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T cells use sophisticated shape dynamics (morphodynamics) to migrate
towards and neutralize infected and cancerous cells. However, there is
limited quantitative understanding of the migration process in three-
dimensional extracellular matrices (ECMs) and across timescales. Here, we
leveraged recent advances in lattice light-sheet microscopy to quantitatively
explore the three-dimensional morphodynamics of migrating T cells at high
spatio-temporal resolution. We first developed a new shape descriptor based
on spherical harmonics, incorporating key polarization information of the
uropod. We found that the shape space of T cells is low-dimensional. At
the behavioural level, run-and-stop migration modes emerge at approxi-
mately 150s, and we mapped the morphodynamic composition of each
mode using multiscale wavelet analysis, finding ‘stereotyped” motifs. Focus-
ing on the run mode, we found morphodynamics oscillating periodically
(every approx. 100s) that can be broken down into a biphasic process:
front-widening with retraction of the uropod, followed by a rearward sur-
face motion and forward extension, where intercalation with the ECM in
both of these steps likely facilitates forward motion. Further application of
these methods may enable the comparison of T cell migration across differ-
ent conditions (e.g. differentiation, activation, tissues and drug treatments)
and improve the precision of immunotherapeutic development.

1. Introduction

Shape changes (morphodynamics) are one of the principal mechanisms through
which individual cells interact with their environment [1,2]. These dynamics
arise from the interplay between a multitude of molecules and complex signal-
ling pathways that often organize with emergent simplicity to carry out critical
cellular functions, including division and migration. T cells, specialized cells of
the adaptive immune system, are highly dependent on global morphodynamics
to squeeze through gaps in the extracellular matrix (ECM), in contrast to the
ECM-degrading strategies other cells use (e.g. tumour cells). Despite plasticity
for adjusting the mode of migration to environmental conditions, the migration
of T cells is often characterized as amoeboid: fast (up to 25 um min~" [3]), with
low adhesion and polarized morphologies arising due to the segregation of
different cytoskeletal networks to specific subcellular compartments [4]. In
this mode of locomotion, dynamic F-actin forms pseudopods at the leading
edge and an actomyosin-rich uropod at the rear generates contractile forces
[5] (see figure 1a for a schematic). However, this canonical migration mechanism
is not fixed and T cells adapt their motility to their immediate environment.
T cells are thought to toggle between exploration and exploitation states,
balancing surface receptor cues for interacting with antigen-presenting or
target cells (stop) with chemokine-driven or purely exploratory searches (run)
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Figure 1. T cell shape can be quantified by spherical harmonic descriptors in three dimensions. (a) Schematic of a T cell employing an amoeboid migration strategy
to navigate through the extracellular matrix (ECM) in three dimensions. Actin polymerization at the front results in the formation of pseudopods, and a complex of
actomyosin at the rear forms the uropod, important for stability and generating contractile forces. (b) Complex spherical harmonic functions, ¥["(6, ¢) where [ is
the function degree (related to frequency) and m is the order (rotations at each degree; real parts shown for m > 0), form a basis on the surface of a sphere. (c)
(artesian coordinates of the cell surface, {x, y, z}, are mapped to the surface of a sphere, as parameterized by polar coordinates {6, ¢}. The three resulting functions
X6, ¢), (6, ¢), 2(6, @)} are decomposed in terms of the spherical harmonic functions and transformed to be translation, scale and rotation invariant. This yields
the final shape representation, D), based on the harmonics at each energy level, /, with the exclusion of / = 0 giving the translation invariance. (d) Truncation of the
representation at different degrees of / leads to different levels of smoothing, with /=1 describing the ellipsoid part of the shape. (¢) An additional descriptor, Dy,
for accounting for cell orientation, with the landmark-like smooth uropod at the rear and dynamic protrusions at the leading edge. Without this additional variable,
the two cells shown have very similar descriptors. The standard deviation of Dy across all datasets is 0.31, and the standard deviations of the remaining D; are all
lower. (f ) For cases where the uropod vanishes, the landmark-like rear can still be identified by its smoothness and stationarity, compared with the dynamic
leading edge, as shown in the example. For simplicity, we refer to this region at the rear as the uropod for all frames.

[6]. The specific morphodynamics and force-generating [9,10]. However, the extent to which these methods are

mechanisms behind these states are not well understood, in
part due to their large variety and adaptability in different
environments [7]. Proposed methods for propulsion include
leading edge extension and intercalation with the ECM
(using either low-adhesion integrin connections or surface
texture for friction), followed by contraction of the uropod
for small pore sizes [7,8]. In addition to creating friction for
moving forward, the rearward flow of actin waves from the
leading edge may connect with the ECM like a paddle

used in complex three-dimensional ECM environments, and
their precise organization, are far from well-characterized.
Accurate characterization is important as dysregulation of T
cell migration processes can be highly deleterious. T cells
differentiate into different effector states. For instance, antigen-
specific CD4" ‘helper’ T cells amplify the immune response,
while CD8" “cytotoxic’ T cells seek out and neutralize infected
or cancerous cells [11]. Inadequate migration leaves infected
and cancerous cells free to proliferate, while over-stimulation

18007207 6L 2wLau) 0§ Y Jisi/jeulnol/b10°buiysijgndanosiefos H



can cause inflammation-based diseases like asthma and arthritis
[12]. While there are exciting immunotherapeutic avenues
manipulating the migration process, these have so far disap-
pointed [13]. With quantitative representations of T cell
morphodynamics, their statistics can be interpreted with high
precision and compared across conditions for potentially
improved immunotherapeutic development, and mechanistic
models can be developed [14-16].

