to use other hair products on the
scalp (Clavaud et al., 2013).

Dandruff severity was measured as previously described
(Clavaud et al., 2013). Scalp was divided into eight sections and
dandruff scores ranging from 0 to 5 were assigned to each area by
comparison with reference pictures. The values were averaged to
obtain the final score. Samples from scalp (vertex of the head)
and forehead (central area) were obtained using sterile cotton

swabs soaked in a solution containing 0.15M NaCl and 0.1%
Tween 20, as previously described (Paulino et al., 2006). Forehead
from dandruff subjects did not show any sign of desquamation
or inflammation. Swabs were placed in microcentrifuge tubes,
transported in dry ice, and stored at −80◦C. Cotton swabs with
no skin contact submitted to the same procedures were used as
negative controls.

DNA Extraction, PCR Amplifications, and
High-Throughput Sequencing
Total genomic DNA was extracted from the swabs by
using Power Soil DNA Isolation Kit (MOBIO Laboratories
Inc., Carlsbad, CA, USA) according to the manufacturer’s
instructions. The head of each swab was cut from the handle and
placed into a tube provided by the kit, which contained beads to
efficiently disrupt cell walls.

Primers 520F (Claesson et al., 2009) (5′-AYTGGG
YDTAAAGNG-3′) and 907R (Lane et al., 1985) (5′-
CCGTCAATTCMTTTRA-3′) were used to amplify by PCR
a fragment containing the V4 hypervariable region of the 16S
rRNA gene from bacteria. For fungi 18S-F/5.8S-1R ITS1 primers
were used (Findley et al., 2013). Sequencing was performed
using MiSeq Illumina Platform with Illumina paired-end MiSeq
Reagent Kit v2 (2 × 250) following Illumina’s standard protocol.
Only reads obtained with forward primers were considered in
the analyses as they showed higher sequencing quality. Single
reads were submitted to size filtering using Seqyclean software
(https://bitbucket.org/izhbannikov/seqyclean). Sequences
shorter than 200 bp were excluded from the analyses. Quality
filtering was done using Phred quality score (≥20; Ewing et al.,
1998). Size and quality filtering were performed using Qiime
pipeline (Caporaso et al., 2010).

The dataset has been deposited in the EBI Metagenomics
database (project number PRJEB16723).

Taxonomic Assignment
Bacterial taxonomic assignment was performed considering 97%
identity and 95% coverage by comparing the sequences with
Greengenes database v 13_8 (http://greengenes.lbl.gov/) using
Uclust software (Edgar, 2010), implemented by Qiime. Fungal
community analyses were done at genus level through BLAST
(Altschul et al., 1990) using QIIME against a database of ITS1
reference sequences manually curated from UNITE database v
2015-03-02 (https://unite.ut.ee/), with 70% similarity threshold.
Singletons were removed from the analysis. A database of
Malassezia sequences were constructed using all the sequences
from Malassezia organisms in the UNITE database that were
manually curated (reference sequences—Kõljalg et al., 2013),
combined with Genbank sequences presenting ≥97% similarity
and ≥95% coverage in relation to those selected from the Unite
database. Analyses at species level for Malassezia organisms
were performed considering 97% similarity threshold and ≥95%
coverage. Fungal unassigned sequences were clustered using
CD-HIT (Li and Godzik, 2006; 97% similarity threshold), and
clusters with relative abundance ≥1% in at least one sample
were compared through BLAST against the complete Genbank
database. This step of analysis also considered three Malassezia
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species described recently: M. brasiliensis, M. pscittasci (Cabañes
et al., 2016) and M. arunalokei (Honnavar et al., 2016), which
were not included in theMalassezia sequence database built with
UNITE and Genbank.

