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Diagonal integration of multimodal
single-cell data: potential pitfalls and
paths forward

Yang Xu® ' & Rachel Patton McCord® 2™

Diagonal integration of multimodal single-cell data emerges as a trending topic.
However, empowering diagonal methods for novel biological discoveries
requires bridging huge gaps. Here, we comment on potential risks and future
directions of diagonal integration for multimodal single-cell data.

With the advance of new single-cell technologies, single-cell computational analysis has moved
into the multi-omics era. Integrating multi-omics single-cell data, therefore, has gained
increasing attention from the single-cell community. This key research domain promises to help
us understand complex cellular systems from different viewpoints, such as gene expression,
chromosome structure, and even cellular imaging. Computational integration methods that
match one modality with another can reveal a detailed picture of regulatory networks and
cellular function (see Box 1 for important term definitions). However, different types of ‘omics
data usually do not share the same features. For instance, transcriptomics describes expression of
genes, while epigenomics measures histone modifications or accessibility across all regions of the
genome. This feature discrepancy presents the first challenge to the development of integration
methods. The other challenge stems from how single-cell data have been collected over the years.
Though recent technologies enable multiple measurements to be made simultaneously on the
same single cells (“joint-profiling”)!-3, most single-cell datasets profile different aspects of
biology one at a time in independent groups of cells. Therefore, we lack ground truth about what
is happening at the level of epigenetics, transcriptomics, and proteomics in the same single cell.
This makes it difficult to evaluate the quality of proposed integration methods. In recent years,
many integration methods have been published to address different scenarios of multimodal
single-cell data integration. A recent key review summarized three major approaches of multi-
modal single-cell data integration and outlined published methods in each category?. Of these
categories, “horizontal integration” methods require anchored features to align different mod-
alities, while “vertical integration” methods need shared cells from multiple modalities as
anchors. The “diagonal integration” approach requires neither anchoring cells nor features for
integration, presenting a distinct advantage over horizontal and vertical methods. Because no
prior knowledge is required, accurate diagonal integration is also challenging to achieve. Despite
the rapid increase in new diagonal integration methods, there is not a single diagonal method
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that has been extensively examined and carefully benchmarked
for its utility in multimodal integration in complex cellular
systems.

Box 1

Schematic of horizontal, vertical, and diagonal integration and key term
definitions.

Examples of different modalities (RNA-seq and ATAC-seq) are
indicated by color while feature type (gene or region) is indicated by
shape. Dotted lines indicate how features or cells are matched in
different types of integration.
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Key Terms:
Modality: A type of biological measurement, such as gene expression, chromatin accessibility, 3D
chromosome contacts, or shape descriptors from imaging.

Feature: An entity to which measurements are assigned, such as genes, promoters, genomic bins,
or positions in an image.

Horizontal, vertical, and diagonal integration: Creating a shared representation space for single cell
measurements from multiple modalities anchoring on features (horizontal), cells (vertical), or neither
(diagonal). See schematic above.

Goals and common features of diagonal integration
approaches

In this comment, we focus solely on diagonal integration. Over
the past 3 years, there has been a steady increase in publications
describing new diagonal methods for the integration of multi-
modal single-cell data®>~!! (Supplementary Table 1), indicating
strong interest in the unique advantages of diagonal integration.
Since horizontal and vertical methods require either anchored
features or anchored cells, their application is limited to cases
where it is feasible to engineer matched features (which is often
quite difficult, particularly with disparate measures such as cell
imaging and gene expression) or where multiple modalities have
been measured within the same cell. Therefore, an effective
diagonal integration method would greatly expand the scope of
possible data integration and is enchanting to the community.
When we considered the mechanisms that previously published
methods use to align modalities, we observed that they are all
similarly built upon the foundation of manifold alignment, which
projects data from different modalities into a common space
while preserving the intrinsic structure within each modality.
Therefore, these methods can generally be described in two steps:
(1) preserving cell type structure within each modality; and (2)
aligning cells across modalities. Each method differs with respect
to the representation learning that preserves cell-type structure
within each modality and the alignment approach to close the gap

between modalities. Thus, they try to solve two problems at the
same time and have varying performances of balancing repre-
sentation learning and modality alignment. Nevertheless, they all
share the same underlying principle that aligns data in a low-
dimensional manifold.

Diagonal integration pitfalls revealed with simulated data
Manifold alignment assumes that data from different modalities
were generated from a similar distribution or through a similar
process. In an ideal experiment, quantification of multi-omics
data may satisty this requirement. But, in reality, there are many
unknown variations, and different research labs have different
practices of data generation. Therefore, we need to ask how an
algorithm distinguishes a true biological alignment that correctly
matches the same cell types in different modalities from any other
potential artificial alignments. The only judgment the algorithm
can make is whether the alignment is the optimal solution. Thus,
any artificial alignment that satisfies a mathematical optimum can
stand out as the best solution, but will not necessarily represent
the accurate biological solution. It seems to lack a mechanism for
diagonal algorithms to distinguish a true biological alignment
from any artificial alignment without prior knowledge. To
demonstrate this pitfall, we illustrate artificial and biologically
incorrect alignments resulting from integration applied to a
simulated multimodal dataset generated from real single-cell data
where the ground truth is known (see “Data availability” and
“Code availability” for a full description of this approach). We
began with single-cell RNA-seq data from mouse cortex and split
the genes into two parts to represent two different “modalities”
with different feature spaces, but which come from the same cell
population!? (Fig. 1). We preserved some shared genes between
the two modalities, and both modalities should have a similar
power to distinguish the seven cell types. We tested six diagonal
methods on five simulated scenarios®-!l. These methods can
distinguish cell types in both modalities separately, and they all
align both modalities with no noticeable gap. However, when we
investigate cell type correspondence between modalities, we find
that these methods all fail at least in one scenario in terms of
accurately matching cell types. Since these methods share fun-
damentally the same mechanism for modality alignment, we
conclude that such errors in alignment will be a widespread
problem across diagonal methods. We propose that the use of
such simulated data should provide a benchmark for future
method developments. Developers can investigate in which sce-
narios their methods may fail and potential reasons for this
failure.