One of the main challenges for analysing morphody-
namics is that cells do not have obvious landmarks (e.g.
legs, eyes, wings of animals), and so the important degrees
of freedom must be inferred from the data itself. Where
there is important landmark-like information (e.g. polariz-
ation that can manifest as subtle morphological features),
this is typically diffuse rather than precisely locatable,
which further complicates quantification. Current methods
therefore do not explicitly include this information. Two-
dimensional cell morphologies are often quantified using
Fourier descriptors. This method decomposes the cell outline
coordinates as functions of rotation around the centroid in
terms of Fourier coefficients, which then represent the mor-
phology. This approach has revealed that amoeboid
migrating cells in two dimensions, including epithelial kera-
tocytes and Dictyostelium amoebae [14,15], explore only a
small subspace of the shapes that might be thought possible
from qualitative inspection (i.e. low-dimensionality of mor-
phology). Furthermore, the morphodynamics within this
space are composed primarily of frequently used, or ‘stereo-
typed’, motifs (i.e. low-dimensionality of morphodynamics).

Imaging of three-dimensional cell dynamics at sufficiently
high spatio-temporal resolution has only recently become
available through lattice light-sheet microscopy (LLSM)
[17]. Whether T cells navigating complex three-dimensional
ECM environments similarly have low-dimensional mor-
phology and morphodynamics remains to be understood.
Such questions in three-dimensional necessitate automated
analysis even more than in two dimensions, both because
such datasets are inherently harder to visualize and interpret,
and because three-dimensional environments typically
induce a richer variety of morphodynamics [18]. Spherical
harmonic descriptors (SPHARM), a three-dimensional ana-
logue of Fourier descriptors, are a promising method for
quantifying three-dimensional cell shape and connecting
with motion [19]. However, the representations are typically
too uninterpretable for exploring morphodynamics with
high precision, and their use so far is primarily limited to
classification or the detection of established shape changes
[20,21]. It therefore remains an open question how best to
quantify three-dimensional cell shapes without clear
landmarks and interpret high spatio-temporal dynamics.

Here, we sought to combine LLSM [17] with quantitative
image analysis to explore the three-dimensional morpho-
dynamics of cytotoxic T cells migrating in the absence of
chemoattractant cues through three-dimensional collagen
matrices [22]. We first created a new compact shape descriptor,
based on SPHARM, but better connected to key polarization
information than current approaches. We found that T cells
explore a low-dimensional morphological space, and that run-
and-stop migration emerges at long timescales. We explored
the morphodynamic compositions of these two modes using
multiscale wavelet analysis, previously used to explore the struc-
ture of fruit fly behaviour [23,24], uncovering a global set of
largely discrete stereotyped motifs. Focusing ultimately on the

run mode, due to its key role in active translocation and polar- [ 3 |

ized morphologies that are well-suited for analysis with our
descriptor, we found that periodically oscillating morpho-
dynamics (every approx. 100 s) sustain forward motion. These
can be understood as a biphasic process integrating previously
hypothesized propulsion mechanisms [9,10], namely: front-
widening and retraction of the uropod (rear moves forward)
and rearward surface motion with forward extension (front
moves forward).

2. Results

2.1. T cell shape is low-dimensional

We imaged primary mouse effector CD8" cytotoxic T cells in
three-dimensional collagen matrices without chemical cues,
with a lattice light-sheet microscope (LLSM) [17] at spatial
resolutions of 0.145, 0.145, 0.4 um and temporal resolution
of approximately 2 -5s (see §4 for details on the imaging
and pre-processing and electronic supplementary material,
figure S1 for a representative snapshot and three-dimensional
trajectories). Spherical harmonics (figure 1b) can be used to
quantify three-dimensional cell shapes, as shown in figure
1c [20,21,25,26]. The spherical harmonic functions, Y}"(6, ¢),
form a basis over the sphere, where [ is the function degree
(related to frequency) and m is the order (rotations at each
degree). The full approach is detailed in §4 and summarized
here. The Cartesian coordinates describing the cell surface are
each mapped to a sphere, so as polar coordinates {6, ¢} move
over the sphere surfaces, the cell surface is traced out in object
space. Analogous to a Fourier decomposition, the functions
describing the cell surface can be decomposed into a set of
spherical harmonic coefficients, ¢j; withi € {x,, z}. The! =0 coef-
ficients describe the centroid location, the =1 coefficients
describe the ellipsoid part of the shapes, and so on, with increas-
ing levels of detail. Truncation of the representation at a certain
Imax therefore leads to a representation of a smoothed version
of the original morphology, where higher-frequency features
are filtered out (figure 1d). Translation invariance is achieved
by omitting the I =0 coefficient, scale invariance is achieved by
dividing all coefficients by V=/? where V is the volume [27],
and rotational invariance is achieved by transforming to a new
representation, {Dj};.o, with

1
D, = Z Zcﬁc;ﬁ*, (2.1)

i€(x,y,z) m=0

analogous to how rotational invariance can be achieved by
extracting the power spectrum from Fourier descriptors of
two-dimensional cell shapes [15]. There are two key problems
with the descriptor in its current form, and we made two
modifications to remedy these.