Statistical Analysis
Non-metrical Multidimensional Scaling (nmMDS) using Bray-
Curtis similarity distances (Bray and Curtis, 1957) based on
Log (X+1) transformed data were performed to assess the
relationships between bacterial communities from different
samples. Analysis of Similarities (ANOSIM; Clarke, 1993) was
applied to verify differences based on body site and health
condition. ANOSIM global R value ranges from 1 to −1 (R ∼ 0
indicates the same level of variation within and between groups).
ANOSIM test was performed using α = 0.05 for statistical
significance. Average similarity within groups was calculated
using SIMPER (Clarke, 1993). Diversity was measured using
Shannon-Weaver diversity index. These analyses were performed
using Primer 6 (Clarke and Gorley, 2006). To estimate depth of
sequence sampling, rarefaction curves were obtained for each
sample using PAST 3.03 (Hammer et al., 2001) and EstimateS
9.1.0 (Colwell, 2005). For mean comparisons two-way ANOVA
test was performed using two-tailed p-values and α = 0.05.
Linear discriminant analysis (LDA) effect size tool-LEfSe (Segata
et al., 2011) was used to identify Operational Taxonomical
Units (OTUs) with differential relative abundance comparing
healthy and dandruff subject samples from each body site. For
Kruskal-Wallis test, α = 0.05 was used as a cut-off for statistical
significance. LDA score was calculated for OTUs with p ≤ 0.05
(LDA score threshold≥2.00). Differentially abundant OTUswere
used to calculate the microbial dysbiosis index (MD-index),
defined as the log of (total abundance of OTUs increased in
dandruff) over (total abundance of OTUs decreased in dandruff)
(Gevers et al., 2014).

RESULTS

Data Collection and Sequence Analysis
We analyzed bacterial and fungal communities in 48 skin samples
from 11 healthy and 13 dandruff individuals. Scalp and forehead
samples were studied to assess variation across two sebaceous
body areas and to enable comparison between lesional and non-
lesional skin sites in dandruff subjects.

In silico analyses were performed to select primer sets
for bacteria and fungi considering specificity and coverage.
Amplicons containing the V4 hypervariable region of 16S rRNA
gene from bacteria and the ITS1 region from fungi were
sequenced using Illumina MiSeq platform.

We obtained ∼2.3 million reads for bacteria and 1.4 million
for fungi after quality and size filtering (Supplementary Table
2). Approximately 88% of the bacterial sequences were assigned
using Greengenes database, and 612 Operational Taxonomic
Units (OTUs) were found. Chloroplast and mitochondria
sequences (nearly 8% of the reads) were removed from the
analysis. For fungi, only approximately half of the sequences
(51.4%) were assigned using UNITE database. Therefore, we
performed a second step of analysis consisting of sequence

clustering and assignment using GenBank to allow a larger
and more reliable panorama of the fungal communities. This
strategy increased the percentage of assigned sequences (>83%).
A total of 274 fungal OTUs were found. Moreover, the method
allowed the detection of contaminant sequences assigned to non-
fungal taxonomic groups (7.8% of the reads). They correspond
to plants and were removed from the analyses. Rarefaction
curves were generated to estimate depth of sequence sampling
(Supplementary Figures 1, 2).

Taxonomic Composition of Microbial
Communities
Actinobacteria, Firmicutes, and Proteobacteria were the most
abundant bacterial phyla. At genus level, Propionibacterium,
Staphylococcus, and Corynebacterium were found to be the
three most abundant genera in both healthy and dandruff
subjects (Figure 1A). Malassezia sp. comprised the vast majority
of fungi in almost all of the samples (∼96% of the reads;
Figure 1B); therefore, we also performed taxonomic assignment
at Malassezia species level. Nine Malassezia formally described
species were detected (M. restricta, M. globosa, M. sympodialis,
M. dermatis, M. japonica, M. obtusa, M. pachydermatis, M.
sloofiae, and M. furfur), as well as an uncharacterized phylotype
previously described (LCP-2008a—Genbank accession number
EU192362). M. restricta was the most abundant species. After
the 2-step OTU assignment for fungi, other uncharacterized
Malassezia organisms were found, corresponding to more than
37% of the reads. Their sequences are dissimilar from all
Malassezia type strains, thus were not assigned to any formally
described species. The uncharacterized Malassezia sequences
formed three subgroups (≥95% sequence similarity), two of them
being highly abundant:Malassezia sp. subgroup 1was found in all
48 samples, comprising 26.72% of the sequences; and subgroup 2
was found in 46 samples (9.6% of the sequences; Figure 1C).