A path forward: partial prior knowledge and benchmarking

Given the outcomes above, we argue that a safe practice in
applying diagonal methods is to incorporate certain prior
knowledge. Indeed, Yang et al. briefly mentioned that more than
one alignment can look equally optimal and incorporating prior
knowledge can help deal with issue of artificial alignments®. At
the same time, Pamona only succeeds in complicated integration
when it uses shared cells across modalities!0. Indeed, when we
incorporated shared cells as prior knowledge and ran Pamona
again in the five scenarios above, Pamona correctly aligned the
same cell types in both modalities, except in scenario 2 (Sup-
plementary Fig. 7). Both publications briefly acknowledge the
possibility of artificial alignment we comment on, but this issue
has not been highlighted consistently as a key message for those
who intend to apply these tools for data integration. Instead, the
problem of diagonal integration may come across as solved, and
users run the risk of pursuing hypotheses based on erroneous
artificial alignment. For example, users could falsely think an
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Fig. 1 Diagonal integration errors in five scenarios. a Five scenarios of simulated multimodal single-cell data, showing how each modality was generated.
b and ¢ Visualization of integration by selected diagonal methods. Cells are colored by modality (b) and cell type identity (¢). The two modalities are split
into separate visualizations in ¢ to make artificial alignment errors visible. SCIM is not demonstrated due to overall poor representation learning. Alignment
outcomes of all five scenarios by each method are shown in Supplementary Figs. 1-6.

enriched signature in one type of data is correlated with an
enriched signature in another data type, even though the two
aligned cell types in two modalities are not the same.
Considering the incorporation of prior knowledge into future
method development, we suggest the following directions here.
The first direction is to use partially shared features. Incorpor-
ating shared features is feasible for datasets like RNA-seq, ATAC-
seq, and other data that are quantified along the linear genome. A
pioneering study proposed using partially shared features and
extensively benchmarked this hybrid approach with well-
established and reliable integration methods!3. Moving forward,
we recommend additional work should continue to investigate
how to achieve meaningful integration with minimal shared
features and how to identify the minimal set of features that are
informative to reveal cell type identities across different mod-
alities. Along with our recommended simulated data above, there
is a need for benchmarking datasets that can be used to evaluate
the degree and type of shared features that are required to achieve
accurate integration. Meanwhile, engineering different modalities
to have shared features may not be applicable in cases like inte-
grating gene expression data with chromatin structure data. In
such cases, alternative approaches can be constructing a feature-
relation matrix, which links features in one modality to possible
corresponding features in the other. For example, given an
enhancer—promoter contact in Hi-C data, we can hypothesize
which gene would be under impact and which histone mark may
explain the regulation!4. However, this approach must be

developed with substantial underlying knowledge to support the
presumed feature connections. There are also cases in which the
construction of feature-relations is not straightforward or lacks
experimental support, as in the integration of single-cell omics
and single-cell imaging data. This leads to our second recom-
mended direction, using cell anchors or cell labels. In this case,
the integration task will be reframed into semi-supervised
learning. In recent years, joint-profiling technologies generated
multi-omics data at single cell resolution!=3, and these joint-
profiled single-cell data could serve as reference for learning the
integrated space!®. We envision that combining joint-profiling
technologies and diagonal methods would become a standard
framework for multimodal single-cell data integration. Further
work is also needed to determine how many cells must be profiled
by joint methods to represent sufficient complexity to facilitate
integration of disparate datasets. Even so, algorithms could mis-
align cell types that do not show up in the training set, as we
showed in cases when we incorporated prior knowledge to run
Pamona. Thus, methods should be evaluated for whether they
force all data to be aligned to the previously represented cell types
or would allow them to be separate.

As diagonal integration gains more attention, the problem of
artificial alignment and the two future directions we propose
remain major challenges to overcome. When applying diagonal
methods in complex situations, the community needs to cautiously
evaluate conclusions generated by these methods. In a fast-moving
and competitive field, there is strong temptation to show only the
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advantages of a new method and where it succeeds, making broad
claims of general utility while minimizing any potential short-
comings. But it is equally valuable to clearly show scenarios where
methods fail, both to inform potential users and to facilitate future
research. We encourage the community to contribute additional
guidelines for reliable use of diagonal integration methods and to
propose additional challenging benchmark tests that will clearly
reveal what problems are yet to be solved.

Data availability

The processed single-cell mouse cortex RNA-seq data to generate the simulated two-
modality data based on the scRNA-seq data are available at https://github.com/
rpmccordlab/cross-domain-simulation.

Code availability

The code to generate the simulated two-modality data based on the scRNA-seq data are
available at https://github.com/rpmccordlab/cross-domain-simulation. To reproduce the
analysis results, please follow the analysis code for each integration method in the same
GitHub repository.
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