First, the coefficients are not linearly related to the spatial
extent of different features. We therefore took the square root
of each element, i.e. {D;} — {Dl] / %}, which yields a descriptor
more representative than the power spectrum [28]. Without
this operation, almost all variance is contained in the first
(ellipsoid) coefficient. Second, we added an element to the
shape representation to capture key polarization information
lost in a purely global shape representation. At the cell rear is
the uropod, a smooth round appendage that stabilizes the cell
and generates contractile forces, and at the leading edge
emerge dynamic, higher-frequency protrusions. The cells in
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Figure 2. T cell shape is low-dimensional as quantified with three principal components. (a) Principal components (PCs) 1, 2 and 3 capture 74%, 12% and 9.8%
(total of 96%) of the variance in D), respectively. (b) Shape changes associated with each PC (/,ax = 3 reconstructions), found by splitting the PCA space into seven
equal-length bins along each axis and plotting the T cell within each bin with the lowest value for the other PCs. An increasing PC 1 represents elongation and
front-widening, a decreasing PC 2 represents contraction with front-widening, and an increasing PC3 represents elongation (forward or sideways) with the centroid
moving towards the uropod. (c) Correspondence between the principal components (PCs) and D, is found by inverting the minimum, mean and maximum of each
PC, with the other two PCs set to zero. Red and blue indicate decreasing and increasing descriptors, respectively, as the PCs are increased. Dy represents the closeness
between the uropod and centroid, D, the ellipsoidal aspects, and higher descriptors represent higher-frequency shape features. (d) Cell reconstructions with /5 =3
at their positions in PCA space. Darkness of colour indicates increasing PC 2.

frames A and B in figure le have very similar descriptors
under a regular spherical harmonic representation, reflecting
the similarity of their ellipsoid components, but this misses
the polarization conveyed in subtler features. We therefore
added an extra descriptor, linearly related to the distance
between the uropod and centroid, D, (see §4 for the full
expression). The standard deviation of Dy across all datasets
is 0.31, and the standard deviations of the remaining D; are
all lower, showing that frames A and B in figure le are
approximately two standard deviations apart along the D,
dimension. While most cells have a well-defined uropod
that can be readily identified (e.g. frames A and B in figure
le), some can exhibit more spherical shapes, as shown in
figure 1f. However, even for these cells, there is still an ident-
ifiable smooth rear opposite a dynamic leading edge, and
temporal information can reveal where the uropod transi-
ently forms. For simplicity, we refer to this region at the
rear as the uropod for all frames. The ultimate representation
of T cell shape is therefore {D;}”“f‘*’15 with Dy as described
above and D; for I>0 the square root of the expression in
equation (2.1).

We used principal component analysis (PCA) to identify a
set of uncorrelated linear features, or principal components
(PCs), from the initial high-dimensional shape representation,
{D;}. Despite the lack of obvious constraints from manual
inspection, figure 2a shows that only three PCs are required
to capture approximately 96% of the variance in the data
(74%, 12% and 9.8% for PCs 1, 2 and 3, respectively). The
rotational invariance means that the PCA coordinates are
not invertible to unique shapes. To better isolate what fea-
tures each PC describes, we therefore split the PCA space
into 7 equal-length bins along each axis and plotted the T
cell within each bin with the lowest value for the other
PCs, shown in figure 2b for I,y =3 reconstructions and elec-
tronic supplementary material, figure S2a for full cells (and
electronic supplementary material, figure S2b shows the PC
values of these plotted cells). Figure 2c shows what D; tran-
sitions these PCs correspond to, with the minimum, mean
and maximum inverted for each PC (with the other PCs set
to zero), and electronic supplementary material, figure S2c
shows the vector composition of each PC. An increasing PC
1 represents elongation and front-widening, a decreasing
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PC 2 represents contraction with front-widening, and an
increasing PC3 represents elongation (forward or sideways)
with the centroid moving towards the uropod. Figure 24
shows a sample of cells (with I, =3) at their locations in
the PC space. Electronic supplementary material, figure S2d4
shows that along the main axis of variation (PC 1),
dimensionality is relatively constant, and electronic sup-
plementary material, figure S2e shows only modest
differences in the spherical harmonic spectra of the low and
high PC 1 populations.

Uncertainty in the uropod label, a diffuse region rather
than a precisely locatable point, can be quantified and propa-
gated to downstream variables of interest (electronic
supplementary material, figure S3 and §4). Uropod uncer-
tainty was found using the curvature around the labelled
point (electronic supplementary material, figure S3a,b), and
then PC uncertainties were calculated by re-computing D,
using each point on the cell rear within this uncertainty (elec-
tronic supplementary material, figure S3c). The mean per cent
uncertainty in Dy is 1.5%, which is lower than the uropod
uncertainty since cell rears are typically perpendicular to
the axis defined by the centroid and uropod. The percentage
uncertainties of the PCs (relative to their standard deviations)
are 4.4%, 0.3% and 9.2% for PCs 1-3, respectively.

2.2. Run-and-stop migration emerges over long
timescale

To connect morphodynamics with migration strategies, vari-
ables describing cell motion are required. There are two
landmark-like features of the cell that move through the
ECM, the uropod and the centroid, and we calculated velocity
vectors for both, invariant to cell scale (i.e. units of s7'; see §4).
To ensure that uropod velocities have adequate signal-to-noise
ratio (SNR), where noise arises from uropod labelling uncer-
tainty, we found for each dataset the mean time taken for
the uropod to move a significant distance, Tsig, and then com-
puted velocities using running means over position with a
time window of 7, (see §4 and electronic supplementary
material, figure S3d for details). We then calculated speeds,
which are one dimension and rotationally invariant, unlike
velocities. The uropod and centroid speeds alone cannot separ-
ate distinct behaviours at small timescales, like translation and
rotation (electronic supplementary material, figure S4a), and so
we searched for a biologically meaningful reference frame. We
found that long-timescale migration is typically along the axis
defined by the uropod and centroid (the UC axis), rather than
the ellipsoid major axis (electronic supplementary material,
figure S4b). The speeds of the uropod and centroid along
this axis then better differentiate distinct motifs (electronic sup-
plementary material, figure S4c) and electronic supplementary
material, figure S4d shows that these describe largely irrevers-
ible motion. The former has lower variance and fewer
reversals (electronic supplementary material, figure S4d), and
figure 1f and electronic supplementary material, video S9
show dynamics that we observed in some datasets, where
the cell appears to test routes with multiple extensions and
retractions but a relatively static uropod, before committing
with the uropod. We therefore selected uropod speed along
the UC axis as the variable for cell motion (figure 3a), and
henceforth refer to it simply as speed.