Microbial Communities in Health and
Dandruff
Statistical analyses using non-metrical Multidimensional Scaling
and ANOSIM revealed that healthy bacterial and fungal
communities at genus level clustered according to body site,
indicating that scalp and forehead from healthy subjects harbor
distinct microbiotas (bacteria: p = 0.023, R = 0.122; fungi: p =

0.005, R = 0.188; Figures 2A,B). Within each body site group,
scalp samples had higher intra-group similarity than forehead
samples, as revealed by similarity percentage (SIMPER analysis)
(Figures 2D,E).

Bacterial and fungal communities at genus level were
more dissimilar among samples from dandruff subjects as
compared with healthy subjects (Figures 2A,B,D,E). Despite the
clinical differences between samples from scalp (lesional site)
and forehead (non-lesional site) from dandruff subjects, the
variations between the sites resembles the differences observed
between scalp and forehead from healthy subjects, indicating
that dandruff condition is related to dysbiosis in both clinically
involved and uninvolved skin sites. Analysis using Shannon-
Weaver index revealed that diversity was significantly higher in
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FIGURE 1 | Skin microbial composition in healthy and dandruff subjects. Relative abundance of (A) Bacteria at genus level; (B) Fungi at genus level; and (C)

Malassezia at species level. Mean proportions according to health status and body site are shown in the box. HS, scalp samples from healthy subjects; HF, forehead

samples from healthy subjects; DS, scalp samples from dandruff subjects; DF, forehead samples from dandruff subjects.

dandruff samples than in healthy ones for both bacteria (p =

0.0002; Figure 2G) and fungi (p = 0.0095; Figure 2H) at genus
level. Diversity showed no correlation with number of reads from
each sample from both bacteria (p = 0.4284) and fungi (p =

0.7219).
Malassezia microbiota at species level also differed between

body sites in healthy subjects (p = 0.001, R = 0.393; Figure 2C).
However, contrasting with genus level analyses, in dandruff
subjects the average similarity among samples did not differ in
relation to healthy subjects for both scalp and forehead samples
(Figure 2F). Shannon-Weaver diversity indexes obtained for
healthy and dandruff subjects were not statistically different
either (Figure 2I), suggesting that the diversity of Malassezia
community at species level was not associated with dandruff
condition.

Differential Abundance of Bacterial and
Fungal Taxa
We also searched for specific OTUs that could be differentially
abundant between groups using Linear discriminant analysis
effect size tool (LEfSe). Considering bacteria and fungi at genus

level, remarkably more OTUs were found to be overrepresented
in scalp and forehead samples from dandruff subjects in
comparison with healthy ones (Figures 3A–D). These findings
corroborate the occurrence of dysbiosis in lesional as well
as non-lesional body sites. Bacterial genera Pseudomonas,
Leptotrichia, Micrococcus, Selenomonas, Erwinia, Enhydrobacter,
and Bartonellaceae were significantly more abundant in dandruff
subject samples in both skin sites, whereas Propionibacterium
was underrepresented (Figures 3A,B). In the case of fungi,
dandruff samples from both sites were enriched in genera
Candida, Aspergillus, and Filobasidium (Figures 3C,D). Analysis
of Malassezia microbiota at species level did not reveal OTUs
overrepresented in dandruff subjects, either in scalp or forehead
samples. Two OTUs of low prevalence were found to be
underrepresented in dandruff, one was an uncharacterized
Malassezia subgroup (Figures 3E,F).