Two migration modes separate out at long timescales, as
shown in plots of cumulative speed (figure 3b): repeated

phases of high speed, making significant progress forward,
e.g. cell A; and lower speeds, yielding little progress, despite
significant uropod motion in some cases, e.g. cell B (figure
3c). Figure 3d shows that, while at small times the dynamics
can be indistinguishable (both modes have phases of near-
zero speed), run-and-stop bimodality emerges at approxi-
mately 150s. This bimodality is consistent with conclusions
from lower-resolution experiments, where long-timescale tra-
jectories of single cells have been modelled with Lévy-type
random walks (characteristic of switching between stop and
run modes) [29]. Interestingly, another study suggested more
complex statistics, with cells divided into sub-populations
described by distinct random walk models [30]. PCs 1 and 2
have a stronger correlation with run-and-stop mode than
speed, indicating that shape is specialized more for migration
mode than instantaneous speed, with cells in the run mode
longer and thinner than those in the stop mode (electronic sup-
plementary material, figure S5a). We next explored the
morphodynamics behind these migration modes.

2.3. Stereotyped morphodynamics underlie migration
modes

We analysed longer duration datasets for each of the run and
stop modes to investigate how they differ (electronic sup-
plementary material, videos S1-4 and 5-8 for the run and
stop modes, respectively). We first computed the autocorrela-
tion functions (ACF) of the shape (PCs 1-3) and speed
dynamics (using high SNR timeseries; see §4 for details). The
ACF is the correlation of a timeseries with a lagged version
of itself, as a function of the lag, which can reveal the presence
of latent variables preserving information across time. We
found an autocorrelation decay time, zacp by fitting an expo-
nential decay model to the peaks of the oscillating ACFs
(electronic supplementary material, figure S5b), and these
decay times are indicative of the timescales over which pro-
cesses are likely guided more by internal cytoskeletal
machinery than stochastic external cues. For the stop mode,
PC 3 is more autocorrelated than the other variables (mean
Tacr~ 250 s compared with approx. 150 s of the other vari-
ables; electronic supplementary material, figure S5b). PC 3
dynamics are suggestive of sensing: forward extension with
a tentative rearward centroid, and reaching sideways. See elec-
tronic supplementary material, videos S5-9, with the three
included in the PC 3 ACF analysis coloured by PC 3. For the
run mode, the main differences are a decrease in the PC 3 auto-
correlation (to approx. 150 s) and an increase in the speed and
PC 2 (contraction with front-widening) autocorrelations (to
approx. 225 s). The power spectra in electronic supplementary
material, figure S5¢ show that the run mode has larger oscil-
lations in speed and PC 2, particularly for 0.005-0.01 Hz.
The run mode is therefore associated with faster oscillations
in speed and PC 2 that typically remain autocorrelated for
longer than those of the stop mode. These ACFs give a
global perspective on morphodynamics, and the presence of
long timescales suggests that the morphodynamics are, as
with the morphologies, low-dimensional. We therefore next
zoomed in on the PC timeseries to interpret the organization
of local morphodynamics, or ‘behaviours’, that underlies this
low-dimensionality.

The continuous wavelet transform is a method for finding
local morphodynamics (behaviours) from a timeseries of mor-
phologies, and has been used to map stereotyped behaviour in
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Figure 3. Run-and-stop migration emerges over long timescales. (a) Speed is defined as the uropod speed along the uropod—centroid (UC) axis, ||(Auropod/At)||
cosg, with smoothed uropod and centroid locations, and a further operation for invariance to cell scale (see §4). (b) Cumulative speed plots show
that some cells have repeated phases of high speed (e.g. cell A), while others have much lower speeds (e.g. cell B). Lines are coloured by the maximum distance
travelled divided by total dataset duration. (c) These speed differences are significant despite substantial uropod motion in some cases. Meshes are shown every
approximately 104 s and 103 s for Cells A and B, respectively. (d) Histograms of speed with different running mean windows (t,;,). At small timescales, differences
in speed between cells can be indistinguishable because most exhibit phases of low speed, highlighted for cells A and B. However, bimodality into two modes (run-

and-stop) emerges at around 150s.

fruit flies [23,24]. See §4 for the full pipeline and electronic sup-
plementary material, figure S6a for a schematic. Wavelets are
used to transform the timeseries into a spectrogram with mul-
tiscale dynamic information. Dimensionality reduction with
t-SNE [31] can then be performed to map the spectrogram to
an interpretable two-dimensional morphodynamic space,
where different locations represent different local morphody-
namics (figure 4a), and electronic supplementary material,
figure S6b shows the dimensionality reduction is robust
across different hyperparameters. Stereotyped motifs are

those that are frequently performed, and so correspond to
peaks in the probability density function (PDF) of spectrogram
embeddings in this space. We used wavelets with a maximum
width of influence of 150s, the approximate timescale of
organization found from the autocorrelation analysis.

We found that behaviours are organized into more of a
discrete set rather than a continuum (figure 4a), forming
‘islands’ between which cells jump, and we could therefore
categorize and interpret these individually. Figure 4b shows
key examples, with frames evenly spaced over a 150 s interval
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continuum, and some examples of the local PC series are shown (red, blue and green lines for PCs 1-3, respectively). (b) Example stereotyped motifs, with

frames evenly spaced across 150's. (c) Utilization of motifs in the stop and run modes. Red and blue indicate that the speed running mean is above 0.005 s

—1

(run mode) and below 0.0025 s~ (stop mode), respectively (selected from the bimodal distribution in figure 3d), and grey indicates it is in between these
values (e.g. transitions). (d) Transition probability matrices reveal how cells move around the morphodynamic space, counting transitions only once the cell

moves to a different motif.

(with the remainder and further examples in electronic
supplementary material, figure S7), and electronic sup-
plementary material, figure S8 shows the PC dynamics of
three examples from each motif. Figure 4c shows how these
are used differently in the run and stop modes. Red and
blue indicate that the speed running mean is above 0.005 s~
(run mode) and below 0.0025s™" (stop mode), respectively
(selected from the bimodal distribution in figure 3d4), and
grey indicates it is in between these values (e.g. transitions).
In the stop mode, stereotyped motifs include static shape or
minor reaching with centroid towards the rear (4); forward
lengthening with centroid towards the front (5); and edging
centroid forward (9) (figure 4b). In the run mode, stereotyped
motifs include front-widening then streamlining and extend-
ing (8); and retracting and front-widening then extending

(2). A probability matrix for transitions between the stereo-
typed motifs is shown in figure 4d, with rows and columns
corresponding to the start and end motifs, respectively. We
assigned points to the closest stereotyped motif and counted
transitions only once the cell moves to a different motif (i.e.
diagonal entries are zero). Frequent transitions include from
3 to 7 (retract to reach to one side) and from 8 to 1
(front-widen then streamline and extend to front-widening).
We next looked in detail at the run mode, of particular
interest as this is when cells use global morphodynamics
for active translocation through the ECM, and because it is
in all cases defined by polarized morphologies, for which
our descriptor was designed. First, we repeated the wavelet
analysis with the longer duration datasets of the run
mode, finding more of a continuum than the global
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Figure 5. Periodic oscillations in PC 2 underlie the run mode. (a) Entropy of the run mode marginal dynamics for each PC (5 repeats for each) shows a minimum for
PC 2, and therefore that these dynamics are the most stereotyped, consistent with the autocorrelation results of electronic supplementary material, figure S56.
Markov chain entropies were calculated for transitions on grids over morphodynamic spaces for each PC, found by repeating the wavelet analysis with each PC
on its own. (b) Dynamics in the PC 2 morphodynamic space for the run mode, where different locations represent different local PC 2 morphodynamics (and
decreasing PC 2 represents contraction and front-widening). Tracking the trajectories of the longer duration datasets reveals periodic oscillations of varying ampli-
tude. Local PC 2 dynamics in 150 s windows are shown inset at key points in the morphodynamic space, showing that outer rings represent higher-amplitude
oscillations, with a region for particularly large PC 2 decreases, hottom right. The top left corner represents rearward surface motion and the bottom right corner
represents contraction and front-widening. Regions in between represent transitions between these motifs. Maximum uropod speeds correspond to contraction and
front-widening. (c) These results are suggestive of the following cyclic morphodynamic propulsion mechanism: the leading edge widens, likely intercalating with the
ECM and contracting the uropod; the leading edge then extends forward, as the previously widened leading edge regions undergo a rearward motion that may
connect with the ECM like a paddle. This cycle repeats every approx. 100 s. (d) An example showing these oscillations in cell 1, coloured by PC 2.

morphodynamic space, but for which stereotyped motifs can
still be categorized (electronic supplementary material, figure
S9a,b, with PC timeseries of three examples from each motif
in electronic supplementary material, figure S10). Electronic
supplementary material, figure S9¢,d shows the speeds and
transition probability matrix. Apart from a turning motif,
all fall into two categories: compression, and a rearward sur-
face motion with extension forward (rearward with respect to
the cell frame of reference, and relatively static in the labora-
tory frame). The precise motifs are then variants on these base
behaviours, e.g. whether there is also widening. These under-
lying morphodynamics, omitting the distracting variations,
are most characteristic of PC 2 dynamics, and this connection
between PC 2 dynamics and migration is certainly consistent
with the increased autocorrelation timescales and power of

PC 2 relative to the stop mode (electronic supplementary
material, figure S5b,c).

To test this theory, we calculated the entropy of each PC’s
morphodynamics. We did this by repeating the wavelet analy-
sis for each PC on its own and calculating the Markov chain
entropy for transitions on a grid over the resulting morpho-
dynamic space (see §4 and electronic supplementary
material, figure S9). We used grids since these dynamics
formed continuums rather than discrete, categorizable mor-
phodynamic spaces. We found an entropy minimum for PC
2 (figure 5a), confirming that PC 2 dynamics are the most
stereotyped. Figure 5b shows how all four cells follow the
same circular oscillations of varying radius in the space of
PC 2 morphodynamics. Electronic supplementary material,
videos S1-4 are labelled as cells 1-4. Outer and inner rings
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represent high- and low-amplitude oscillations, respectively,
and there is a region for particularly large decreases in PC 2
(but not for large increases). These results, in conjunction
with electronic supplementary material, videos S1-4, coloured
by PC 2, suggest the following morphodynamic propulsion
mechanism (sketched in figure 5b,c): the leading edge
widens, likely intercalating with the ECM to contract the
uropod (PC 2 decreases); the leading edge then extends for-
ward, as the previously widened leading edge regions
undergo a rearward flow that may connect with the ECM
like a paddle, ultimately streamlining (PC 2 increases). This
cycle is repeated every approx. 100s, and explains the oscil-
lations in (uropod) speed observed in figure 3d. Figure 54
shows an example section of electronic supplementary
material, video S1, coloured by PC 2. These results suggest
that T cells use a highly periodic internal machinery to gener-
ate a sustained migration effort, alternating between two
previously proposed propulsion mechanisms to move the
uropod then leading edge forward [7,9,10]. A plausible
mechanistic basis for the rearward morphodynamic flow is ret-
rograde cortical actin flow, a process that has been implicated
in amoeboid migration in a number of cells, including T cells
[9,10]. However, further investigations of internal actin
dynamics are needed to explore this connection.