Microbial dysbiosis index (MD-index), based on differentially
abundant bacterial OTUs, differed according to health status.
Samples from healthy subjects showed overall lower MD-indexes
as well as lower diversity for both scalp and forehead, when
compared with samples from dandruff subjects (Figures 4A,B).
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FIGURE 2 | Community and diversity analyses. Non-Metrical Multidimensional Scaling (nmMDS) of (A) Bacteria at genus level, (B) Fungi at genus level, and (C)

Malassezia at species level showing 48 samples from healthy and dandruff subjects. Each circle represents one sample, and diameters are proportional to the

Shannon-Weaver diversity (lowest value indexed as 1). Average similarity (SIMPER) for (D) Bacteria at genus level, (E) Fungi at genus level and (F) Malassezia at

species level. Mean diversity based on Shannon-Weaver Index for (G) Bacteria at genus level, (H) Fungi at genus level, and (I) Malassezia at species level. Significance

was determined by Two-way ANOVA Test. Bars represent Mean ± SEM. **p < 0.005; ***p < 0.001.

Average MD-index was significantly higher in dandruff samples
than in healthy ones (p < 0.0001; Figure 4C). MD-index
could not be calculated for fungi because there were no
underrepresented OTUs in scalp samples; and in the case of
forehead, some samples lacked some of the underrepresented
OTUs.

DISCUSSION

Microbial communities inhabiting the human body and their
relation with diseases have been the subject of many studies
and intense team efforts (The Human Microbiome Project
Consortium, 2012a,b; The Integrative HMP (iHMP) Research

Network Consortium, 2014). In the case of dermatopathologies,
the association with microbiome imbalances is often not
well-established. Many skin diseases and disorders have been
primarily associated with one specific group of microorganisms,
e.g., acne vulgaris (Das and Reynolds, 2014), rosacea (Casas et al.,
2012), seborrheic dermatitis, and dandruff (Hay, 2011); although
the possible microbial role in the development of symptoms is
not completely understood.

Despite its high prevalence, the shortage of effective
treatments, and the impact of symptoms (Piérard-Franchimont
et al., 2006a), the etiology of dandruff remains poorly understood.
Knowledge regarding seborrheic dermatitis, a related condition
that has been often considered a more severe form of dandruff
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FIGURE 3 | Differentially abundant OTUs stratified by body site and health status. (A) Bacteria at genus level from scalp samples; (B) Bacteria at genus level

from forehead samples; (C) Fungi at genus level from scalp samples; (D) Fungi at genus level from forehead samples. (E) Malassezia at species level from scalp

samples; (F) Malassezia at species level from forehead samples. Abundant OTUs are indicated by arrows; OTUs differentially abundant in both skin sites are

underlined. LDA score threshold was set to ≥2.0. Kruskal-Wallis p < 0.05 was considered statistically significant.

affecting body areas other than the scalp (Piérard-Franchimont
et al., 2006a; Schwartz et al., 2013), is also limited. The association
of these conditions with Malassezia yeasts has been reported
(Gemmer et al., 2002; DeAngelis et al., 2005; Tajima et al., 2008;
Clavaud et al., 2013); however, it is still unclear whether they
are actually the causal agent of dandruff, and if there are other
microorganisms involved in the pathogenic process.

Here, we report the characterization of bacterial and fungal
microbiome from healthy and dandruff subjects. Lesional and
non-lesional skin sites were examined, revealing that bacterial
and fungal communities at genus level are imbalanced in
dandruff subjects, even in non-lesional sites (Figures 5A,B).
These findings suggest that the process associated with dandruff
may be systemic, and not restricted to the skin site exhibiting
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FIGURE 4 | Microbial dysbiosis index (MD-index) for bacterial communities according to health status. (A) Scatter plot of MD-index vs. Shannon-Weaver

diversity for scalp samples; (B) Scatter plot of MD-index vs. Shannon-Weaver diversity for forehead samples; (C) Average MD-index. Significance was determined by

Two-way ANOVA Test. Bars represent Mean ± SEM. ****p < 0.0001.