3. Discussion

T cells are a key part of the adaptive immune system,
migrating through the ECM to neutralize infected and cancer-
ous cells. However, their morphodynamics have not yet
been completely quantitatively mapped in three dimensions.
Here, we used LLSM to acquire datasets of primary mouse
cytotoxic T cells migrating through a collagen matrix with
high spatio-temporal resolution. Using a novel shape descrip-
tor that incorporates key polarization information with a
uropod label, we found that shape was low-dimensional.
Run-and-stop migration emerges at long timescales
(approx. 150 s), and global morphodynamics are stereotyped,
forming a discrete set rather than continuum. Stop mode
morphodynamics primarily involve oscillations in centroid
movement towards the uropod, with extension forwards or
sideways (PC 3 dynamics), and these remain autocorrelated
for long timescales (decay time, 7ocg ~ 250 s). The run mode
(i.e. active translocation) arises from periodic oscillations in
PC 2, with a period of approximately 100s and tacp~
225s: the leading edge widens, likely using intercalation
with the ECM to contract the uropod (PC 2 decreases); the
leading edge then extends forward, as the previously
widened leading edge regions undergo a rearward motion
that may connect with the ECM like a paddle, ultimately
streamlining (PC 2 increases). These results indicate
that periodicity in the cellular machinery helps to sustain
forward motion during active translocation.

Uropod tracking proved vital for differentiating key mor-
phological and morphodynamic states. Uropod uncertainties
were then required to ensure that analysis was at sufficient
SNR, because the uropod is a diffuse region rather than a pre-
cisely locatable point. In analogy to the role of the Hessian
matrix in parameter fitting, we found this could be achieved
relatively simply by quantifying uropod uncertainty through
the curvature of the cell rear, then propagating this to down-
stream variables of interest. The inclusion of landmark-like

but diffuse features will likely become more important as
methods for tracking intracellular structures at high spatio-
temporal resolution continue to improve, meaning spatial
regions can be associated with specific internal organization
and activity [32]. In a small number of cases (e.g. electronic
supplementary material, video S7), thin fluid-like protrusions
extend out of the uropod, which cause dynamics in D,
that are unlikely to be important for migration. To reduce
these effects, in future work, we will explore labelling
uropods based on smoothed reconstructions (with e.g.
Imax =15). We found uropod definition reduced for some
cells in a long-lived stop mode (and therefore had high uncer-
tainties for some PCs, meaning they were omitted from
analyses). This may be indicative of loss of polarization,
so for these modes alternative shape descriptors may be
more appropriate.

Internal retrograde actin flow has been a hallmark of cell
migration models for decades, since Abercrombie first
observed centripetal flow of particles on fibroblast surfaces
[5,10]. However, Abercrombie also proposed a second pro-
pulsion mechanism, where rearward flows of surface
deformation might push the cell forward like a paddle.
Such morphodynamic flows (or ‘waves’) have recently been
observed in two-dimensional migrating Dictyostelium cells
[33], and in T cells embedded in microfluidic channels
where they can enable migration without any adhesion [9].
To our knowledge, however, they have not been character-
ized in three-dimensional ECM environments. Through
inhibition at obstacles and activation on the opposite side,
flows may also aid turning as has been described in neutro-
phils [34], and the lateral protrusions likely serve as an
anchor in confined geometries [35,36]. Analysis of actomyo-
sin dynamics, as well as tracking of the ECM fibres
(perhaps with a contact map over the cell surfaces), would
help test the connection between the rearward surface
motion and internal actin dynamics, and the specific nature
of how these interact with the ECM for anchoring and pro-
pulsion. The analysis would also reveal the extent to which
decreasing PC 2 (contraction with front-widening) is driven
by contact with fibres, although the periodic PC 2 dynamics
across all run mode cells suggests this may predominantly be
internally regulated.

Exciting areas for future work include the extension of the
analysis to the timescale of hours, where the statistics and
morphodynamics of switching between run and stop
modes could be interpreted at the single-cell level, and the
hierarchical organization of the stereotyped motifs could be
mapped. There are technical challenges, however: individual
cells would have to be followed and migration distances
would exceed the scales of current LLSM fields of view. Data-
set sizes might also become problematic, given that a 20 min
video corresponds to 1 TB of data (with one colour). Further-
more, non-stationary issues such as ageing, differentiation
and activation may come into effect [37]. It would also be
interesting to build statistical models of T cell morpho-
dynamics [16], which may then enable the development of
mechanistic models [38], connecting morphodynamics to
both extracellular and intracellular processes.

Ultimately, we hope quantitative morphodynamic ana-
lyses of T cells navigating the complex ECM environment
will aid comparison of migration across different conditions
(e.g. tissues, drugs and cell mutants). In particular, the preva-
lence and switching between human-labelled modes of
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migration such as chimneying, mesenchymal, amoeboid
(blebbing), finger-like and rear-squeezing could be put on
firm objective grounds [38,39]. These advanced morpho-
dynamic analyses will in turn help the development of
mechanistic models, with a view to enhanced understanding
of, and more effective, immunotherapeutics.