the symptoms. An instability of the skin microenvironment at
systemic level, possibly due to immune response alterations,
might lead to dysbiosis, disruption of skin barrier (Gallo
and Nakatsuji, 2011; Hooper et al., 2012) and to clinical
manifestation of dandruff in specific skin sites. This could
have implications for therapeutic approaches: since dandruff
manifests locally, treatment is normally not systemic, which
may explain difficulties in controlling symptoms. In the future,
studies of microbial communities from a greater number
of body sites should be performed to further support the
hypothesis and to evaluate the extent of the alterations in
the body. Dysbiosis has been associated with various immune-
related conditions; however, most cases involve loss of microbial
diversity, as consequence of the expansion of potentially harmful
microorganisms or loss of beneficial species (Petersen and
Round, 2014). Specifically regarding skin disorders, a loss of
bacterial diversity has been reported in patients with atopic
dermatitis (Kong et al., 2012) and psoriasis (Alekseyenko
et al., 2013), in comparison with healthy subjects. Our data
suggest that a different phenomenon occurs in dandruff, as
microbial diversity was higher than in healthy subjects. The
skin environment in dandruff might become less selective
for microbial growth, which could also account for the
decrease of intragroup similarly of dandruff bacterial and fungal
communities.

Although fungal community is dominated by Malassezia
genus, consistent with previous studies of healthy skin (Findley
et al., 2013; Oh et al., 2014), we found no evidence of association
between Malassezia and dandruff. Moreover, in contrast with
microbial shifts observed at genus level, Malassezia microbiota

at species level was not altered in dandruff, suggesting it is
not affected by possible systemic alterations taking place in
dandruff subjects (Figure 5C). It is surprising that Malassezia
communities from scalp samples were similar in diversity and
composition to one another regardless of whether they are from
healthy or dandruff subjects.

Bacterial and fungal microbiome associated with dandruff
has been previously studied in scalp samples (lesional site)
through cloning and Sanger sequencing, showing that the ratios
between abundant bacterial and fungal organisms shifted in
dandruff compared with healthy subjects, especially Malassezia
restricta, Propionibacterium sp., and Staphylococcus sp. (Clavaud
et al., 2013; Wang et al., 2015). More recently, Xu et al.
(2016) showed that host factors such as skin sebum and water
content are related to dandruff. Analyzing scalp microbiome
by NGS, the authors found that dandruff is more closely
related to bacteria than to fungi, and reported no significant
association with Malassezia at species level, although some
OTUs showed positive or negative correlation with dandruff (Xu
et al., 2016). Our results corroborate the relationship between
dandruff and bacteria but not with Malassezia at species level,
and showed for the first time increased diversity and dissimilarity
among dandruff samples, affecting also asymptomatic skin
sites.

A bioinformatics strategy based on sequence clustering
and OTU assignment using combined databases increased the
percentage of fungal assigned sequences, and revealed the
presence of uncharacterized Malassezia organisms. Previously,
we have reported Malassezia sequences that were dissimilar
from any described species in healthy, psoriasis and seborrheic
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FIGURE 5 | Schematic representation of microbial communities in health and dandruff. (A) Bacteria at genus level; (B) Fungi at genus level; and (C)

Malassezia at species level. Different colors represent distinct communities; greater distance between figures represent less intra-group similarity. “Systemic” refers to

general processes in the body, as opposed to specific local sites.

dermatitis subjects (Paulino et al., 2006, 2008; Soares et al.,
2015). A more comprehensive analysis shown here emphasized
the importance of such uncharacterized organisms, found in
large proportions in most samples regardless of the health
status. Such findings highlight the significance of developing
strategies to assess unassigned DNA sequences, in order to
ensure a reliable view of fungal communities. Further, studies
are needed, including the isolation and complete characterization
of these organisms, as well as phylogenetic analysis using
DNA regions other than ITS1, which contains large insertions
and deletions that restrict the reliability of the sequence
alignment.

Data presented here indicate that dandruff is associated with
bacterial and fungal dysbiosis and suggests a systemic process
affecting even asymptomatic skin sites. Findings showed that
microbiome analyses, particularly of fungal communities, require
strategies to assess unclassified sequences, otherwise useful
information might be lost. Further, studies of larger cohorts
and more extensive topographical analysis, immune response,
functional characterization of microbial communities, and
bacterial-fungal interactions might generate novel hypotheses
and provide new perspectives on the pathogenesis of dandruff
and other skin diseases, as well as to expand our understanding
of healthy skin microbiota.
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