4, Methods

4.1. Lattice light-sheet microscopy imaging and

pre-processing
4.1.1. Lattice light-sheet microscopy

LLSM experiments were either performed on a custom-built
system described in [40], or on a Zeiss Lattice Light Sheet 7
microscope (Zeiss, Oberkochen, Germany). OT1-Lifeact-GFP T
cells [41] labelled with CellTracker Deep Red dye were excited
at 642nm, OT1-mT/mG at 561 nm and plain OT1-Lifeact-GFP
T cells at 488 nm. For all experiments performed on the home-
built system, Point Spread Functions (PSFs) were measured
using 200 nm Tetraspeck beads. The acquired datasets were des-
kewed and deconvolved using LLSpy, a Python interface for
processing of LLSM data. Deconvolution was performed using
a Richardson-Lucy algorithm using the PSFs generated for
each excitation wavelength. Datasets acquired on the Zeiss
system were deskewed using the Zeiss Zen (blue edition) soft-
ware. All data were acquired at 37°C and 5% humidified CO,.
The voxel size was 0.1 x 01 x 0.2 um® for the home-built system
and 0.145 x 0.145 x 0.4 um® for the Zeiss system. The temporal
resolution was 2.5s per frame for the OT1-mT/mG datasets,
5.6 per frame for the OT1-Lifeact-GFP-CellTracker Deep Red
datasets (both imaged on the home-built system) and 4.17 s per
frame for the plain OT1-Lifeact-GFP datasets imaged on the
Zeiss system. We collected 29 datasets with 2850 frames
altogether and a mean and standard deviation across datasets
of 98 and 78, respectively.

4.1.2. Image segmentation

Before further processing, membrane Tomato signal was
denoised using a deep-learning approach based on Content-
Aware Image Reconstruction (CARE) [42]. CellTracker Deep
Red and membrane Tomato signal were bleach-corrected using
Fiji [43]. Cell surfaces were segmented using Imaris 8.4.1 (Bit-
plane, Zurich, Switzerland). To minimize the occurrence of
holes in the surfaces, depending on the signal to noise, ratio
smoothing factors between 0.35um and 0.8 um were applied.
Cell surface triangulations were exported using custom MarLAB
code and again analysed for surface holes. If required, surface
holes were eliminated by custom MaTLAB code based on closing
operations.

4.1.3. Sample preparation

Primary murine OT1-Lifeact-GFP and OT1-mT/mG cytotoxic T
cells were isolated and cultured as previously described [41].
All imaging was done with T cells cultured over 6 or 7 days.
For imaging on the home-built system, OT1-Lifeact-GFP T cells
were labelled with 100 nM CellTracker Deep Red dye (Thermo-
Fisher Scientific, Waltham, MA, USA). Keeping all components
on ice, collagen matrix solution was prepared by adding 10 ul
of 10 x PBS, 1.15 ul IN NaOH and 39 ul T cell medium (TCM),
consisting of phenol-free RPMI 1640, 10% foetal calf serum,
1mM sodium pyruvate, 10mM HEPES, 100 U ml penicillin,
100 ug ml streptomycin, 2 mM L-glutamine and 50 uM f2-mer-
captoethanol (all from Gibco, ThermoFisher Scientific), to 50 ul
liquid-phase rat-tail collagen I (approx. 3 mg/ml; Corning,

New York, NY, USA). Coverslip and imaging dish glass surfaces
were treated with 2% (3-aminopropyl) triethoxysilane in ethanol
and 6% glutaraldehyde to facilitate firm attachment of collagen
gels. For imaging on the home-built LLSM, 6 ul of collagen
mix were placed onto surface-treated round 5mm coverslips
(Warner Instruments, Hamden, CT, USA) and polymerized at
37°C for 15min. After polymerization, 10° T cells in phenol-
free TCM were seeded on top of the gel and allowed to infiltrate
over 3 h before imaging. For imaging on the Zeiss LLS system,
10° T cells were added to TCM during collagen matrix mix prep-
aration. Seventy millilitres of collagen mix were added to well of
35 mm imaging dishes (Mattek, Ashland, USA) and polymerized
at 37°C for 30 min. After polymerization, 1ml of pre-warmed
phenol-free TCM was added to the dish and cells were allowed
to recover for 1h before imaging.

4.2. Quantifying three-dimensional cell morphology
Cell morphologies were quantified using SPHARM. First, the cell
surface, described with three Cartesian coordinates, {x, y, z}, is
mapped to the unit sphere, described with polar coordinates
{6, ¢}, such that the three Cartesian coordinates are functions of
the polar coordinates: {x(6, ¢), y(6, ¢), z(6, 9)}. {x(6, ¢), y(6, ¢),
2(6, ¢)} are then be decomposed in terms of the spherical harmo-
nics, Y}*(6, ¢), and only m >0 functions are required [44]. For x
for example,

o
x(6,6) =Y L]0, ¢), 41)

=0 m=0

and the (in general complex) coefficients, c}”l with i € {x, y, z}, rep-
resent the morphology. We used the SpHARM-PDM software
package [44] to find the coefficients for the T cells with I;,ax =
15 and cell meshes converted to voxel grids with a spatial resol-
ution of 0.5 pm for computational speed. The additional variable
for capturing polarization information was Dy. This was the dis-
tance between the uropod and centroid multiplied by 3 with the
numerator reflecting the fact that the harmonics are summed
over three spatial coordinates and the denominator accounting
for the fact that the coefficients have a spatial extent double
their magnitude. The uropod was manually selected (aiming
for its centre) in alternating frames and linearly interpolated.
PCA is a dimensionality reduction method that finds a set of
uncorrelated linear features (the PCs), which are the eigenvectors
of the data covariance matrix (which for D; has dimensions 16 x
16) [45]. Electronic supplementary material, figure S2c shows
the vector composition of each PC. As explored through the
main text, PC 1 is largely associated with transitions between
run and stop mode morphologies, PC 2 is largely associated
with morphological transitions in the run mode, and PC 3 is lar-
gely associated with morphological transitions in the stop mode.
For implementing PCA, we used the Scikit-learn Python
package.

4.3. Uncertainty quantification

The uncertainty in the uropod label depends on the curvature of
the cell rear, which we quantified using the mean curvature aver-
aged across the 15 closest mesh vertices to the labelled point
(with a sub-sampled mesh for computational speed). We then
defined the positional uncertainty as the cord length associated
with a 20° rotational perturbation. To convert this to PC uncer-
tainties, we found the set of possible D, values using mesh
vertices within this uncertainty (i.e. within one cord length of
the uropod label), calculated the standard deviation, and con-
verted to PC uncertainties by multiplying by the cosine of the
angle between the D, and PC vectors in {Dj} space. This process
was repeated for every 10 frames in each dataset to get a single
characteristic uncertainty for each PC (the mean) for each dataset.
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T5ig was calculated as the mean time taken for the uropod to
move twice the cord length. Some cells have uropods that are
near-stationary, and therefore have a z;;; comparable with the
full dataset duration. To account for such cases, we used a maxi-
mum 7, of 100s, in order that these could be plotted for
comparison with dynamic cells, but we excluded them from
quantitative analysis.

4.4, Finding a motion variable for small timescales
We calculated uropod and centroid velocities by finding the
displacements between consecutive positions (smoothed with
running means over 7y, for both, for consistency) and dividing
by the time step and cube root of cell volume (for invariance
to cell scale). The ellipsoid major axis was calculated as the
eigenvector with the largest eigenvalue of ATA, where A
is a matrix of the I=1 spherical harmonic coefficients [25]:
V3/3vV2m) (it — o}, i(e;t — ), vV2e)). For comparing the
uropod-centroid (UC) and ellipsoid axes, we used running
means for uropod and centroid with a time window of 100s
for long-time-scale behaviour. We compared cells where the
uropod speed was above 0.0025s™", i.e. moving more than a
quarter cell length in 100s, and the distance between the
uropod and centroid velocity vectors was within half the
uropod speed, i.e. they were aligned.

4.5. Time-series autocorrelation functions and power
spectra

ACF and power spectra were computed for longer duration data-
sets for each of the run and stop mode. We removed timeseries
with low SNR: PC timeseries where the ratio of the signal stan-
dard deviation to the PC uncertainty was below 2.5 and speed
timeseries where t;; was of a similar scale to the full dataset dur-
ation. There was one removal for each of PC 1, 3 and speed,
across different cells. We calculated the autocorrelation on de-
trended timeseries, in order to only capture statistically signifi-
cant correlations, removing trends with frequencies lower than
0.0025 Hz (corresponding to a period of approximately half the
total dataset duration) with a Butterworth high-pass filter [46].
We then found a decay time, 75ocp by fitting an exponential
decay model, y = e @/7cF), to the peaks of the ACF (rather
than the full ACE which is more appropriate for non-oscillatory
patterns).

4.6. Continuous wavelet transform

The continuous wavelet transform was used to find local mor-
phodynamics (or ‘behaviours’) from the PC timeseries. A
wavelet that decays to zero on either side of a central peak is con-
volved with the timeseries, which produces a new timeseries
where each element now represents local morphodynamics.
Repeating this process with dilated versions of the wavelet and
stacking the resulting set of timeseries yields a spectrogram
with multiscale dynamic information, where high-frequency
components are analysed close in time, but lower frequency
information bleeds in from afar. This spectrogram is then
mapped to an interpretable two-dimensional space using
t-SNE (t-distributed stochastic neighbour embedding) [31], and
a PDF can be computed with kernel density estimation [47].
t-SNE is a nonlinear dimensionality reduction method that
uses machine learning. Two similarity metrics between data-
points are defined for each of the two representations, the
initial (high-dimensional) representation and the target (lower-
dimensional) representation. The difference between the
distributions of these similarities across all data pairs is mini-
mized. For implementing t-SNE, we used the Scikit-learn
Python package with default parameters: perplexity (analogous

to the number of neighbours in other algorithms) of 30, learning
rate of 200 and 1000 iterations.

We identified stereotyped motifs (PDF peaks) using adaptive
binarization, a method that thresholds pixels in an image with a
threshold value that depends on the local statistics: the mean
over a surrounding square of pixels with an added bias (we
used square dimensions of 7 and a bias of 20, found with a
grid search). We used adaptive rather than pure binarization so
that regions with high-density peaks and high PDF between
then (‘superhighways’ representing common transitions) could
be separated, while lower peaks in absolute terms could also
be captured. We used two simple wavelets, the ‘Mexican hat’
wavelet and Gaussian first derivative wavelet, with the combi-
nation of the two required to capture symmetric and
antisymmetric features. For organisms where the morphody-
namics of interest are organized in repeating bouts, e.g. high-
frequency wing-beating of fruit flies, complex wavelets that
enable the removal of phase information can be useful. However,
over the timescales analysed here, T cell morphodynamics are
slower-changing, and phase information is important. We used
six equally spaced frequencies for each wavelet from double
the Nyquist limit up to the (wavelet-specific) frequency with
width of influence corresponding to 150 s, the approximate time-
scale of organization found from the autocorrelation analysis.
The width of influence was found by convolving each wavelet
with a square pulse to find where edge effects begin. When
repeating this method for only the four run mode datasets, we
used for the adaptive binarization parameters square dimensions
of 15 and a bias of 50, again found with a grid search.

4.7. Comparing marginal morphodynamics of the run
mode

The marginal morphodynamics form continuums, and so tran-
sition matrices over stereotyped PDF peaks cannot be defined.
Instead, we defined transition matrices over points on a grid.
We then quantified the entropy for the transition dynamics of
each PC (and compared with that of their combined dynamics).
The entropy is — > mipj;log, pij, where 7; is the equilibrium dis-
tribution and p;; is the probability that the next motif to be
visited after i will be j. For plotting the PC 2 dynamics of the
four cells, we perturbed the wavelets slightly to further improve
the interpretability. This was done by searching locally across
options for the maximum wavelet width (keeping 150s as an
upper bound) and finding combinations with reduced entropy.
Reduced entropy was associated with reducing the Gaussian
wavelet maximum width to 100s, but with the same Mexican
hat wavelets as before.
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